首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Maspin is a member of the serpin family with a reactive center loop that is incompatible with proteinase inhibition by the serpin conformational change mechanism. Despite this there are reports that maspin might regulate uPA-dependent processes in vivo. Using exogenous and endogenous fluorescence, we demonstrate here that maspin can bind uPA and tPA in both single-chain and double-chain forms, with K(d) values between 300 and 600 nM. Binding is at an exosite on maspin close to, but outside of, the reactive center loop and is therefore insensitive to mutation of Arg(340) within the reactive center loop. The binding site on tPA does not involve the proteinase active site, with the result that maspin can bind to S195A tPA that is already complexed to plasminogen activator inhibitor-1. The ability of maspin to bind these proteinases without involvement of the reactive center loop leaves the latter free to engage in additional, as yet unidentified, maspin-protein interactions that may serve to regulate the properties of the exosite-bound proteinase. This may help to reconcile apparently conflicting studies that demonstrate the importance of the reactive center loop in certain maspin functions, despite the inability of maspin to directly inhibit tPA or uPA catalytic activity in in vitro assays through engagement between its reactive center loop and the active site of the proteinase.  相似文献   

2.
Plasminogen activator inhibitor-1 (PAI-1) accumulates within thrombi and forming whole blood clots. To explore this phenomenon at the molecular level, PAI-1 binding to fibrin was examined. The experiments were performed by adding 125I-PAI-1, which retains its complete tissue-type plasminogen (t-PA) inhibitory activity, to fibrin matrices formed in 2-cm2 tissue culture wells. Guanidine HCl-activated PAI-1 binding was reversible and was inhibited in the presence of excess, unlabeled PAI-1. Activated 125I-PAI-1 recognized 2 sites on fibrin: a very small number of high affinity sites (Kd less than 1 nM) and principally a large number of low affinity sites with an approximate Kd of 3.8 microM. Latent PAI-1 bound to fibrin at a site indistinguishable from the lower affinity site recognized by activated PAI-1. Fibrin, pretreated with activated PAI-1, was protected from t-PA-mediated plasmin degradation in a PAI-1 dose-responsive manner (IC50 = 12.3 nM). Clot protection correlated with partial occupancy of the low affinity PAI-1 binding site on fibrin and was due to the formation of sodium dodecyl sulfate-stable, PAI-1.t-PA complexes. Latent PAI-1 (27 nM) did not protect the fibrin from dissolution. The localization of PAI-1 to a thrombus by virtue of its fibrin binding potential could result in significant protection of the thrombus from the degradative effects of the fibrinolytic system.  相似文献   

3.
Hepatocyte growth factor/scatter factor (HGF/SF) is a pleiotropic effector inducing invasion and metastasis of tumor cells that express the Met tyrosine kinase receptor. One of the effectors of HGF/SF is the urokinase-type plasminogen activator, a serine protease that facilitates tumor progression and metastasis by controlling the synthesis of the extracellular matrix degrading plasmin. Stimulation of NIH 3T3 cells that were stably transfected with the human Met receptor (NIH 3T3-Methum) with HGF/SF induced a trans-activation of the urokinase promoter and urokinase secretion. Induction of the urokinase promoter by HGF/SF via the Met receptor was blocked by co-expression of a dominant-negative Grb2 and Sos1 expression construct. Further, the expression of the catalytically inactive mutants of Ha-Ras, RhoA, c-Raf, and Erk2 or addition of the Mek1-specific inhibitor PD 098059 abrogated the stimulation of the urokinase promoter by HGF/SF. A sequence residing between -2109 and -1870 base pairs (bp) was critical for stimulation of the urokinase gene by HGF/SF. Mobility shift assays with oligonucleotides spanning an AP-1 site at -1880 bp or a combined PEA3/AP-1 site at -1967 bp showed binding of nuclear factors from NIH 3T3-Methum cells. Expression of an expression plasmid that inhibits DNA binding of AP-1 proteins (A-Fos) abrogated inducible and basal activation of the urokinase promoter. Nuclear extract from unstimulated NIH 3T3-Methum cells contained more JunD and showed a stronger JunD supershift with the AP-1 oligonucleotides, compared with HGF/SF-stimulated cells. Consistent with the levels of JunD expression being functionally important for basal expression of the urokinase promoter, we found that overexpression of wild type JunD inhibited the induction of the urokinase promoter by HGF/SF. These data suggest that the induction of urokinase by HGF/SF is regulated by a Grb2/Sos1/Ha-Ras/c-Raf/RhoA/Mek1/Erk2/c-++ +Jun-dependent mitogen-activated protein kinase pathway.  相似文献   

4.
The "serpin" plasminogen activator inhibitor 1 (PAI-1) is the fast acting inhibitor of plasminogen activators (tissue-type (t-PA) and urokinase type-PA) and is an essential regulatory protein of the fibrinolytic system. Its P1-P1' reactive center (R346 M347) acts as a "bait" for tight binding to t-PA/urokinase-type PA. In vivo, PAI-1 is encountered in complex with vitronectin, an interaction known to stabilize its activity but not to affect the second-order association rate constant (k1) between PAI-1 and t-PA. Nevertheless, by using PAI-1 reactive site variants (R346M, M347S, and R346M M347S), we show that the binding of vitronectin to the PAI-1 mutant proteins improves plasminogen activator inhibition. In the absence of vitronectin the PAI-1 R346M mutants are virtually inactive toward t-PA (k1 less than 1 x 10(3) M-1 s-1). In contrast, in the presence of vitronectin the rate of association increases about 1,000-fold (k1 of 6-8 x 10(5) M-1 s-1). This inhibition coincides with the formation of serpin-typical, sodium dodecyl sulfide-stable t-PA.PAI-1 R346M (R346M M347S) complexes. As evidenced by amino acid sequence analysis, the newly created M346-M/S347 peptide bond is susceptible to attack by t-PA, similar to the wild-type R346-M347 peptide bond, indicating that in the presence of vitronectin M346 functions as an efficient P1 residue. In addition, we show that the inhibition of t-PA and urokinase-type PA by PAI-1 mutant proteins is accelerated by the presence of the nonprotease A chains of the plasminogen activators.  相似文献   

5.
The kinetics of inhibition of tissue-type plasminogen activator (t-PA) by the fast-acting plasminogen activator inhibitor-1 (PAI-1) was investigated in homogeneous (plasma) and heterogeneous (solid-phase fibrin) systems by using radioisotopic and spectrophotometric analysis. It is demonstrated that fibrin-bound t-PA is protected from inhibition by PAI-1, whereas t-PA in soluble phase is rapidly inhibited (K1 = 10(7) M-1.s-1) even in the presence of 2 microM-plasminogen. The inhibitor interferes with the binding of t-PA to fibrin in a competitive manner. As a consequence the Kd of t-PA for fibrin (1.2 +/- 0.4 nM) increases and the maximal velocity of plasminogen activation by fibrin-bound t-PA is not modified. From the plot of the apparent Kd versus the concentration of PAI-1 a Ki value of 1.3 +/- 0.3 nM was calculated. The quasi-similar values for the dissociation constants between fibrin and t-PA (Kd) and between PAI-1 and t-PA (Ki), as well as the competitive type of inhibition observed, indicate that the fibrinolytic activity of human plasma may be the result of an equilibrium distribution of t-PA between both the amount of fibrin generated and the concentration of circulating inhibitor.  相似文献   

6.
Tissue-type plasminogen activator (t-PA) from human melanoma cells (Bowes) was purified by immunosorbent chromatography on affinospecific polyclonal antibodies and gel filtration in the presence of KSCN. The immunosorbent eluate contained three major components of greater than 200, 85 and 65 kDa, respectively. The 65 kDa t-PA component could be separated by gel filtration on Ultrogel AcA44 in the presence of KSCN to a pure preparation yielding a unique N-terminal amino acid sequence. Immunoblot analysis, using affinospecific antibodies against t-PA, was a specific and sensitive method to identify different types of t-PA (I-IV), as well as t-PA-inhibitor complexes and degradation products in unstimulated melanoma cell culture fluids. Furthermore, the t-PA preparations, produced by phorbol ester-treated melanoma cells, were free of type IV and thus differed physiochemically from the constitutively produced t-PA preparations. The composition of t-PA from mammalian cell cultures is thus more complex than hitherto described.  相似文献   

7.
组织型纤溶酶原激活剂的纯化制备   总被引:1,自引:0,他引:1  
简述了用于大规模生产组织型纤溶酶原激活剂(tPA)的重组动物细胞及其培养工艺。从重组tPA的大规模、快速纯化的角度考虑,对tPA的纯化制备方法进行了简要评述。  相似文献   

8.
The reaction of recombinant tissue-type plasminogen activator with the inverse substrate 4-amidino-2-nitrophenyl 4'-anisate results in the rapid release of the chromogen 4-amidino-2-nitrophenol and the accumulation of the relatively stable 4-anisoyl-enzyme. Spectrophotometric monitoring of the reaction enables the operational molarity of the enzyme to be determined.  相似文献   

9.
The reaction between plasminogen activators and plasminogen activator inhibitor-1 is characterized by an initial rapid formation of an inactive reversible complex. The second-order association rate constant (k1) of complex formation of recombinant two-chain tissue-type plasminogen activator (rt-PA) or recombinant two-chain urokinase-type plasminogen activator (rtcu-PA) by recombinant plasminogen activator inhibitor-1 (rPAI-1) is 2.9 +/- 0.4 x 10(7) M-1 s-1 (mean +/- S.D., n = 30) and 2.0 +/- 0.6 x 10(7) M-1 s-1 (n = 12), respectively. Different molecular forms of tissue- or urokinase-type plasminogen activator which do not form covalent complexes with rPAI-1, including rt-PA-Ala478 (rt-PA with the active-site Ser478 mutagenized to Ala) and anhydro-urokinase (rtcu-PA with the active-site Ser356 converted to dehydroalanine) reduced k1 in a concentration-dependent manner, compatible with 1:1 stoichiometric complex formation between rPAI-1 and these ligands. The apparent dissociation constant (KD) of the complex between rPAI-1 and rt-PA-Ala478, determined as the concentration of rt-PA-Ala478 which reduced k1 to 50% of its control value, was 3-5 nM. Corresponding concentrations of active-site-blocked two-chain rt-PA were 150-250-fold higher. The concentration of anhydro-urokinase which reduced k1 to 50% was 4-6 nM, whereas that of active-site-blocked rtcu-PA was 100-250-fold higher. Recombinant single-chain urokinase-type plasminogen activator had an apparent KD of about 2 microM. These results suggest that inhibition of rt-PA or rtcu-PA by rPAI-1 proceeds via a reversible high affinity interaction which does not require a functional active site but which is markedly reduced following inactivation of the enzymes with active-site titrants.  相似文献   

10.
Regulation of the fibrinolytic system of cultured human umbilical vein endothelial cells (HUVECs) by recombinant interleukin 1 beta (rIL-1 beta) and tumor necrosis factor alpha (rTNF alpha) was investigated. Functional and immunologic assays indicated that both cytokines decreased HUVEC tissue-type plasminogen activator (tPA) and increased type 1 plasminogen activator inhibitor (PAI-1) in a dose- and time-dependent manner. Maximal effects (50% decrease in tPA antigen; 300-400% increase in PAI-1 activity) were achieved with 2.5 units/ml rIL-1 beta and 200 units/ml rTNF alpha. Combinations of rIL-1 beta and rTNF alpha were not additive at these maximal concentrations. After a 24-h pretreatment with rIL-1 beta, HUVECs secreted tPA at one-quarter of the rate of control cells and released PAI-1 at a rate that was 5-fold higher than controls. Neither the basal rate of PAI-1 release nor the increased rate of release of PAI-1 in response to rIL-1 beta was affected by subsequently treating the cells with secretagogues (e.g. phorbol myristate acetate) suggesting that PAI-1 is not contained within a rapidly releasable, intracellular storage pool. Northern blot analysis using a PAI-1 cDNA probe indicated that the cytokines increased the steady-state levels of the 3.2- and 2.3-kb PAI-1 mRNA species, but with a preferential increase in the larger mRNA form. The fact that both rIL-1 beta and rTNF alpha act in a similar manner strengthens the hypothesis that the local development of inflammatory/immune processes could reduce endothelial fibrinolytic activity.  相似文献   

11.
The complete cDNA for human tissue-type plasminogen activator (t-PA) was cloned and sequenced. A mutant was constructed by using in vitro site-specific mutagenesis to delete the region encoding the growth factor domain (amino acids 51-87 inclusive). Normal and mutant t-PA species were produced using two mammalian expression systems (in human HeLa cells and mouse C127 cells). The clearance of mutant and normal t-PA from plasma was examined in vivo using a guinea pig model. Mutant t-PA derived from HeLa or C127 cells was cleared much more slowly than the cognate normal t-PA. The potential role of the growth factor domain in the recognition of t-PA by the hepatic clearance mechanism is discussed.  相似文献   

12.
Recent data from several studies have suggested that the non-protease domains in tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) determine their biological specificities, including binding to fibrin clots and survival in the circulatory system (Van Zonneveld, A.-J., Veerman, H., and Pannekoek, H. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 4670-4674; Rijken, D. C., and Emeis, J. J. (1986) Biochem. J. 238, 643-646). Structural manipulations (e.g. deletions, additions, or substitutions) in these domains can thus be utilized to maximize the desired biological effects. Using recombinant DNA technology, we constructed a number of hybrid molecules from the t-PA and u-PA genes. In hybrid A, the epidermal growth factor and finger domains of t-PA (residues 1-91) were replaced by the epidermal growth factor and kringle of u-PA (residues 1-131). In hybrids B and C, the u-PA kringle (residues 50-131) was inserted either before (residue 92) or after (residue 261) the double-kringle region of t-PA. All these hybrid PAs containing three kringles were expressed in mouse fibroblast cells (C-127). The hybrid proteins were synthesized in predominantly a single-chain form with molecular weights of 70,000-80,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and were enzymatically active as assayed by the fibrin-agar plate method. In vitro studies on the binding of hybrid PAs to fibrin showed that hybrid B, like t-PA, possesses affinity toward fibrin, while hybrid A shows lower binding. This suggests that the finger domain, which is not present in hybrid A, plays a role in conferring fibrin affinity to the hybrid PAs. The enzymatic activities of the hybrids were compared with that of recombinant t-PA (rt-PA) expressed in the same vector/host system and found to be similar in activity toward a chromogenic peptide substrate. In addition, plasminogen activation with all the hybrid-PAs, as with rt-PA, was stimulated by fibrin, with the order of activity being rt-PA greater than or equal to hybrid B greater than hybrid C greater than hybrid A. This study shows the feasibility of shuffling functional domain(s) of known specificity in plasminogen activators which may lead to the design of a superior thrombolytic agent.  相似文献   

13.
The two-kringle domain of tissue-type plasminogen activator (t-PA) has previously been shown to contain anti-angiogenesis activity. In this study, we explored the potential in vivo anti-tumor effects of the recombinant kringle domain (TK1-2) of human t-PA. Anti-tumor effects of purified Pichia-driven TK1-2 were examined in nude mice models by subcutaneous implantation of human lung (A-549) and colon (DLD-1, HCT-116) cancer cell lines. Mice bearing the tumors were injected with PBS or purified TK1-2 (30 mg/kg) i.p. every day for 22 days. TK1-2 treatment suppressed the A-549, DLD-1, and HCT-116 tumor growth by 85.3%, 52.4%, and 62.5%, respectively. Immunohistological examination of the tumor tissues showed that TK1-2 treatment decreased the vessel density and also the expression of angiogenesis-related factors including angiogenin, VEGF, alpha-SMA, vWF, and TNF-alpha, and increased the apoptotic fraction of cells. TK1-2 neither inhibited in vitro growth of these cancer cells nor affected t-PA-mediated fibrin clot lysis. These results suggest that TK1-2 inhibits the tumor growth by suppression of angiogenesis without interfering with fibrinolysis.  相似文献   

14.
We have shown that plasminogen activator inhibitor-1 (PAI-1) inhibits the fibrin binding of both the single chain and two chain forms of tissue-type plasminogen activator (tPA) through two different mechanisms. PAI-1 inhibits the finger domain-dependent fibrin binding of diisopropylfluorophosphate-inactivated single chain tPA and the kringle-2 domain-dependent fibrin binding of diisopropylfluorophosphate-inactivated two chain tPA. In accordance with the data, preformed complexes of single chain tPA/PAI-1 and of two chain tPA/PAI-1 lost the fibrin binding abilities mediated by the finger and kringle-2 domains, respectively. These effects of PAI-1 appear to be mediated by steric hindrance of the fibrin binding sites after PAI-1 binding to adjacent regions in the functional domains of tPA. We thus propose a model in which a PAI-1 binding site resides in the finger domain of a single chain, and plays a role in the reversible association of single chain tPA and PAI-1. Conformational changes may take place during the conversion of single chain tPA to two chain tPA, resulting in burying of the original PAI-1 binding site and exposure of an alternate PAI-1 binding site on the surface of the kringle-2 domain.  相似文献   

15.
The effect of trans-5-prostaglandin E2 (trans-PGE2) on fibrinolysis was examined in vitro using synthetic chromogenic substrate S-2251. trans-PGE2 was found to enhance plasminogen (PLG) activation mediated by tissue-type plasminogen activator (tPA). The enhancing effect was dependent on the concentration of trans-PGE2. cis-PGE2 and the other PGs (PGE1 and PGI2) did not show such an effect as trans-PGE2, despite to the fact that their structures are similar to that of trans-PGE2. trans-Configuration around the double bond at the 5-position seems to be important in the enhancement of the fibrinolytic activity.  相似文献   

16.
17.
Fibronectin immobilized onto polystyrene surface was found to bind plasminogen and tissue-type plasminogen activator (t-PA) but only slightly the urokinase type as determined using mono- and polyclonal antibodies against the activators. Of the defined fibronectin fragments tested, the Mr 120,000-140,000 fragment was found to bind both plasminogen and t-PA. Proteolytically modified plasminogen (Lys-plasminogen) bound considerably better than the native form (Glu-plasminogen). Experiments with 125I-plasminogen yielded Kd = 9.1 X 10(-8) M for the binding to immobilized fibronectin. The partially or completely inactive single-chain form of t-PA (pro-t-PA) bound considerably better than the activated two-chain form. Lysine at greater than 3 mM inhibited the binding of plasminogen. The interaction was independent of calcium ions. CaCl2 (greater than 0.5 mM) and NaCl (greater than 0.2 M) inhibited the binding of pro-t-PA and of t-PA. Fibronectin-bound t-PA retained its ability to activate plasminogen. The observed interactions may operate in directional proteolysis localizing plasminogen and plasminogen activator to degrade fibronectin-containing extracellular matrix including fibrin clots.  相似文献   

18.
重组组织型纤溶酶原激活剂 ( rt PA)经肝素处理后与未经处理的 rt PA比较 ,结果显示 ,rt PA在体外的溶纤活性提高 5 0 %~ 90 % ,在兔体内的半衰期延长 1 min,同时也提高了 rt PA对热的稳定性  相似文献   

19.
Tissue-type plasminogen activator produced by recombinant DNA technology, has been established as an important thrombolytic agent in the treatment of acute myocardial infarction. New approaches to increase the effectiveness of this agent, including rapid high dose administration are being investigated. Several novel protein engineered variant forms of plasminogen activators have been produced that have increased thrombolytic potency in animal models and offer the potential of a more effective lower dose agent than can be administered clinically as a single bolus intravenous injection.  相似文献   

20.
Matrix metalloproteinase-3 (MMP-3 or stromelysin-1) specifically binds to tissue-type plasminogen activator (t-PA), without however, hydrolyzing the protein. Binding affinity to proMMP-3 is similar to single chain t-PA, two chain t-PA and active site mutagenized t-PA (Ka of 6.3 x 106 to 8.0 x 106 M-1), but is reduced for t-PA lacking the finger and growth factor domains (Ka of 2.0 x 106 M-1). Activation of native Glu-plasminogen by t-PA in the presence of proMMP-3 obeys Michaelis-Menten kinetics; at saturating concentrations of proMMP-3, the catalytic efficiency of two chain t-PA is enhanced 20-fold (kcat/Km of 7.9 x 10-3 vs. 4.1 x 10-4 microM-1.s-1). This is mainly the result of an enhanced affinity of t-PA for its substrate (Km of 1.6 microM vs. 89 microM in the absence of proMMP-3), whereas the kcat is less affected (kcat of 1.3 x 10-2 vs. 3.6 x 10-2 s-1). Activation of Lys-plasminogen by two chain t-PA is stimulated about 13-fold at a saturating concentration of proMMP-3, whereas that of miniplasminogen is virtually unaffected (1.4-fold). Plasminogen activation by single chain t-PA is stimulated about ninefold by proMMP-3, whereas that by the mutant lacking finger and growth factor domains is stimulated only threefold. Biospecific interaction analysis revealed binding of Lys-plasminogen to proMMP-3 with 18-fold higher affinity (Ka of 22 x 106 M-1) and of miniplasminogen with fivefold lower affinity (Ka of 0.26 x 106 M-1) as compared to Glu-plasminogen (Ka of 1.2 x 106 M-1). Plasminogen and t-PA appear to bind to different sites on proMMP-3. These data are compatible with a model in which both plasminogen and t-PA bind to proMMP-3, resulting in a cyclic ternary complex in which t-PA has an enhanced affinity for plasminogen, which may be in a Lys-plasminogen-like conformation. Maximal binding and stimulation require the N-terminal finger and growth factor domains of t-PA and the N-terminal kringle domains of plasminogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号