首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conjugatophycean green algae, such as Mougeotia and Mesotaenium, are presumably the most ancient organisms to show phytochrome-mediated photomodulatory processes, i.e. chloroplast reorientational movements. Experiments have provided striking evidence for a dichroic mode of light absorption by the phytochrome molecules located at the periphery of the cylindrical cell; in addition, the transition moment of the chromophoric group of phytochrome has been shown to change by a fixed angle upon conversion of Pr to Pfr and vice versa. Consequently, a hypothesis has been put forward involving a tetrapolar phytochrome gradient at the plasmalemma. This presumed pigment pattern precisely controls chloroplast reorientation in the low-irradiance response. Intriguingly, a blue-light absorbing pigment is expressed in Mougeotia as well, which also mediates low-irradiance response via a presumed tetrapolar gradient, apparently independent of the phytochrome. Two hypotheses for the controlling mechanism of chloroplast reorientation have been put forward:
  • a) Coupling of the influx of calcium through the plasmalemma to the tetrapolar gradient of the sensor pigment proper, resulting in a tetrapolar gradient of calcium in the cytoplasm. This is the “reorientation via calcium” hypothesis.
  • b) Coupling of actin anchorage sites on the plasmalemma to the tetrapolar gradient of the sensor pigment proper, resulting in a tetrapolar gradient of actin anchorage sites. Cytoplasmic calcium, released from internal stores or taken up through the plasmalemma, triggers actomyosin interaction. This is the “reorientation via anchorage sites” hypothesis.
Consistent with the latter hypothesis, photoregulation by two steps seems to be indicated, (i) cytoplasmic initiation of actomyosin interaction, (ii) the graded formation of plasmalemma anchorage sites for actin filaments.  相似文献   

2.
A soluble protein was isolated from Mougeotia by chloropromazine-sepharose 4 B affinity chromatography. The protein matches the properties of calmodulin in terms of heat stability, Ca2+-dependent electrophoretic mobility in sodium-dodecyl-sulfate polyacrylamide gels, and its ability to activate cyclic nucleotide phosphodiesterase in a Ca2+-dependent manner. Phytochrome-mediated chloroplast reorientational movement in Mougeotia was inhibited by the calmodulin antagonist trifluoperazine, a hydrophobic compound, or N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a hydrophilic compound; 50% inhibition (IC50) of chloroplast movement is caused by 20–50 mol l-1 trifluoperazine or 100 mol l-1 W-7. The Ca2+-calmodulin may act as an intermediate in the chloroplast reorientational response in Mougeotia governed by phytochrome.Abbreviations EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - SDS sodium dodecyl sulfate - W-7 N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide  相似文献   

3.
Photoinduction and photoinhibition of germination in seed from a homozygous tobacco (Nicotiana tabacum L.) line containing an introduced oat phyA cDNA (encoding phytochrome A) is compared with that of isogenic wild-type (WT) tobacco. Under continuous irradiation by a light source with a low redfar-red (RFR) ratio the transgenic tobacco seed appeared to be less susceptible to photoinhibition of germination compared with WT seed. However, induction of germination following a short pulse by R (666 nm) was not enhanced in the genotype transformed by oat phyA cDNA compared with the WT; neither did germination of the transgenic tobacco seed show an increased sensitivity to saturating pulses of light of longer wavelengths (666–730 nm). In seeds of transgenic Arabidopsis thaliana (L.) Heynh. which contained an introduced phytochrome-B-encoding cDNA, levels of dark germination were enhanced, consistent with mediation of response by phytochrome B-Pfr. The germination behaviour of Arabidopsis genotypes wich contained an introduced cDNA encoding phytochrome A, however, did not significantly differ from that of the WT.Abbreviations ABO seed transformed with Arabidopsis phyB - cDNA; CaMV cauliflower mosaic virus - FR far-red light - Pfr far-red-absorbing form of phytochrome - Ptot total phytochrome - Pfr/Ptot phytochrome photoequilibrium - R red light - RBO seed transformed with rice phyB cDNA - RFR quantum ratio of red and far-red light - WL white light - WL + FR whitelight supplemented with far-red light - WT wild type The authors wish to thank R.D. Vierstra (Department of Horticulture, University of Wisconsin-Madison, USA) for providing the transgenic tobacco line, and M.T. Boylan, D. Wagner and P.H. Quail (U.C. Berkeley/USDA Plant Gene Expression Center, Albany, Calif. USA) for providing the transgenic Arabidopsis lines. The work presented in this paper was funded by grants from the Agricultural and Food Research Council (H.S., A.C.M., G.C.W.).  相似文献   

4.
Phytochrome from leaves of light-grown oat (Avena sativa L. cv. Garry) plants is characterized with newly generated monoclonal antibodies (MAbs) directed to it. The results indicate that there are at least two phytochromes in green oat leaves, each of which differs from the phytochrome that is most abundant in etiolated oat tissue. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with reference to 124-kilodalton (kDa) phytochrome from etiolated oats, the two phytochromes from green oats have monomer sizes of 123 of 125 kDa. Immunoblot analysis of SDS, sample buffer extracts of lyophilized, green oat leaves indicates that neither the 125-kDa nor the 123-kDa polypeptide is a degradation product arising after tissue homogenization. Of the two, the 123-kDa phytochrome appears to be the predominant species in light-grown oat leaves. During SDS-PAGE in the presence of 1 mM Zn2+, 123-kDa phytochrome undergoes a mobility shift corresponding to an apparent mass increase of 2 kDa. In contrast, the electrophoretic mobility of 125-kDa phytochrome is unaffected by added Zn2+. Some MAbs that recognize 123-kDa phytochrome fail to recognize 125-kDa phytochrome and vice versa, indicating that these two phytochromes are not only immunochemically distinct from 124-kDa phytochrome, but also from each other. It is evident, therefore, that there are at least three phytochromes in an oat plant: 124-kDa phytochrome, which is most abundant in etiolated tissue, plus 123-and 125-kDa phytochromes, which predominate in light-grown tissue.Abbreviations Da Dalton - HA hydroxyapatite - MAb monoclonal antibody - PAb polyclonal antibody preparation - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate This research was supported by the U.S. Department of Energy (contract DE-AC-09-81SR10925 to L.H.P.). We thank Dr. Alan Jones, Department of Biology, University of North Carolina, Chapel Hill, USA, for kindly providing rabbit antiserum 4032, and Mrs. Donna Tucker and Mrs. Danielle Neal for their technical assistance.  相似文献   

5.
Chloroplast orientation in the green alga Mougeotia has been induced by unidirectional red or blue light, given continuously during one hour. In addition, part of the preparations obtained scattered strong far-red light simultaneously with the orienting light. This far-red light completely abolished the response to red light, consistent with phytochrome as the sensor pigment for orientation in Mougeotia. In blue light, however, the response was completely insensitive to far-red light, thus pointing to a different sensor pigment in the shortwavelength region.Abbreviation Pfr far-red-absorbing form of phytochrome  相似文献   

6.
A. Wildermann  H. Drumm  E. Schäfer  H. Mohr 《Planta》1978,141(2):211-216
After sowing, mustard (Sinapis alba L.) seedlings were grown for 48 h in white light (25°C). These fully de-etiolated, green seedlings were used as experimental material between 48 and 72 (84) h after sowing. The question researched was to what extent control by light of hypocotyl elongation is due to phytochrome in these seedlings. It was found that the light effect on hypocotyl growth is very probably exerted through phytochrome only. In particular, we found no indication for the involvement of a specific blue light photoreceptor pigment.Abbreviations HIR high irradiance reaction - Pfr far-red absorbing, physiologically active form of phytochrome - Pr red absorbing, physiologically inactive form of phytochrome - Pot total phytochrome, i.e. [Pr]+[Pfr] - [Pfr]/[Ptot] - red red light - fr far-red light - wl white light - bl blue light - di dichromatic irradiation - l hypocotyl length  相似文献   

7.
Roles of different phytochromes in Arabidopsis photomorphogenesis   总被引:20,自引:2,他引:18  
The red/far-red light-absorbing phytochromes play fundamental roles in photoperception of the light environment and the subsequent adaptation of plant growth and development. Higher plants possess multiple, discrete phytochromes, the apoproteins of which are the products of a family of divergent (PHY) genes. Arabidopsis thaliana has at least five PHY genes, encoding the apoproteins of phytochromes A-E. Through the analysis of mutants that are deficient in phytochrome A or B and the corresponding double mutant, it is becoming clear that these phytochromes perform both discrete and overlapping roles throughout plant development. Through analysis of the phyA phyB double mutant, it has been possible to define several responses that are mediated by other members of the phytochrome family. This article reviews some of the recent progress in the study of phytochrome-deficient mutants of the model plant Arabidopsis thaliana.  相似文献   

8.
Phytochrome contents have been assayed in vivo in cell suspension cultures of Petroselinum hortense, Daucus carota and Glycine max. After transferring the cells to fresh medium phytochrome increased in parallel with the increase in cell number, whereas the amount of phytochrome per cell remained constant. The rate of phytochrome reaccumulation after pretreatment with 15 h red light was very similar in all three systems (2.8–3.6 (e) 10–5/h). Dark reversion and a fast and slow Pfr destruction were observed in all systems. The rate constants of these reactions varied strongly between the systems. The phytochrome systems of the cell cultures were compared with those of etiolated and light-grown seedlings and it was concluded that the cell suspension cultures of Petroselinum hortense and Daucus carota behaved similarly to light-grown seedlings. In contrast, those of Glycine max behaved similarly to a dark grown seedling.Abbreviations Pr'fr red, far-red absorbing forms of phytochrome - Ptot Pr+Pfr total amount of phytochrome - fwt fresh weight  相似文献   

9.
Seven monoclonal antibodies (MAbs) have been prepared to phytochrome from green oat (Avena sativa L. cv. Garry) leaves. One of these MAbs (GO-1) cross-reacts with apoprotein of the phytochrome that is most abundant in etiolated oat shoots as assessed by immunoblot assay of fusion proteins expressed in Escherichia coli. The epitope for this MAb is located between amino acids 618 and 686 in the primary sequence of type 3 phytochrome (Hershey et al. 1985, Nucleic Acids Res. 13, 8543–8559), which is one of the predominant phytochromes in etiolated oats. Three other MAbs (GO-4, GO-5, GO-6) immunoprecipitate phytochrome isolated from green oat leaves, as evaluated by photoreversibility assay. GO-1, GO-4, GO-5 and GO-6 are therefore directed to phytochrome. While evidence obtained with the other three MAbs (GO-2, GO-7, GO-8) strongly indicates that they are also directed to phytochrome, this evidence is not as rigorous. Recognition of antigen by any of these seven MAbs is not significantly reduced by periodate oxidation, indicating that their epitopes probably do not include carbohydrate. All but GO-1 bind either very poorly or not at all the phytochrome that is abundant in etiolated oat shoots. These data reinforce earlier observations made with antibodies directed to phytochrome from etiolated oats, indicating (1) that the phytochromes that predominate in etiolated and green oats differ immunochemically and (2) that phytochrome preparations from green oat leaves contain very little of the phytochrome that is abundant in etiolated shoots. An hypothesis that these two immunochemically distinct phytochromes form heterodimers in vitroAbbreviations Da Dalton - DEAE diethylaminoethyl - ELISA enzyme-linked immunosorbent assay - HA hydroxyapatite - Ig immunoglobulin - MAb monoclonal antibody - SDS sodium dodecyl sulfate is supported by comparison of immunoblot data obtained with conventionally purified phytochrome from etiolated oats to that expressed as fusion protein in E. coli. This research was supported by the U.S. Department of Energy (contract DE-AC-09-81SR10925 to L.H.P.). We thank Dr. Lyle Crossland and Ms. Sue Kadwell for their assistance in the construction of the cDNA clones, and Dr. Gyorgy Bisztray for providing us with clone pCBP3712. Dr. Phillip Evans and Dr. Russell Malmberg kindly provided MAbs 4F3, 6F12 and 8C10, as well as a corresponding antigen preparation. The excellent technical assistance of Mrs. Donna Tucker and Mrs. Danielle Neal is gratefully acknowledged.  相似文献   

10.
The monoclonal antibody Z-3Bl (Schneider-Poetsch et al., Planta 173 [1988] 61–72) was used to localize phytochrome in the Mougeotia cell by indirect immunofluorescence. The antibody detected a protein of about 110 kD in the immunoblot. Immunofluorescence indicated abundant phytochrome throughout the cytoplasm. In Mougeotia, a large cytoplasmic pool of phytochrome is presumably in equilibrium with a probably reactant-bound Pfr-pool at the plasmalemma, the latter being responsible for the physiological response.  相似文献   

11.
Summary Effect of the covalently cross-linking agents glutardialdehyde and osmium tetroxide, and of adsorption of the vital dye, neutral red, to the matrix of the calcium-binding vesicles from the green alga Mougeotia scalaris has been analysed in situ, both in terms of structural preservation and of the calcium-binding capacity of the vesicles. Upon cell fixation in glutardialdehyde without OsO4, the vesicles appear to dissolve, but upon simultaneous fixation in glutardialdehyde with OsO4 (1% w/v), the vesicles retain a globular form, are evenly stained by osmium and appear to be surrounded by a membrane-like structure. This structure was also observed around the vesicles in cells preincubated for 10 min in 0.1 mM neutral red and then fixed in glutardialdehyde/OsO4 for 1 h. More detailed information of the matrix structure is obtained when simultaneous fixation of the Mougeotia cells was shortened to 15 min: a membrane-like structure was no longer observed around the vesicles. After cell treatment in the presence of neutral red, no calcium at all was found inside the vesicles. A small amount of calcium remained, when cells were fixed simultaneously and extensively in the absence of neutral red. However, calcium was found, to a considerable extent, inside the vesicles after short simultaneous fixation of the cells in the absence of neutral red. Based on the ultrastructural and elemental features presented here, the calcium-binding vesicles in Mougeotia appear to represent a member of the large family of (calcium-binding) physodes in lower plants (CaBP).  相似文献   

12.
Phytochromes are biliprotein photoreceptors that are found in plants, bacteria, and fungi. Prototypical phytochromes have a Pr ground state that absorbs in the red spectral range and is converted by light into the Pfr form, which absorbs longer-wavelength, far-red light. Recently, some bacterial phytochromes have been described that undergo dark conversion of Pr to Pfr and thus have a Pfr ground state. We show here that such so-called bathy phytochromes are widely distributed among bacteria that belong to the order Rhizobiales. We measured in vivo spectral properties and the direction of dark conversion for species which have either one or two phytochrome genes. Agrobacterium tumefaciens C58 contains one bathy phytochrome and a second phytochrome which undergoes dark conversion of Pfr to Pr in vivo. The related species Agrobacterium vitis S4 contains also one bathy phytochrome and another phytochrome with novel spectral properties. Rhizobium leguminosarum 3841, Rhizobium etli CIAT652, and Azorhizobium caulinodans ORS571 contain a single phytochrome of the bathy type, whereas Xanthobacter autotrophicus Py2 contains a single phytochrome with dark conversion of Pfr to Pr. We propose that bathy phytochromes are adaptations to the light regime in the soil. Most bacterial phytochromes are light-regulated histidine kinases, some of which have a C-terminal response regulator subunit on the same protein. According to our phylogenetic studies, the group of phytochromes with this domain arrangement has evolved from a bathy phytochrome progenitor.Phytochromes are biological photoreceptors that were discovered in plants, where they control development throughout the life cycle in manifold ways (21, 33). Today, a large number of homologs are known also from cyanobacteria, other bacteria, and fungi, which are termed cyanobacterial phytochromes (Cphs), bacteriophytochromes (BphPs), and fungal phytochromes (Fphs), respectively (20, 24). The chromophore is autocatalytically assembled within the N-terminal part of the protein, the photosensory core module (PCM), which contains the PAS, GAF, and PHY domains (30). Typically, phytochromes are converted by light between two spectrally different forms, the red-absorbing Pr and the far-red-absorbing Pfr forms. Photoconversion is initiated by an isomerization of the covalently bound bilin chromophore (32).Plant and cyanobacterial phytochromes incorporate phytochromobilin (PΦB) and phycocyanobilin (PCB) as natural chromophores, respectively, which are covalently bound to Cys residues in the GAF domains. All characterized phytochromes that belong to these groups have a Pr ground state. Plant phytochromes can undergo dark conversion of Pfr to Pr (5), whereas the Pfr form of typical cyanobacterial phytochromes is stable in darkness (26).Bacteriophytochromes utilize biliverdin (BV) instead as a natural chromophore (1), which is covalently attached to a Cys residue in the N terminus of the PAS domain (26). Since the conjugated system of BV is longer than that of PΦB or PCB, the absorption maxima of bacteriophytochromes are found at higher wavelengths than those of cyanobacterial or plant homologs.With the discovery of a bacterial phytochrome from Bradyrhizobium sp. strain ORS278, termed BrBphP1, the first phytochrome with a Pfr ground state and dark conversion from Pr to Pfr was found (10). Thereafter, five more phytochromes with dark conversion of Pr to Pfr were described: Rhodopseudomonas palustris BphP1 (RpBphP1) from strain CEA001, RpBphP5, and RpBphP6 from strain CGA009 (11); Agrobacterium tumefaciens Agp2 (or AtBphP2) from strain C58 (18); and Pseudomonas aeruginosa BphP1 (PaBphP1) (40). These phytochromes are now termed bathy phytochromes because the absorption maxima of their ground states are bathochromically (to longer wavelengths) shifted compared to those of all other phytochromes.Moreover, some other bacterial phytochromes with unusual properties have been described. In the Ppr from Rhodospirillum centenum, a photoactive yellow protein (PYP) domain is fused to the N terminus of a phytochrome homolog. The phytochrome part of Ppr assembles with BV to form a Pr adduct. However, irradiation does not result in the formation of Pfr but in a bleaching of the Pr spectrum (23). The BV adduct of RpBphP3 from R. palustris, which has a Pr ground state, photoconverts to the so-called Pnr form with a blue-shifted absorption maximum (12). RpBphP4 from R. palustris strains Ha2 and BisB5 and Bradyrhizobium BphP3 (BrBphP3) from Bradyrhizobium BTAi1, both with a Pr ground state, photoconvert into a long-lived MetaR form (8, 42). MetaRa and MetaRc are intermediates in the photoconversion from Pr to Pfr of prototypical phytochromes (3). BphP3 from the Bradyrhizobium strain ORS 278 is an exception among bacteriophytochromes as it binds PCB as a natural chromophore. This phytochrome adopts a so-called Po (P-orange) ground state with an absorbance maximum in the orange range (11, 15). Upon irradiation, this phytochrome converts into the Pr form. RpBphP4 from R. palustris CGA009 lacks the biliverdin binding cysteine and does not bind a chromophore (42).With the rapidly growing number of bacterial genome sequences, many new bacterial phytochromes are being discovered. Thus, a large and increasing number of newly identified phytochromes remain spectroscopically uncharacterized. We established an in vivo photometry approach which allowed the rapid acquisition of spectral information about phytochromes from intact bacterial cells. In the beginning period of plant phytochrome research, in vivo photometry was extensively applied (4, 6, 29, 34). This method, in fact, allowed the identification of phytochromes for the first time in plant tissues (6), which led to the purification of phytochromes from plant extracts (37). Here, we apply in vivo photometry for the first time to organisms outside the plant kingdom. This method is especially useful for studying species with single phytochrome genes. The approach is also helpful for comparing properties of native phytochromes in vivo and of their recombinant proteins in vitro.In the present study, we concentrate on nonphotosynthetic species of the order Rhizobiales which belongs to the Alphaproteobacteria. The family Rhizobiaceae comprises plant-interacting soil bacteria. A. tumefaciens and Agrobacterium vitis can transfer genes into plants to induce plant tumors, whereas many other Rhizobiaceae can live as plant symbionts in nodules of stems or roots in which they assimilate molecular nitrogen to produce NH4+, which is used by the plant for synthesis of amino acids and other nitrogen-containing molecules. A. tumefaciens C58 contains two phytochromes, termed Agp1 (or AtBphP1) and Agp2 (or AtBphP2), that have been characterized as recombinant proteins (14, 18, 26, 35) and whose spectral activities have been measured in extracts of wild-type and knockout mutants (31). A large number of phytochromes from photosynthetic Bradyrhizobium and Rhodopseudomonas species, which also belong to the order Rhizobiales, have been characterized as recombinant proteins (11), some of which have already been noted above.It turned out that most of our analyzed phytochromes undergo dark conversion of Pr to Pfr and thus belong to the group of bathy phytochromes. Such phytochromes, which absorb at around 750 nm, clearly dominate among Rhizobiales. We propose that this specific property reflects an adaptation to the light regime in the soil. Our studies also suggest that bacterial phytochromes with a C-terminal response regulator have evolved from a bathy phytochrome progenitor.  相似文献   

13.
In the green algaMougeotia, the dichroic orientation of the red-absorbing form of phytochrome (Pr) is parallel of the cell surface, whereas the far-red-absorbing form (Pfr) is oriented normal to it. The time course of the change from parallel to normal was investigated by double-flash irradiation with polarized red and far-red light. The results obtained by two different methods indicate that most of the phytochrome intermediates existing in the first 5 ms after the inducing red flash are still oriented parallel to the cell surface, similar to Pr. At increasing intervals between the red and the far-red flashes, more and more phytochrome molecules turn their transition moments to the Pfr orientation. This reaction is finished after approximately 30 ms. We conclude that the change in dichroic orientation of the phytochrome molecules inMougeotia occurs during the last relaxation steps of the intermediates on the way from Pr to Pfr. It cannot be decided yet, whether the first surface-normal phytochrome species is an intermediate or Pfr itself.Abbreviations Pr red-absorbing form of phytochrome - Pfr far-red-absorbing form of phytochrome A preliminary report of this work was presented at the European Symposium on Photomorphogenesis, University of Reading, UK (Kraml et al. 1982)  相似文献   

14.
Hagihara T  Hashi M  Takeuchi Y  Yamaoka N 《Planta》2004,218(4):606-614
Syringolide elicitors produced by bacteria expressing Pseudomonas syringae pv. glycinea avirulence gene D (avrD) induce hypersensitive cell death (HCD) only in soybean (Glycine max [L.] Merr.) plants carrying the Rpg4 disease resistance gene. Employing a differential display method, we isolated 13 gene fragments induced in cultured cells of a soybean cultivar Harosoy (Rpg4) treated with syringolides. Several genes for isolated fragments were induced by syringolides in an rpg4 cultivar Acme as well as in Harosoy; however, the genes for seven fragments designated as SIH (for syringolide-induced/HCD associated) were induced exclusively or strongly in Harosoy. cDNA clones for SIH genes were obtained from a cDNA library of Harosoy treated with syringolide. Several sequences are homologous to proteins associated with plant defense responses. The SIH genes did not respond to a non-specific -glucan elicitor, which induces phytoalexin accumulation but not HCD, suggesting that the induction of the SIH genes is specific for the syringolide–Harosoy interaction. HCD and the induction of SIH genes by syringolides were independent of H2O2. On the other hand, Ca2+ was required for HCD and the induction of some SIH genes. These results suggest that the induction of SIH genes by syringolides could be activated through the syringolide-specific signaling pathway and the SIH gene products may play an important role(s) in the processes of HCD induced by syringolides.Abbreviations AOS active oxygen species - CHS chalcone synthase - DPI diphenylene iodonium - HCD hypersensitive cell death - HR hypersensitive response - PAL phenylalanine ammonia lyase - SID syringolide-induced/defense associated - SIG syringolide-induced/general - SIH for syringolide-induced/HCD associated - XET xyloglucan endotransglycosylase  相似文献   

15.
U. Russ  F. Grolig  G. Wagner 《Planta》1991,184(1):105-112
The fluorescent calcium-sensitive dye 1-[2-amino-5-(6-carboxyindol-2-yl)-phenoxy]-2-(2-amino-5-methylphenoxy)-ethane-N,N,N,N-tetraacetic acid (indo-1) was loaded by a transplasmalemma pH gradient into filamentous cells and protoplasts of Mougeotia scalaris, such that most of the indo-1 fluorescence originated from the cytoplasm. Incubation of M. scalaris filaments in ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA)-buffered media (-log [Ca2+] (=pCa) 8 versus pCa 3) caused a consistent and significant decrease in the cytoplasmic free [Ca2+]. Pulses of the fluorescence excitation light (UV-A 365 nm, 0.7 s) caused an increase in cytoplasmic free [Ca2+] in M. scalaris that was nearly independent of the external [Ca2+] and of chloroplast dislocation by centrifugation. This calcium flux, highest in UV-A light, compared with blue or red light, probably resulted from a release of Ca2+ from intracellular stores. Increased cytoplasmic [Ca2+] may affect the velocity of chloroplast rotation since UV-A-light-mediated chloroplast movement was faster than in blue or red light. Consistently, the calcium ionophore A23187 and the calcium-channel agonist Bay-K8644 both increased the velocity of the red-light-mediated chloroplast rotation. Based on these and other observations, a Ca2+-induced decrease in cytoplasmic viscosity in Mougeotia is presumed to occur.Abbreviations EGTA ethylene glycol-bis-(-aminoethyl ether)N,N,N,N-tetraacetic acid - indo-1 1-[2-amino-5-(6-carboxyindol-2-yl)-phenoxy]-2-(2-amino-5-methylphenoxy)-ethane-N,N,N,Ntetraacetic acid - pCa log [Ca2+] - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - xG geometric mean Dedicated to Professor Wolfgang Haupt on the occasion of his 70th birthdayThis paper is part of the Ph.D. thesis of U. Russ at the Justus-Liebig-Universitat Giessen (FRG). Part of this work has been presented at a meeting on Calcium and intracellular signalling in plants in Plymouth, UK, Dec. 1990We are indebted to Dr. G. Seibold and Dipl. Phys. H. Weintraut for their advice on the technique of microspectrofluorometry and for allowing access to the microspectrophotometric facilities in the Strahlenzentrum der Justus-Liebig-Universität, Giessen, FRG. We thank Mrs. A. Quanz for reliable culture of the algae and evaluation of the videotapes. Bay-K8644 was a generous gift of Bayer AG, Wuppertal, FRG. U. russ was supported by a scholarship according to the Hessisches Graduierten Förderungsgesetz. This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

16.
Phytochrome has been isolated from the green alga Mesotaenium and the liverwort Sphaerocarpos. The Mesotaenium pigment had absorption peaks at 649 and 710 nm for the PR and PFR forms, respectively. Corresponding difference spectrum maxima for the Sphaerocarpos pigment were at 655 and 720 nm. While the absorption maxima differ, the reversibility and efficiency with which red and far-red light transform the Mesotaenium pigment are very similar to that reported for phytochrome isolated from etiolated seedlings of higher plants. Methods are described which allow efficient separation of phytochrome from highly pigmented light-grown material.  相似文献   

17.
S. Frosch  H. Mohr 《Planta》1980,148(3):279-286
Carotenoid accumulation in the cotyledons of the mustard seedling (Sinapis alba L.) is controlled by light. Besides the stimulatory function of phytochrome in carotenogenesis the experiments reveal the significance of chlorophyll accumulation for the accumulation of larger amounts of acrotenoids. A specific blue light effect was not found. The data suggest that light exerts its control over carotenoid biogenesis through two separate mechanisms: A phytochrome regulation of enzyme levels before a postulated pool of free carotenoids, and a regulation by chlorophyll draining the pool by complex-formation.Abbreviations Chl chlorophyll(s) - PChl protochlorophyll(ide) - HIR high irradiance reaction (of phytochrome) - Pfr far-red absorbing, physiologically active form of phytochrome - Pr red absorbing, physiologically inactive form of phytochrome - Pfof total phytochrome, i.e. [Pr]+[Pfr] - [Pfr]/[Pfof], wavelength dependent photoequilibrium of the phytochrome system - red red light - fr far-red light  相似文献   

18.
The phytochrome gene (PHY1) cDNA from the fern Adiantum capillus-veneris encodes an amino acid sequence that shows equal similarity (50-60%) to all five Arabidopsis phytochromes (PHYA-E). The A. capillus-veneris PHY1 cDNA was transformed into Arabidopsis ecotype Landsberg erecta to investigate its activity in angiosperms. Three of the resulting lines contained at least 8 times more spectrally active phytochrome than the wild type, indicating that A. capillus-veneris phytochrome can incorporate the chromophore of the host plants. Hypocotyl growth inhibition of these transgenic lines was investigated under red and far-red light. The results indicated dominant negative activity of A. capillus-veneris phy1 on the phytochrome A response in the host plants under continuous far-red light. However, the fern phytochrome did not interfere with the red-light repression of hypocotyl growth mediated by endogenous phytochrome B, and it failed to complement a phyB mutant phenotype. These observations suggest that the phy1 phytochrome molecule is too diverged from those of Arabidopsis to be fully functional.  相似文献   

19.
D. C. Morgan  R. Child  H. Smith 《Planta》1981,151(5):497-498
In background white light, supplementary far-red (max 700 nm) is an order of magnitude less effective than supplementary far-red (max 739 nm) in the stimulation of stem extension in Sinapis alba. The relationship between phytochrome photoequilibrium and extension rate increase for the two supplementary far-red treatments is, however, very similar. This evidence indicates that phytochrome cycling is not involved in the phytochrome control of stem extension in light-grown Sinapis alba and that the response to supplementary far-red light is not fluence rate (irradiance) dependent.Abbreviations Pfr far-red absorbing form of phytochrome - the phytochrome photoequilibrium (Pfr/Ptotal)  相似文献   

20.
We have isolated and sequenced a cDNA clone encoding the apoprotein of a potato phytochrome. Based on the deduced amino acid sequence, which shows 78% amino acid identity to the Arabidopsis phyA and 50% identity to the Arabidopsis phyB open reading frame, we have classified this cDNA clone as potato phyA phytochrome. The amino acid immediately preceding cysteine 323, which is the homologue of oat cystein 321, to which the chromophore has been shown to be attached, is a tyrosine residue. This contrasts with six other type A phytochrome sequences from both monocots and dicots that encode serine in this position. As already observed in three other cDNAs isolated from dicot species, the potato phyA clone encodes a short open reading frame (13 amino acids) preceding the phyA open reading frame (1123 amino acids), supporting the idea that this type of leader sequence might be involved in the regulated expression of the phytochrome apoprotein. Southern blot analysis revealed a single phyA gene as well as other related phytochrome sequences in the potato genome. phyA mRNA levels varied in different organs and were modulated by white light; in seedlings and sprouts, highest levels of mRNA were detected in the etiolated stage. Upon illumination with white light, mRNA levels decreased to the amount found in leaves of re-etiolated plants. Lowest expression was observed in leaves of plants grown in the light, in tubers irrespective of light treatment, and in roots of plants grown in the dark. In roots of plants grown in the light, elevated levels of phyA mRNA were detected. Using a monoclonal antibody generated against pea phytochrome as an immunochemical probe, the protein was only detectable in protein extracts from etiolated seedlings and sprouts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号