首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rapid effects of androgens in macrophages   总被引:4,自引:0,他引:4  
Benten WP  Guo Z  Krücken J  Wunderlich F 《Steroids》2004,69(8-9):585-590
We investigated the existence of membrane receptors for testosterone (mAR) in mouse macrophages of the cell lines IC-21 and RAW 264.7 as well as their roles in nongenomic pathways, gene expression and cell functioning. Both cell lines lack intracellular androgen receptors (iARs) and respond to testosterone with rapid rises in [Ca2+]i. These rises in [Ca2+]i can neither be inhibited by iAR- nor by iER blockers, but are rather mediated through mAR. Pharmacological approaches suggest that the mAR belongs to the class of membrane receptors which are coupled to phospholipase C via pertussis toxin (PTX) sensitive G-proteins. The mAR can be localized as specific surface binding sites for testosterone-BSA-FITC by confocal laser scanning microscopy (CLSM)and flow cytometry, and are characterized by their agonist-sequestrability. In order to examine a possible role of the testosterone-induced rise in [Ca2+]i on gene expression, a c-fos promoter reporter gene construct was transfected into RAW 264.7 macrophages. The increase in [Ca2+]i induced by testosterone cannot significantly activate the c-fos promoter directly. Also, no significant activation of ERK1/2, JNK/SAPK and p38 can be observed following testosterone-stimulation alone. However, testosterone-induced rises in [Ca2+]i do have specific effects on gene expression in context with lipopolysaccharide (LPS)-induced genotropic signaling: testosterone specifically down-regulates LPS-induced activation of c-fos promoter, p38 MAPK and NO production. In fetal calf serum (FCS)-induced genotropic signaling, the situation is reversed, i.e. testosterone augments the activation of c-fos promoter and ERK1/2. Our studies demonstrate a cross-talk between the testosterone-induced nongenomic Ca2+ signaling and the genotropic signaling induced by LPS and FCS in macrophages.  相似文献   

3.
The effect of bacterial lipopolysaccharide (LPS) on the expression of the receptor for platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine; AGEPC) was examined in cultured IC-21 peritoneal macrophages. AGEPC binding to its receptors reached saturation within 20 min at 25 degrees C and was reversible. Scatchard analysis revealed a single class of AGEPC receptors with a Bmax of approximately 170 fmol/mg cellular protein and a Kd of 0.25 nM. Preincubation of IC-21 cells with LPS (0.01-1,000 ng/ml) induced an increase in the surface expression of AGEPC receptors in a time- and concentration-dependent fashion. The maximal effect of LPS on the AGEPC receptor was observed between 5 and 8 h, with a typical increase between 150 and 200%. Scatchard analysis indicated that LPS treatment of IC-21 cells increased the number of AGEPC receptors on the cell surface without any apparent change in the affinity of the receptor for the ligand. The effect of LPS on the surface expression of the AGEPC receptor was nearly abolished by cycloheximide (0.1 mM) and by actinomycin D (3 microM), suggesting the involvement of enhanced receptor protein synthesis and mRNA production in this event. Moreover, LPS treatment increased the capability of the IC-21 cell to respond to AGEPC addition by elevating intracellular free Ca2+ without causing an increase in the basal level of intracellular Ca2+. The present study demonstrates that IC-21 peritoneal macrophages possess high affinity AGEPC receptors and provides the evidence that the number of functional AGEPC receptors on a cell can be increased significantly upon exposure to LPS.  相似文献   

4.
We employed confocal laser-scanning microscopy to monitor cholecystokinin (CCK)-evoked Ca(2+) signals in fluo-3-loaded mouse pancreatic acinar cells. CCK-8-induced Ca(2+) signals start at the luminal cell pole and subsequently spread toward the basolateral membrane. Ca(2+) waves elicited by stimulation of high-affinity CCK receptors (h.a.CCK-R) with 20 pM CCK-8 spread with a slower rate than those induced by activation of low-affinity CCK receptors (l.a. CCK-R) with 10 nM CCK-8. However, the magnitude of the initial Ca(2+) release was the same at both CCK-8 concentrations, suggesting that the secondary Ca(2+) release from intracellular stores is modulated by activation of different intracellular pathways in response to low and high CCK-8 concentrations. Our experiments suggest that the propagation of Ca(2+) waves is modulated by protein kinase C (PKC) and arachidonic acid (AA). The data indicate that h.a. CCK-R are linked to phospholipase C (PLC) and phospholipase A(2) (PLA(2)) cascades, whereas l.a.CCK-R are coupled to PLC and phospholipase D (PLD) cascades. The products of PLA(2) and PLD activation, AA and diacylglycerol (DAG), cause inhibition of Ca(2+) wave propagation by yet unknown mechanisms.  相似文献   

5.
Intracellular calcium (Ca(2+)) homeostasis is very strictly regulated, and the activation of G-protein-coupled receptor (GPCR) can cause two different calcium changes, intracellular calcium release, and calcium influx. In this study, we investigated the possible role of lysophosphatidic acid (LPA) on GPCR-induced Ca(2+) signaling. The addition of exogenous LPA induced dramatic Ca(2+) influx but not intracellular Ca(2+) release in U937 cells. LPA-induced Ca(2+) influx was not affected by pertussis toxin and phospholipase C inhibitor (U73122), ruling out the involvement of pertussis toxin-sensitive G-proteins, and phospholipase C. Stimulation of U937 cells with Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm), which binds to formyl peptide receptor like 1, enhanced phospholipase A(2) and phospholipase D activation, indicating LPA formation. The inhibition of LPA synthesis by phospholipase A(2)-specific inhibitor (MAFP) or n-butanol significantly inhibited WKYMVm-induced Ca(2+) influx, suggesting a crucial role for LPA in the process. Taken together, we suggest that LPA mediates WKYMVm-induced Ca(2+) influx.  相似文献   

6.
Circulating hormones produce rapid changes in the Cl(-) permeability of liver cells through activation of plasma membrane receptors coupled to heterotrimeric G-proteins. The resulting effects on intracellular pH, membrane potential, and Cl(-) content are important contributors to the overall metabolic response. Consequently, the purpose of these studies was to evaluate the mechanisms responsible for G-protein-mediated changes in membrane Cl(-) permeability using HTC hepatoma cells as a model. Using patch clamp techniques, intracellular dialysis with 0.3 mm guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) increased membrane conductance from 10 to 260 picosiemens/picofarads due to activation of Ca(2+)-dependent Cl(-) currents that were outwardly rectifying and exhibited slow activation at depolarizing potentials. These effects were mimicked by intracellular AlF(4)(-) (0.03 mm) and inhibited by pertussis toxin (PTX), consistent with current activation through Galpha(i). Studies using defined agonists and inhibitors indicate that Cl(-) channel activation by GTPgammaS occurs through an indomethacin-sensitive pathway involving sequential activation of phospholipase C, mobilization of Ca(2+) from inositol 1,4,5-trisphosphate-sensitive stores, and stimulation of phospholipase A(2) and cyclooxygenase (COX). Accordingly, the conductance responses to GTPgammaS or to intracellular Ca(2+) were inhibited by COX inhibitors. These results indicate that PTX-sensitive G-proteins regulate the Cl(-) permeability of HTC cells through Ca(2+)-dependent stimulation of COX activity. Thus, receptor-mediated activation of Galpha(i) may be essential for hormonal regulation of liver transport and metabolism through COX-dependent opening of a distinct population of plasma membrane Cl(-) channels.  相似文献   

7.
The ability of O(2) levels to regulate Ca(2+) signalling in non-excitable cells is poorly understood, yet crucial to our understanding of Ca(2+)-dependent cell functions in physiological and pathological situations. Here, we demonstrate that hypoxia mobilizes Ca(2+) from an intracellular pool in primary cultures of cortical astrocytes. This pool can also be mobilized by bradykinin, which acts via phospholipase C and inositol trisphosphate production. By contrast, hypoxic Ca(2+) mobilization utilizes ryanodine receptors, which appear to be either present on the same intracellular pool, or on a separate but functionally coupled pool. Hypoxic activation of ryanodine receptors requires formation of cyclic ADP ribose, since hypoxic Ca(2+) mobilization was fully prevented by nicotinamide (which inhibits ADP ribosyl cyclase) or by 8-Br-cADP ribose, an antagonist of cyclic ADP ribose. Our results demonstrate for the first time the involvement of cyclic ADP ribose in hypoxic modulation of Ca(2+) signalling in the central nervous system, and suggest that this modulator of ryanodine receptors may play a key role in the function of astrocytes under conditions of fluctuating O(2) levels.  相似文献   

8.
Putney JW 《Cell calcium》2007,42(2):103-110
Activation of phospholipase C by G-protein-coupled receptors results in release of intracellular Ca(2+) and activation of Ca(2+) channels in the plasma membrane. The intracellular release of Ca(2+) is signaled by the second messenger, inositol 1,4,5-trisphosphate. Ca(2+) entry involves signaling from depleted intracellular stores to plasma membrane Ca(2+) channels, a process referred to as capacitative calcium entry or store-operated calcium entry. The electrophysiological current associated with capacitative calcium entry is the calcium-release-activated calcium current, or I(crac). In the 20 years since the inception of the concept of capacitative calcium entry, a variety of activation mechanisms have been proposed, and there has been considerable interest in the possibility of transient receptor potential channels functioning as store-operated channels. However, in the past 2 years, two major players in both the signaling and permeation mechanisms for store-operated channels have been discovered: Stim1 (and possibly Stim2) and the Orai proteins. Activation of store-operated channels involves an endoplasmic reticulum Ca(2+) sensor called Stim1. Stim1 acts by redistributing within a small component of the endoplasmic reticulum, approaching the plasma membrane, but does not appear to translocate into the plasma membrane. Stim1, either directly or indirectly, signals to plasma membrane Orai proteins which constitute pore-forming subunits of store-operated channels.  相似文献   

9.
Steroid hormones exert genotropic actions through members of the nuclear receptor family. Here, we have demonstrated genotropic actions of testosterone that are independent of intracellular androgen receptors (iAR). Through plasma membrane androgen receptors (mAR), testosterone induces a rapid rise in the intracellular free Ca(2+) concentration of iAR-free murine RAW 264.7 macrophages. This nongenomic testosterone signaling, which is independent of both iAR and estrogen receptors, does not in itself activate either the mitogen-activated protein kinase (MAPK) families ERK1/2, p38, and JNK/SAPK, the stably and transiently transfected c-fos promoter, or NO production. In the context of lipopolysaccharide (LPS) signaling, however, testosterone attenuates LPS activation of the c-fos promoter and NO production, which is abolished by the intracellular Ca(2+) chelator BAPTA. Testosterone also attenuates the LPS activation of p38 but not that of ERK1/2 and JNK/SAPK, and this attenuation is abrogated by BAPTA. Moreover, the p38 inhibitor, SB 203580, largely reduces LPS activation of the c-fos promoter and NO production, and the remaining levels are no longer regulated by testosterone. This study is the first to provide information on genotropic actions of mAR-mediated nongenomic testosterone Ca(2+) signaling by cross-talk with the LPS signaling pathway through p38 MAPK with impact on cell function.  相似文献   

10.
The spider venom alpha-latrotoxin (alpha-LTX) induces massive exocytosis after binding to surface receptors, and its mechanism is not fully understood. We have investigated its action using toxin-sensitive MIN6 beta-cells, which express endogenously the alpha-LTX receptor latrophilin (LPH), and toxin-insensitive HIT-T15 beta-cells, which lack endogenous LPH. alpha-LTX evoked insulin exocytosis in HIT-T15 cells only upon expression of full-length LPH but not of LPH truncated after the first transmembrane domain (LPH-TD1). In HIT-T15 cells expressing full-length LPH and in native MIN6 cells, alpha-LTX first induced membrane depolarization by inhibition of repolarizing K(+) channels followed by the appearance of Ca(2+) transients. In a second phase, the toxin induced a large inward current and a prominent increase in intracellular calcium ([Ca(2+)](i)) reflecting pore formation. Upon expression of LPH-TD1 in HIT-T15 cells just this second phase was observed. Moreover, the mutated toxin LTX(N4C), which is devoid of pore formation, only evoked oscillations of membrane potential by reversible inhibition of iberiotoxin-sensitive K(+) channels via phospholipase C, activated L-type Ca(2+) channels independently from its effect on membrane potential, and induced an inositol 1,4,5-trisphosphate receptor-dependent release of intracellular calcium in MIN6 cells. The combined effects evoked transient increases in [Ca(2+)](i) in these cells, which were sensitive to inhibitors of phospholipase C, protein kinase C, or L-type Ca(2+) channels. The latter agents also reduced toxin-induced insulin exocytosis. In conclusion, alpha-LTX induces signaling distinct from pore formation via full-length LPH and phospholipase C to regulate physiologically important K(+) and Ca(2+) channels as novel targets of its secretory activity.  相似文献   

11.
Recovery from swelling of hepatocytes and selected other epithelia is triggered by intracellular Ca(2+) release from the endoplasmic reticulum, which leads to fluid and electrolyte efflux through volume-sensitive K(+) and Cl(-) channels. The aim of this study was to determine the mechanisms responsible for swelling-mediated hepatocellular Ca(2+) mobilization. Swelling of HTC rat hepatoma cells, evoked by exposure to hypotonic medium, elicited transient increases in intracellular levels of inositol 1,4,5-trisphosphate (IP(3)) and cytosolic [Ca(2+)]. The latter was attenuated by inhibition of phospholipase C (PLC) with and by IP(3) receptor blockade with 2-aminoethoxydiphenyl borate, but it was unaffected by ryanodine, an inhibitor of intracellular Ca(2+)-induced Ca(2+) release channels. Hypotonic swelling was associated with a transient increase in tyrosine phosphorylation of PLCgamma, with kinetics that paralleled the increases in intracellular IP(3) levels and cytosolic [Ca(2+)]. Confocal imaging of HTC cells exposed to hypotonic medium revealed a swelling-induced association of tyrosine-phosphorylated PLCgamma with the plasma membrane. These findings suggest that activation of PLCgamma by hepatocellular swelling leads to the generation of IP(3) and stimulates discharge of Ca(2+) from the endoplasmic reticulum via activation of IP(3) receptors. By extension, these data support the concept that tyrosine phosphorylation of PLCgamma represents a critical step in adaptive responses to hepatocellular swelling.  相似文献   

12.
Adenine and uridine nucleotides evoke Ca(2+) signals via four subtypes of P2Y receptor in cultured aortic smooth muscle cells, but the mechanisms underlying the different patterns of these Ca(2+) signals are unresolved. Cytosolic Ca(2+) signals were recorded from single cells and populations of cultured rat aortic smooth muscle cells, loaded with a fluorescent Ca(2+) indicator and stimulated with agonists that allow subtype-selective activation of P2Y1, P2Y2, P2Y4, or P2Y6 receptors. Activation of P2Y1, P2Y2, and P2Y6 receptors caused homologous desensitisation, while activation of P2Y2 receptors also caused heterologous desensitisation of the other subtypes. The Ca(2+) signals evoked by each P2Y receptor subtype required activation of phospholipase C and release of Ca(2+) from intracellular stores via inositol 1,4,5-trisphosphate (IP(3)) receptors, but they were unaffected by inhibition of ryanodine or nicotinic acid adenine dinucleotide phosphate (NAADP) receptors. Sustained Ca(2+) signals were independent of the Na(+)/Ca(2+) exchanger and were probably mediated by store-operated Ca(2+) entry. Analyses of single cells established that most cells express P2Y2 receptors and at least two other P2Y receptor subtypes. We conclude that four P2Y receptor subtypes evoke Ca(2+) signals in cultured aortic smooth muscle cells using the same intracellular (IP(3) receptors) and Ca(2+) entry pathways (store-operated Ca(2+) entry). Different rates of homologous desensitisation and different levels of receptor expression account for the different patterns of Ca(2+) signal evoked by each P2Y receptor subtype.  相似文献   

13.
Angiotensin II is a modulator of myometrial activity; both AT(1) and AT(2) receptors are expressed in myometrium. Since in other tissues angiotensin II has been reported to activate intracellular receptors, we assessed the effects of intracellular administration of angiotensin II via microinjection on myometrium, using calcium imaging. Intracellular injection of angiotensin II increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) in myometrial cells in a dose-dependent manner. The effect was abolished by the AT(1) receptor antagonist losartan but not by the AT(2) receptor antagonist PD-123319. Disruption of the endo-lysosomal system, but not that of Golgi apparatus, prevented the angiotensin II-induced increase in [Ca(2+)](i). Blockade of AT(1) receptor internalization had no effect, whereas blockade of microautophagy abolished the increase in [Ca(2+)](i) produced by intracellular injection of angiotensin II; this indicates that microautophagy is a critical step in transporting the peptide into the endo-lysosomes lumenum. The response to angiotensin II was slightly reduced in Ca(2+)-free saline, indicating a major involvement of Ca(2+) release from internal stores. Blockade of inositol 1,4,5-trisphosphate (IP(3)) receptors with heparin and xestospongin C or inhibition of phospholipase C (PLC) with U-73122 abolished the response to angiotensin II, supporting the involvement of PLC-IP(3) pathway. Angiotensin II-induced increase in [Ca(2+)](i) was slightly reduced by antagonism of ryanodine receptors. Taken together, our results indicate for the first time that in myometrial cells, intracellular angiotensin II activates AT(1)-like receptors on lysosomes and activates PLC-IP(3)-dependent Ca(2+) release from endoplasmic reticulum; the response is further augmented by a Ca(2+)-induced Ca(2+) release mechanism via ryanodine receptors activation.  相似文献   

14.
In nonexcitable cells, receptor stimulation evokes Ca(2+) release from the endoplasmic reticulum stores followed by Ca(2+) influx through store-operated Ca(2+) channels in the plasma membrane. In mast cells, store-operated entry is mediated via Ca(2+) release-activated Ca(2+) (CRAC) channels. In this study, we find that stimulation of muscarinic receptors in cultured mast cells results in Ca(2+)-dependent activation of protein kinase Calpha and the mitogen activated protein kinases ERK1/2 and this is required for the subsequent stimulation of the enzymes Ca(2+)-dependent phospholipase A(2) and 5-lipoxygenase, generating the intracellular messenger arachidonic acid and the proinflammatory intercellular messenger leukotriene C(4). In cell population studies, ERK activation, arachidonic acid release, and leukotriene C(4) secretion were all graded with stimulus intensity. However, at a single cell level, Ca(2+) influx was related to agonist concentration in an essentially all-or-none manner. This paradox of all-or-none CRAC channel activation in single cells with graded responses in cell populations was resolved by the finding that increasing agonist concentration recruited more mast cells but each cell responded by generating all-or-none Ca(2+) influx. These findings were extended to acutely isolated rat peritoneal mast cells where muscarinic or P2Y receptor stimulation evoked all-or-none activation of Ca(2+)entry but graded responses in cell populations. Our results identify a novel way for grading responses to agonists in immune cells and highlight the importance of CRAC channels as a key pharmacological target to control mast cell activation.  相似文献   

15.
The metabotropic glutamate receptors (mGluR), mGluR1a and mGluR5a, are G protein-coupled receptors that couple via G(q) to the hydrolysis of phosphoinositides, the release of Ca(2+) from intracellular stores, and the activation of protein kinase C (PKC). We show here that mGluR1/5 activation results in oscillatory G protein coupling to phospholipase C thereby stimulating oscillations in both inositol 1,4,5-triphosphate formation and intracellular Ca(2+) concentrations. The mGluR1/5-stimulated Ca(2+) oscillations are translated into the synchronized repetitive redistribution of PKCbetaII between the cytosol and plasma membrane. The frequency at which mGluR1a and mGluR5a subtypes stimulate inositol 1,4,5-triphosphate, Ca(2+), and PKCbetaII oscillations is regulated by the charge of a single amino acid residue localized within their G protein-coupling domains. However, oscillatory mGluR signaling does not involve the repetitive feedback phosphorylation and desensitization of mGluR activity, since mutation of the putative PKC consensus sites within the first and second intracellular loops as well as the carboxyl-terminal tail does not prevent mGluR1a-stimulated PKCbetaII oscillations. Furthermore, oscillations in Ca(2+) continued in the presence of PKC inhibitors, which blocked PKCbetaII redistribution from the plasma membrane back into the cytosol. We conclude that oscillatory mGluR signaling represents an intrinsic receptor/G protein coupling property that does not involve PKC feedback phosphorylation.  相似文献   

16.
Intercellular communication between germ cells and neighboring somatic cells is essential for reproduction. Caenorhabditis elegans oocytes are surrounded by and coupled via gap junctions to smooth muscle-like myoepithelial sheath cells. Rhythmic sheath cell contraction drives ovulation and is triggered by a factor secreted from oocytes undergoing meiotic maturation. We demonstrate for the first time that signaling through the epidermal growth factor-like ligand LIN-3 and the LET-23 tyrosine kinase receptor induces ovulatory contractions of sheath cells. Reduction-of-function mutations in the inositol 1,4,5-trisphosphate (IP(3)) receptor gene itr-1 and knockdown of itr-1 expression by RNA interference inhibit sheath contractile activity. itr-1 gain-of-function mutations increase the rate and force of basal contractions and induce tonic sheath contraction during ovulation. Sheath contractile activity is disrupted by RNAi of plc-3, one of six phospholipase C-encoding genes in the C. elegans genome. PLC-3 is a PLC-gamma homolog and is expressed in contractile sheath cells of the proximal gonad. Maintenance of sheath contractile activity requires plasma membrane Ca(2+) entry. We conclude that IP(3) generated by LET-23 mediated activation of PLC-gamma induces repetitive intracellular Ca(2+) release that drives rhythmic sheath cell contraction. Calcium entry may function to trigger Ca(2+) release via IP(3) receptors and/or refill intracellular Ca(2+) stores.  相似文献   

17.
Contribution of sphingosine kinase (SPK)-catalyzed production of sphingosine-1-phosphate (SPP), in comparison to phospholipase C (PLC), to Ca(2+) signalling by epidermal growth factor (EGF) was studied in two HEK-293 cell clones (HEK2 and HEK3), expressing functional EGF receptors and exhibiting release of stored Ca(2+) by intracellular SPP. In HEK3 cells, EGF increased [Ca(2+)](i) and stimulated both, SPK and PLC. [Ca(2+)](i) increase, but not PLC stimulation, was strongly reduced by SPK inhibition. In HEK2 cells, EGF similarly stimulated PLC, but did not increase [Ca(2+)](i) or stimulate SPK, suggesting that intracellular SPP production plays a major role for Ca(2+) signalling by EGF in HEK-293 cells.  相似文献   

18.
The effects of external pH (7.0-8.0) on intracellular Ca(2+) signals (Ca(2+) sparks and Ca(2+) waves) were examined in smooth muscle cells from intact pressurized arteries from rats. Elevating the external pH from 7.4 to 7.5 increased the frequency of local, Ca(2+) transients, or "Ca(2+) sparks," and, at pH 7.6, significantly increased the frequency of Ca(2+) waves. Alkaline pH-induced Ca(2+) waves were inhibited by blocking Ca(2+) release from ryanodine receptors but were not prevented by inhibitors of voltage-dependent Ca(2+) channels, phospholipase C, or inositol 1,4,5-trisphosphate receptors. Activating ryanodine receptors with caffeine (5 mM) at pH 7.4 also induced repetitive Ca(2+) waves. Alkalization from pH 7.4 to pH 7.8-8.0 induced a rapid and large vasoconstriction. Approximately 82% of the alkaline pH-induced vasoconstriction was reversed by inhibitors of voltage-dependent Ca(2+) channels. The remaining constriction was reversed by inhibition of ryanodine receptors. These findings indicate that alkaline pH-induced Ca(2+) waves originate from ryanodine receptors and make a minor, direct contribution to alkaline pH-induced vasoconstriction.  相似文献   

19.
This study presents evidence that phosphoinositide 3-kinase (PI3K) plays a concerted role with phospholipase Cgamma in initiating antigen-mediated Ca(2+) signaling in mast cells via a phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3))-sensitive Ca(2+) entry pathway. Exogenous PI(3,4,5)P(3) at concentrations close to its physiological level induces instantaneous Ca(2+) influx into RBL-2H3 cells. This PI(3,4,5)P(3)-induced intracellular Ca(2+) increase is independent of phospholipase C activity or the depletion of internal stores. Moreover, inhibition of PI3K by LY294002 or by overexpression of the dominant negative inhibitor Deltap85 suppresses the Ca(2+) response to the cross-linking of the high affinity receptor for IgE (FcepsilonRI). Concomitant treatment of RBL-2H3 cells with LY294002 or Deltap85 and 2-aminoethyl diphenylborate, a cell-permeant antagonist of D-myo-inositol 1,4,5-trisphosphate receptors, abrogates antigen-induced Ca(2+) signals, whereas either treatment alone gives rise to partial inhibition. Conceivably, PI(3,4,5)P(3)-sensitive Ca(2+) entry and capacitative Ca(2+) entry represent major Ca(2+) influx pathways that sustain elevated [Ca(2+)]i to achieve optimal physiological responses. This study also refutes the second messenger role of D-myo-inositol 1,3,4,5-tetrakisphosphate in regulating FcepsilonRI-mediated Ca(2+) response. Considering the underlying mechanism, our data suggest that PI(3,4,5)P(3) directly stimulates a Ca(2+) transport system in plasma membranes. Together, these data provide a molecular basis to account for the role of PI3K in the regulation of FcepsilonRI-mediated degranulation in mast cells.  相似文献   

20.
The effect of the muscarinic receptors agonist carbachol (Cch) on intracellular calcium concentration ([Ca(2+)](i)) and cAMP level was studied in polarized Fischer rat thyroid (FRT) epithelial cells. Cch provoked a transient increase in [Ca(2+)](i), followed by a lower sustained phase. Thapsigargin, a specific microsomal Ca(2+)-ATPase inhibitor, caused a rapid rise in [Ca(2+)](i) and subsequent addition of Cch was without effect. Removal of extracellular Ca(2+) reduced the initial transient response and completely abolished the plateau phase. Ryanodine, an agent that depletes intracellular Ca(2+) stores through stimulation of ryanodine receptors (RyRs), had no effect on [Ca(2+)](i). However, the transitory activation of [Ca(2+)](i) was dose-dependently attenuated in cells pretreated with U73122, a specific inhibitor of phospholipase C (PLC). These data suggest that the Cch-stimulated increment of [Ca(2+)](i) required IP(3) formation and binding to its specific receptors in Ca(2+) stores. Further studies were performed to investigate whether the effect of Cch on Ca(2+) entry into FRT cells was via L-type voltage-dependent Ca(2+) channels (L-VDCCs). Nicardipine, a nonspecific L-type Ca(2+) channel blocker, decreased Cch-induced increase on [Ca(2+)](i), while Bay K-8644, an L-type Ca(2+) channel agonist, slightly increased [Ca(2+)](i) in FRT cells. These data indicate that Ca(2+) entry into these nondifferentiated thyroid cells occurs through an L-VDCC, and probably through another mechanism such as a capacitative pathway. Cch did not affect the intracellular cAMP levels, but its effects on [Ca(2+)](i) were significantly reduced when cells were pretreated with forskolin, suggesting the existence of an intracellular cross-talk between PLC and cAMP mechanisms in the regulation of intracellular Ca(2+) mobilization in neoplastic FRT cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号