首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly sensitive and simple high-performance liquid chromatographic (HPLC) assay has been developed and validated for the quantification of dibenzoylmethane (DBM) in rat plasma. DBM and internal standard (I.S.) 1-(5-chloro-2-hydroxy-4-methylphenyl)-3-phenyl-1,3-propanedione (CHMPP) were extracted from rat plasma by ethyl acetate/methanol (95:5, v/v) and analyzed using reverse-phase gradient elution with a Phenomenex Gemini C18 5-mum column. A gradient of mobile phase (mobile phase A: water/methanol (80:20, v/v) with 0.1% TFA and mobile phase B: acetonitrile with 0.1% TFA) at a flow rate of 0.2 mL/min, and ultraviolet (UV) detection at 335 nm were utilized. The lower limit of quantification (LLOQ) using 50 microL rat plasma was 0.05 microg/mL. The calibration curve was linear over a concentration range of 0.05-20 microg/mL. The mean recoveries were 80.6+/-5.7, 83.4+/-1.6 and 77.1+/-3.4% with quality control (QC) level of 0.05, 1 and 20 microg/mL, respectively. Intra- and inter-day assay accuracy and precision fulfilled US FDA guidance for industry bioanalytical method validation. Stability studies showed that DBM was stable in rat plasma after 4h incubation at room temperature, one month storage at -80 degrees C and three freeze/thaw cycles, as well as in reconstitute buffer for 48 h at 4 degrees C. The utility of the assay was confirmed by the successful analysis of plasma samples from DBM pharmacokinetics studies in the rats after oral and intravenous administrations.  相似文献   

2.
A highly sensitive and specific method of rapid resolution liquid chromatography tandem mass spectrometry (RRLC-MS/MS) in positive ionization mode has been developed and validated for pharmacokinetic study of puerarin in rat plasma. Chromatography was carried out on a Zorbax XDB C18 reversed-phase column using a mobile phase comprising a mixture of methanol and 0.05% acetic acid in water (35:65, v/v) with a flow rate of 0.3 mL/min from 0 min to 5.4 min and then 0.6 mL/min from 5.41 min to 12 min. The mass spectrometer operated in ESI positive ionization mode. Multiple reaction monitoring (MRM) was used to measure puerarin and tectoridin (internal standard). The method was sensitive with a detection limit of 0.33 ng/mL. A good linear response was observed over a range of 10-2000 ng/mL in rat plasma. The inter- and intra-day precision ranged from 2.97% to 7.52% and accuracy from 93.70% to 101.60%. This validated method was applied successfully to a pharmacokinetic study in rat plasma after intravenous administration of puerarin. The main pharmacokinetic parameters were as follows: AUC(0→t) 45.37±13.19 (mgh/L), AUC(0→∞) 47.03±14.78 (mgh/L), MRT 1.03±0.46 (h), T(1/2) 1.31±0.31 (h), V(ss) 0.09±0.02 (L), V(z) 0.17±0.04 (L), Cl 0.10±0.04 (L/h).  相似文献   

3.
A highly sensitive and specific LC-MS/MS method has been developed for simultaneous estimation of itraconazole (ITZ) and hydroxyitraconazole (OH-ITZ) with 500 microL of human plasma using fluconazole as an internal standard (IS). The API-4000 LC-MS/MS was operated under the multiple reaction-monitoring mode (MRM) using the electrospray ionization technique. Solid phase extraction process was used to extract ITZ, OH-ITZ and IS from human plasma. The total run time was 3.0 min and the elution of ITZ, OH-ITZ and IS occurred at 2.08 min, 1.85 min and 1.29 min, respectively; this was achieved with a mobile phase consisting of 0.2% (v/v) ammonia solution:acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a HyPurity C(18) (50 mm x 4.6 mm, 5 microm) column. The developed method was validated in human plasma with a lower limit of quantitation of 0.50 ng/mL for both ITZ and OH-ITZ. A linear response function was established for the range of concentrations 0.5-263 ng/mL (r>0.998) for both ITZ and OH-ITZ. The intra- and inter-day precision values for ITZ and OH-ITZ met the acceptance as per FDA guidelines. ITZ and OH-ITZ were stable in the battery of stability studies, viz., bench-top, auto-sampler, dry extract and freeze/thaw cycles. The developed assay method was applied to an oral bioequivalence study in humans.  相似文献   

4.
A HPLC method with UV detection at 262nm was developed to analyze inositol hexanicotinate in rat plasma. Plasma samples were extracted with an equal volume of acetonitrile, followed by dilution with mobile phase buffer (5mM phosphate buffer, pH 6.0) to eliminate any solvent effects. Inositol hexanicotinate and the internal standard (mebendazole) were separated isocratically using a mobile phase of acetonitrile/phosphate buffer (35:65, v/v, pH 6.0) at a flow rate of 1.0mL/min and a reverse-phase XTerra MS C(18) column (4.6mmx150mm, 3.5microm). The standard curve was linear over a concentration range of 1.5-100.0microg/mL of inositol hexanicotinate in rat plasma. The HPLC method was validated with intra- and inter-day precisions of 1.55-4.30% and 2.69-21.5%, respectively. The intra- and inter-day biases were -0.75 to 19.8% and 2.58-22.0%, respectively. At plasma concentrations of 1.5-100microg/mL, the mean recovery of inositol hexanicotinate was 99.6%. The results of a stability study indicated that inositol hexanicotinate was unstable in rat plasma samples, but was stable in acetonitrile extracts of rat plasma for up to 24h at 4 degrees C. The assay is simple, rapid, specific, sensitive, and reproducible and has been used successfully to analyze inositol hexanicotinate plasma concentrations in a pharmacokinetic study using the rat as an animal model.  相似文献   

5.
We describe a simple, fast, isocratic, reversed-phase high performance liquid chromatographic method for simultaneous determination of plasma zidovudine and nevirapine with UV detection at 260 nm. The method involves liquid-liquid extraction with ethyl acetate and using 3-isobutyl 1-methyl xanthine as internal standard. The system requires a C(18) column (150 mm x 4.6 mm I.D.) and a mobile phase composed of potassium dihydrogen phosphate (15 mM; pH 7.5) and acetonitrile in the ratio of 80:20 (v/v). The assay was linear from 0.025 to 10.0 microg/ml for zidovudine and 0.05 to 10.0 microg/ml for nevirapine. The intra- and inter-day variations were less than 10% for both the drugs. The method was specific and sensitive enough to allow quantification of zidovudine and nevirapine in concentrations observed clinically. The average recoveries of zidovudine and nevirapine from plasma were 95 and 94%, respectively. The method was applied to a pharmacokinetic study in HIV-infected patients who were receiving antiretroviral treatment with zidovudine and nevirapine containing regimens. The method spans the blood concentration range of clinical interest. Due to its simplicity, the assay can be used for pharmacokinetic studies and therapeutic drug monitoring in patients taking a combination treatment of zidovudine and nevirapine.  相似文献   

6.
建立大鼠血浆和脑中Z-槀苯内酯(LIG)浓度测定的高效液相色谱法。采用Agilent Hypersil ODS C18色谱柱(150mm×4.6mm,5μm),流动相为甲醇-5%异丙醇水溶液(60:40,v/v),流速为1.0mL/min,检测波长为280nm。血浆与脑中槀苯内酯浓度线性检测范围分别为93.75~3750ng/m(r=0.9999)和93.75~3750ng/g(r=0.9997),日内及日间精密度RSD10%。本法适用于大鼠口服LIG后血浆及脑中药物浓度的研究。  相似文献   

7.
Protodioscin (3-O-[alpha-L-rhamnopyranosyl-(1-->2)-{alpha-L-rhamnopyranosyl-(1-->4)}-beta-D-glucopyranosyl]-26-O-[beta-D-glucopyranosyl]-(25 R)-furost-5-ene-3 beta,26-diol) is a naturally occurring saponin present in many oriental vegetables and traditional medicinal plants, which has been associated with potent bioactivity. However, there is no specific and sensitive assay for quantitative determination of protodioscin in biological samples. We have established a rapid, sensitive and selective LC-ESI-MS/MS method to measure protodioscin in rat plasma and investigated the pharmacokinetics of protodioscin after intravenous administrations. Plasma samples were prepared after plasma protein precipitation, and a aliquot of the supernatant was injected directly onto an analytical column with a mobile phase consisted of acetonitrile-water-formic acid (80:20:0.1, v/v/v). Analytes were detected with a LC-ESI-MS/MS system in positive selected multiple reaction-monitoring mode. The lower limit of quantification (LLOQ) was 20.0 ng/mL and a linear range of 20-125,000 ng/mL. The intra- and inter-day relative standard deviation (R.S.D.) across three validation runs over the entire concentration range was <8.0%. Accuracy determined at three concentrations (50, 5000 and 50,000 ng/mL for protodioscin) ranged from 0.2 to 1.8% as terms of relative error (R.E.). Each plasma sample was chromatographed within 3.5 min. This LC-ESI-MS/MS method allows accurate, high-throughput analysis of protodioscin in small amounts of plasma.  相似文献   

8.
A simple, accurate and precise high-performance liquid chromatographic method with fluorescence detection was developed and validated for the determination of gemifloxacin (GEM) in rat plasma using furosemide as internal standard (I.S.). Plasma samples were pretreated by direct deproteinization and all samples and standard solutions were chromatographed at 45°C using triethylamine solution (0.5%, v/v, pH 3.0±0.1), methanol and acetonitrile (63:30:7, v/v/v) as the mobile phase. Chromatographic resolution was achieved using a RP-C(18) column (Atlantis, Waters, 150 mm × 4.6 mm, 5 μm) at a flow rate of 1.0 mL min(-1) and an injection volume of 30 μL. The analytes were measured by fluorescence detection with excitation and emission wavelengths of 344 nm and 399 nm, respectively. The retention times for GEM and I.S. were approximately 7.5 and 12.6 min, respectively. The lower limit of quantitation (LLOQ) was 20 ng mL(-1) and the calibration curves were linear over a concentration range of 20-5000 ng mL(-1). The intra- and inter-day precisions, expressed by relative standard deviation (R.S.D.) were lower than 6.24% and 4.49%, respectively. The accuracy ranged from 91.3% to 112% and from 98.8% to 106% for the lower and upper limit of quantitation of the calibration curve, respectively. Ratio of peak area of analyte to I.S. was used for quantification of plasma samples. No interferences from endogenous substances were found. The recovery of GEM and I.S. from plasma was greater than 90%. Drug stability in plasma was shown at room temperature for 4h, after three freeze-thaw cycles for 24h, in freezer at -80°C for 60 days, and in the autosampler after processing for 12h. The utility of the assay was confirmed by the successful analysis of plasma samples from GEM pharmacokinetics studies in the rats after intravenous administration.  相似文献   

9.
A liquid chromatography-mass spectrometry (LC/MS) assay method was developed for the quantification of PSC 833 in rat plasma, using amiodarone as internal standard (IS). Separation was achieved using a C(8) 3.5 microm (2.1 mm x 50 mm) column heated to 60 degrees C with a mobile phase consisting of acetonitrile-ammonium hydroxide 0.2% (90:10 v/v) pumped at a rate of 0.2 mL/min. Detection was accomplished by mass spectrometer using selected ion monitoring (SIM) in positive mode. An excellent linear relationship was present between peak height ratios and rat plasma concentrations of PSC 833 ranging from 10 to 5000 ng/mL (R(2)>0.99). Intra-day and inter-day coefficients of variation (CV%) were less than 15%, and mean error was less than 10% for the concentrations above the limit of quantification. The validated limit of quantification of the assay was 10 ng/mL based on 0.1 mL rat plasma. The method limit of detection, based on an average signal-to-noise (S/N) ratio of 3, was found to be 2.5 ng/mL. The assay was capable of measuring the plasma concentrations of PSC 833 in rats injected with a single dose of 5 mg/kg of the drug. PSC 833 and IS eluted within 4 min, free of interfering peaks. The method was found to be fast, sensitive, and specific for the quantification of PSC 833 in rat plasma.  相似文献   

10.
A sensitive and rapid method was developed and validated for the quantitative analysis of the novel anticancer agent SZ-685C in rat plasma using high-performance liquid chromatography/tandem mass spectrometry (LC/MS/MS) in negative ion mode in order to support the following pre-clinical and clinical studies. SZ-685C and the internal standard (IS, emodin) were extracted from rat plasma by a simple liquid-liquid extraction technique using ethyl acetate as extraction solvent. Chromatographic separation was performed on an Elite Hypersil BDS C18 column (100 mm × 2.1 mm i.d., 3 μm). Elution was carried out using methanol/acetonitrile/2mM ammonium formate (pH 4) (80:15:5 (v/v/v)) at a flow-rate of 0.3 mL/min with a run time of 2.5 min. This assay was linear over a concentration range of 50-10,000 ng/mL with a lower limit of quantification of 50 ng/mL. The intra- and inter-batch precision was less than 15% for all quality control samples at concentrations of 100, 1000 and 7500 ng/mL. These results indicate that the method was efficient with a short run time and acceptable accuracy, precision and sensitivity. This method was successfully applied to explore pharmacokinetics of SZ-685C in rats after oral and intravenous administration of this agent. The absolute bioavailability is about 54.8-66.8% and the t(1/2) is 5.7-9.2h, these results provide basic information for further comprehensive pre-clinical research.  相似文献   

11.
The aim of this study is to develop a simple and applicable HPLC method for the detection of vincristine in rat plasma after administration of poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticles loaded with vincristine sulfate (VCR). Vincristine was extracted from rat plasma and vinblastine sulfate was chosen as the internal standard (IS). Chromatographic separation of VCR and IS was achieved by a Dikma Dimonsil C?? column (200 mm×4.6 mm) with the mobile phase consisting of 0.02 M sodium dihydrogen phosphate-methanol (36:64, v/v, pH=4.7) at a flow rate of 1.0 mL/min. The ultraviolet detection wavelength was set at 276 nm. The calibration curve was linear over a concentration range of 0.05-5.0 μg/mL. The intra-day and inter-day accuracy for three quality controls (QC) samples was 93.48-107.74% and 92.61-96.58%, respectively; the precision was less than 9%. The average method recoveries for vincristine from spiked plasma at all QC levels were over 83%; and extraction recoveries were between 66 and 70%. Vincristine was stable in rat plasma for one month at -80°C, for 8 h at room temperature, as well as during three freeze-thaw cycles. This HPLC method was applied successfully to the pharmacokinetic study of vincristine in rats after a single intravenous injection of VCR in physiological saline (F-VCR) solution, VCR-loaded PLGA-mPEG nanoparticles with (NP1) and PLGA-PEG-folate nanoparticles (NP2) suspension, respectively. There were significant differences in main pharmacokinetic parameters between F-VCR and the nanoparticles. Both kinds of VCR-loaded nanoparticles displayed improved pharmacokinetic profiles.  相似文献   

12.
A rapid and sensitive liquid chromatography-tandem mass spectrometric method (LC-MS/MS) had been developed and validated to determine the concentrations of BPR0L075 in rat plasma. After a simple protein precipitation of plasma samples by acetonitrile, BPR0L075 was analyzed on a C(8) column at a flow rate of 0.5 mL/min. The mobile phase consisted of a mixture of 10 mM ammonium acetate containing 0.1% formic acid and acetonitrile (20:80, v/v). Both BPR0L075 (analyte) and the internal standard (BPR0L092) were determined using electro-spray ionization and the MS data acquisition was via multiple reactions monitoring (MRM) in positive scanning model. The MS/MS ion transitions monitored are m/z 342.2/195.2 and 312.5/165.2 for BPR0L075 and BPR0L092, respectively. The low limit of quantitation was 0.5 ng/mL. Each plasma sample was chromatographed within 5 min. The method was validated with respect to linearity, accuracy, precision, recovery, and stability. A good linear relationship was observed over the concentration range of 0.5-1000 ng/mL (r>0.9994). Absolute recoveries ranged from 63.45 to 68.34% in plasma at the concentrations of 2, 40, 400, and 800 ng/mL. The intra- and inter-day accuracy ranged from 92.04 to 111.80%. Intra- and inter-day relative standard deviations were 1.08-3.29% and 1.96-5.46%, respectively. This developed and validated assay method had been successfully applied to a pharmacokinetic study after intravenous injection of BPR0L075 in rats at a dose of 5mg/kg.  相似文献   

13.
This study was aimed at developing a simple HPLC method for the detection of daidzein in rat plasma. Daidzein was extracted from rat plasma with ethylparaben as internal standards (IS). Chromatographic separation of daidzein and IS was achieved by a Dikma Dimonsil C18 column (200 mm × 4.6mm) with the mobile phase consisting of methanol-water (55:45, v/v) at a flow rate of 1.0 mL/min. The injection volume was 20 μL and the detecting wavelength was 249 nm. The calibration curve was linear over a concentration range from 0.05 to 5 μg/mL, and the accuracy was within a range of 93.4-126.2%. This HPLC method was applied successfully to the pharmacokinetic study of two kinds of daidzein-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles (D-NPs) and daidzein suspension after intravenous injection in rats. Significant differences in main pharmacokinetic parameters of daidzein suspension and D-NPs were observed.  相似文献   

14.
The purpose of this study was develop and validate a sensitive and specific enantioselective liquid-chromatography/tandem mass spectrometry (LC-MS/MS) method, for the simultaneous quantification of eslicarbazepine acetate (ESL), eslicarbazepine (S-Lic), oxcarbazepine (OXC) and R-licarbazepine (R-Lic) in human plasma. Analytes were extracted from human plasma using solid phase extraction and the chromatographic separation was achieved using a mobile phase of 80% n-hexane and 20% ethanol/isopropyl alcohol (66.7/33.3, v/v). A Daicel CHIRALCEL OD-H column (5 μm, 50 mm × 4.6 mm) was used with a flow rate of 0.8 mL/min, and a run time of 8 min. ESL, S-Lic, R-Lic, OXC and the internal standard, 10,11-dihydrocarbamazepine, were quantified by positive ion electrospray ionization mass spectrometry. The method was fully validated, demonstrating acceptable accuracy, precision, linearity, and specificity in accordance with FDA regulations for the validation of bioanalytical methods. Linearity was proven over the range of 50.0-1000.0 ng/mL for ESL and OXC and over the range of 50.0-25,000.0 ng/mL for S-Lic and R-Lic. The intra- and inter-day coefficient of variation in plasma was less than 9.7% for ESL, 6.0% for OXC, 7.7% for S-Lic and less than 12.6% for R-Lic. The accuracy was between 98.7% and 107.2% for all the compounds quantified. The lower limit of quantification (LLOQ) was 50.0ng/mL for ESL, S-Lic, OXC and R-Lic in human plasma. The short-term stability in plasma, freeze-thaw stability in plasma, frozen long-term stability in plasma, autosampler stability and stock solution stability all met acceptance criteria. The human plasma samples, collected from 8 volunteers, showed that this method can be used for therapeutic monitoring of ESL and its metabolites in humans treated with ESL.  相似文献   

15.
A rapid and sensitive method using liquid chromatography-tandem mass spectroscopy (LC-MS/MS) was developed and validated for simultaneous quantitative determination of valproic acid and three major metabolites (3-OH-valproic acid, 4-ene-valproic acid and 5-OH-valproic acid) in human plasma. The analytes and internal standard were isolated from 200 μL samples by solid phase extraction using a ZORBAX SB-C? column (3.5 μm, 2.1×100 mm) with an isocratic mobile phase consisting of methanol-10mM ammonium acetate (80:20, v/v) containing 0.1% formic acid at a flow rate of 0.3 mL/min. The method had a chromatographic total run time of 2.0 min. The lower limit of quantification of valproic acid, 3-OH-valproic acid, 4-ene-valproic acid and 5-OH-valproic acid of the method was 2030, 51.5, 50.15 and 51.25 ng/mL, respectively. The method was linear for valproic acid and the three metabolites with correlation coefficients >0.995 for all analytes. The intra-day and inter-day accuracy and precision of the assay were less than 15.0%. This analytical method was successfully used to assay plasma concentrations of valproic acid and the three metabolites in human plasma from epileptic patients.  相似文献   

16.
A new LC-ESI-MS/MS assay method has been developed and validated for the quantification of swertiamarin, a representative bioactive substance of Swertia plants, in rat plasma using gentiopicroside, an analog of swertiamarin on chemical structure and chromatographic action, as the internal standard (IS). The swertiamarin and IS were extracted from rat plasma using solid-phase extraction (SPE) as the sample clean-up procedure, and they were chromatographed on a narrow internal diameter column (Agilent ZORBAX ECLIPSE XDB-C(18) 100 mm × 2.1 mm, 1.8 μm) with the mobile phase consisting of methanol and water containing 0.1% acetic acid (25:75, v/v) at a flow rate of 0.2 mL/min. The detection was performed on an Agilent G6410B tandem mass spectrometer by negative ion electrospray ionisation in multiple-reaction monitoring mode while monitoring the transitions of m/z 433 [M+CH(3)COO](-)→179 and m/z 415 [M+CH(3)COO](-)→179 for swertiamarin and IS, respectively. The lower limit of quantification (LLOQ) was 5 ng/mL within a linear range of 5-1000 ng/mL (n=7, r(2)≥0.994), and the limit of detection (LOD) was demonstrated as 1.25 ng/mL (S/N≥3). The method also afforded satisfactory results in terms of sensitivity, specificity, precision (intra- and inter-day), accuracy, recovery, freeze/thaw, long-time stability and dilution integrity. This method was successfully applied to determination of the pharmacokinetic properties of swertiamarin in rats after oral administration at a dose of 20 mg/kg. The following pharmacokinetic parameters were obtained (mean): maximum plasma concentration, 1920.1 ng/mL; time to reach maximum plasma concentration, 0.945 h; elimination half-time, 1.10h; apparent total clearance, 5.638 L/h/kg; and apparent volume of distribution, 9.637 L/kg.  相似文献   

17.
The alkaloids from Piper longum L. showed protective effects on Parkinson's disease models in our previous study and piperine and piperlonguminine were the two main constituents in the alkaloids. The present study aimed at developing a rapid, sensitive, and accurate UFLC-ESI-MS/MS method and validating it for the simultaneous determination of piperine and piperlonguminine in rat plasma using terfenadine as the internal standard. The analytes and internal standard (IS) were extracted from rat plasma using a simple protein precipitation by adding methanol/acetonitrile (1:1, v/v). A Phenomenex Gemini 3 u C18 column (20 mm × 2.00 mm, 3 μm) was used to separate the analytes and IS using a gradient mode system with a mobile phase consisting of water with 0.1% formic acid (mobile phase A) and acetonitrile with 0.1% formic acid (mobile phase B) at a flow rate of 0.4 mL/min and an operating column temperature of 25°C. The total analytical run time was 4 min. The detection was performed using the positive ion electrospray ionization (ESI) in multiple reaction monitoring (MRM) mode with transitions at m/z 286.1-201.1 for piperine, m/z 274.0-201.1 for piperlonguminine, and m/z 472.4-436.4 for the IS. The calibration curves were both linear (r>0.995) over a concentration range of 1.0 to 1000 ng/mL; the lower limit of quantification (LLOQ) was 1.0 ng/mL for both piperine and piperlonguminine. The intra-day and inter-day precisions (RSD %) were <12.1%, accuracies ranged from 86.6 to 120%, and recoveries ranged from 90.4 to 108%. The analytes were proven stable in the short-term, long-term, and after three freeze-thaw cycles. The method was successfully applied to pharmacokinetic studies of piperine and piperlonguminine in rats after oral administration of alkaloids from P. longum L.  相似文献   

18.
A liquid chromatography/tandem mass spectrometric (LC/MS/MS) assay was developed for the quantitative determination of salirasib (S-trans,trans-farnesylthiosalicylic acid, FTS) in human plasma. Sample pretreatment involved liquid-liquid extraction with methyl t-butyl ether of 0.5-mL aliquots of lithium heparin plasma spiked with the internal standard, S-trans,trans-5-fluoro-farnesylthiosalicylic acid (5-F-FTS). Separation was achieved on Waters X-Terra C(18) (50 mm x 2.1 mm i.d., 3.5 microm) at room temperature using isocratic elution with acetonitrile/10 mM ammonium acetate buffer mobile phase (80:20, v/v) containing 0.1% formic acid at a flow rate of 0.20 mL/min. Detection was performed using electrospray MS/MS by monitoring the ion transitions from m/z 357.2-->153.0 (salirasib) and m/z 375.1-->138.8 (5-F-FTS). Calibration curves were linear in the concentration range of 1-1000 ng/mL. A 5000 ng/mL sample that was diluted 1:10 (v/v) with plasma was accurately quantitated. The values for both within day and between day precision and accuracy were well within the generally accepted criteria for analytical method (<8.0%). This assay was subsequently used for the determination of salirasib concentrations in plasma of cancer patients after oral administration of salirasib at a dose of 400 mg.  相似文献   

19.
A sensitive method for the determination of CQP propionic acid in rat plasma was developed and validated after solid-phase extraction. Chromatographic separation was achieved on a reversed-phase Alltima C18 column with the mobile phase of methanol-0.15% (v/v) phosphoric acid solution (pH 2.5) and step gradient elution resulted in a total run time of about 20min. The analytes were detected by using UV detector at 345nm. A good linear relationship was obtained in the concentration range of 50-12,800ng/mL (r=0.9998). The intra-day RSDs and the inter-day RSDs at the concentration of 200, 800, 6400 and 12,800ng/mL were less than 7.0% and 11.0%, respectively. The intra-day accuracy ranged from 96.3 to 106.5% and the inter-day accuracy ranged from 98.6 to 113.4%, respectively. Average extraction recoveries ranged from 83.6 to 94.3% in plasma at the concentrations of 200, 800, 6400 and 12,800ng/mL. This method was successfully applied to the pharmacokinetic studies on rats.  相似文献   

20.
The method of high-performance liquid chromatography (HPLC) with UV-vis detection was used and validated for the simultaneous determination of six flavonoids (puerarin, rutin, morin, luteolin, quercetin, kaempferol) and troxerutin in rat urine and chicken plasma. Chromatographic separation was performed using a VP-ODS column (150 mm x 4.6 mm, 5.0 microm) maintained at 35.0 degrees C. The mobile phase was a mixture of water, methanol and acetic acid (57:43:1, v/v/v, pH 3.0) at the flow rate of 0.8 mL/min. Six flavonoids and troxerutin were analyzed simultaneously with good separation. On optimum conditions, calibration curves were found to be linear with the ranges of 0.10-70.00 microg/mL (puerarin, rutin, morin, luteolin, quercetin, kaempferol) and 0.50-350.00 microg/mL (troxerutin). The detection limits were 0.010-0.050 microg/mL. The method was validated for accuracy and precision, and it was successfully applied to determine drug concentrations in rat urine and chicken plasma samples from rat and chicken that had been orally administered with six flavonoids and troxerutin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号