首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuronal depolarization and culture media conditioned by certain nonneuronal cells (CM) are known to exert opposite effects on the expression of cholinergic and noradrenergic traits in cultured rat sympathetic neurons. We have compared their effects on the developments of choline acetyltransferase (CAT), tyrosine hydroxylase (TOH), dopa decarboxylase (AADC) and acetylcholinesterase (AcChE) in these cultures. A macromolecular factor which was partially purified from CM increased CAT development in a dose-dependent manner and depressed the development of TOH and AADC by 5- to 10-fold. In the presence of intermediate concentrations of this partially purified factor, both CAT and catecholamine synthesizing enzymes developed to high levels, whereas high concentrations caused a long-lasting, but not total, impairment of TOH development. The effects of CM on both CAT and AADC activities resulted from variations in the number of immunotitratable enzyme molecules. Conversely, K+ ions (30-40 mM) depressed the development of CAT by 90% and stimulated TOH development 2.5-fold. Cultures grown with CM in high K+ medium had similar CAT and TOH activities as compared to those cultures grown without CM in low K+ medium suggesting that CM and K+ ions had antagonistic effects on the expression of these enzymes. However, K+ ions did not affect the development of AADC in these cultures. CM suppressed in a reversible manner the development of the 16 S form of AcChE. In the presence of 40 mM K+, the rate of development of AcChE was reduced. In particular, the development of 16 S AcChE was strikingly impaired, although not totally suppressed. The effect of elevated K+ ions on the percentage of 16 S AcChE was rapidly reversible. It is concluded that CM and elevated K+ ions have antagonistic effects on CAT and TOH, but not on AADC development; AcChE, in particular its asymmetric 16 S form, is regulated independently of the cholinergic/noradrenergic status of sympathetic neurons.  相似文献   

2.
Regulation of cholinergic expression in cultured spinal cord neurons   总被引:1,自引:0,他引:1  
Factors regulating development of cholinergic spinal neurons were examined in cultures of dissociated embryonic rat spinal cord. Levels of choline acetyltransferase (CAT) activity in freshly dissociated cells decreased rapidly, remained low for the first week in culture, and then increased. The decrease in enzyme activity was partially prevented by increased cell density or by treatment with spinal cord membranes. CAT activity was also stimulated by treatment with MANS, a molecule solubilized from spinal cord membranes. The effects of MANS were greatest in low-density cultures and in freshly plated cells, suggesting that the molecule may substitute for the effects of elevated density and cell-cell contact. CAT activity in ventral (motor neuron-enriched) spinal cord cultures was similarly regulated by elevated density or treatment with MANS, whereas enzyme activity was largely unchanged in mediodorsal (autonomic neuron-enriched) cultures under these conditions. These observations suggest that development of cholinergic motor neurons and autonomic neurons are not regulated by the same factors. Treatment of ventral spinal cord cultures with MANS did not increase the number of cholinergic neurons detected by immunocytochemistry with a monoclonal CAT antibody, suggesting that MANS did not increase motor neuron survival but rather stimulated levels of CAT activity per neuron. These observations indicate that development of motor neurons can be regulated by cell-cell contact and that the MANS factor may mediate the stimulatory effects of cell-cell contact on cholinergic expression.  相似文献   

3.
Periosteum, the connective tissue surrounding bone, alters the transmitter properties of its sympathetic innervation during development in vivo and after transplantation. Initial noradrenergic properties are downregulated and the innervation acquires cholinergic and peptidergic properties. To elucidate the cellular mechanisms responsible, sympathetic neurons were cultured with primary periosteal cells or osteoblast cell lines. Both primary cells and an immature osteoblast cell line, MC3T3-E1, induced choline acetyltransferase (ChAT) activity. In contrast, lines representing marrow stromal cells or mature osteoblasts did not increase ChAT. Growth of periosteal cells with sympathetic neurons in transwell cultures that prevent direct contact between the neurons and periosteal cells or addition of periosteal cell-conditioned medium to neuron cultures induced ChAT, indicating that periosteal cells release a soluble cholinergic inducing factor. Antibodies against LIFRbeta, a receptor subunit shared by neuropoietic cytokines, prevented ChAT induction in periosteal cell/neuron cocultures, suggesting that a member of this family is responsible. ChAT activity was increased in neurons grown with periosteal cells or conditioned medium from mice lacking either leukemia inhibitory factor (LIF) or LIF and ciliary neurotrophic factor (CNTF). These results provide evidence that periosteal cells influence sympathetic neuron phenotype by releasing a soluble cholinergic factor that is neither LIF nor CNTF but signals via LIFRbeta.  相似文献   

4.
Catecholaminergic sympathetic neurons are able to change their transmitter phenotype during development and to acquire cholinergic properties. Cholinergic sympathetic differentiation is only observed in fibers innervating specific targets like the sweat glands in the rat footpad. A function for ciliary neurotrophic factor (CNTF) in this process has been implied as it is able to induce cholinergic properties (ChAT, VIP) in cultured chick and rat neurons. We show here that a CNTF-like, VIP-inducing activity is present in rat footpads and that its increases 6-fold during the period of cholinergic sympathetic differentiation. Immunohistochemical analysis of P21 rat footpads demonstrated CNTF-like immunoreactivity in Schwann cells but not in sweat glands, the target tissue of cholinergic sympathetic neurons. The expression of this factor in footpads seems to be dependent on the presence of intact nerve axons, as nerve transection results in a loss of CNTF-like cholinergic activity and immunoreactivity. Immunoprecipitation experiments with rat footpad extracts provided evidence for the presence of ChAT-inducing factors other than CNTF, which may independently or together with CNTF be involved in the determination of sympathetic neuron phenotype.  相似文献   

5.
The effect of nerve growth factor (NGF) on the development of cholinergic sympathetic neurons was studied in cultures grown either on monolayers of dissociated rat heart cells or in medium conditioned by them. In the presence of rat heart cells the absolute requirement of neurons for exogenous NGF was partially spared. The ability of heart cells to support neuronal survival was due at least in part to production of a diffusable NGF-like substance into the medium. Although some neurons survived on the heart cell monolayer without added NGF, increased levels of exogenous NGF increased neuronal survival until saturation was achieved at 0.5 microgram/ml 7S NGF. The ability of neurons to produce acetylcholine (ACh) from choline was also dependent on the level of exogenous NGF. In mixed neuron-heart cell cultures, NGF increased both ACh and catecholamine (CA) production per neuron to the same extent; saturation occurred at 1 microgram/ml 7S NGF. As cholinergic neurons developed in culture, they became less dependent on NGF for survival and ACh production, but even in older cultures approximately 40% of the neurons died when NGF was withdrawn. Thus, NGF is as necessary for survival, growth, and differentiation of sympathetic neurons when the neurons express cholinergic functions as when the neurons express adrenergic functions (4, 5).  相似文献   

6.
The effects of skeletal muscle extract on the development of CAT, ACh synthesis, high affinity choline uptake, and AChE activities were studied in dissociated ventral spinal cord cultures prepared from 14-day gestational rat embryos. In the absence of muscle extract, the development of CAT and AChE follow biphasic time courses in which they show initial declines followed by periods of steadily increasing activity. In contrast, ACh synthesis and high affinity choline uptake both gradually increase throughout the entire culture period. The presence of muscle extract both prevents the initial decline of CAT and AChE as well as stimulates the rates of development of all four cholinergic markers; however, the degrees and time courses of stimulation differ markedly. The effects of muscle extract on the kinetic and pharmacological properties of ACh synthesis and choline uptake in rat ventral cord cultures were also investigated. Cells treated with muscle extract for 2 days express both high affinity (Km = 1.6 microM) and low affinity (Km = 22 microM) choline uptake mechanisms. Control cells, on the other hand, express only low affinity uptake at this stage but develop a high affinity uptake mechanism by Day 7. During this time both ACh synthesis and high affinity choline uptake become increasingly sensitive to inhibition by hemicholinium-3. These results demonstrate that skeletal muscle factors enhance the development of cholinergic properties in embryonic spinal cord cultures. However, differences in sensitivity to muscle extract concentration, time courses of development, and degrees of stimulation suggest that these changes may involve distinct cellular mechanisms which are differentially affected by skeletal muscle factors.  相似文献   

7.
Abstract: The intracellular mechanisms through which two trophic factors, ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF), regulate cholinergic development were examined in sympathetic neuron cultures. Treatment with CNTF or LIF increased levels of choline acetyltransferase (ChAT) activity by 375 and 350%, respectively. However, in neuronal cultures depleted of protein kinase C (PKC) activity by chronic phorbol ester treatment, neither CNTF nor LIF elevated ChAT activity. Further, the stimulation of ChAT due to increased cell density was not observed in PKC-depleted sympathetic neurons. The inhibition of CNTF-stimulated ChAT by phorbol ester occurred in a dose-dependent manner and chronic phorbol ester treatments did not alter the levels of the catecholamine biosynthetic enzyme tyrosine hydroxylase. Moreover, increased levels of diacylglycerol, an endogenous activator of PKC, were observed in sympathetic neurons treated with CNTF. However, neither CNTF nor LIF stimulated the hydrolysis of phosphatidylinositol 4,5-bisphosphate. These observations suggest that a common PKC-dependent pathway, which is independent of phosphatidylinositol 4,5-bisphosphate hydrolysis, mediates the cholinergic stimulating effects of CNTF, LIF, and cell-cell contact in cultured sympathetic neurons.  相似文献   

8.
Hormonal modulation of neuronal cells behaviour in vitro   总被引:1,自引:0,他引:1  
In this study we have investigated the effect of insulin and/or of nerve growth factor (NGF) on enzyme activities of cholinergic neurotransmission, in cultured embryonic rat mesencephali. Our data show that choline-O-acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity display a prominent change in the embryonic brain tissues as a function of time in vitro. The change depends on the age of embryos from which the brain cell cultures have been set up. Namely, ChAT activity increases in the cultures taken from 13-17-day-old embryos as a function of time in vitro. AChE activity shows a striking decrease if the cultures have been set up from the older embryos (17-day-old), while AChE activity increases in the cultures prepared from 13-day-old embryos continuously. Insulin (amount ranging 10-27 micrograms/ml) causes a significant inhibition in the ChAT activity in comparison with the increased enzyme activity measured in control cultures (insulin ranging from 1 to 100 ng). AChE activity of 13-day-old embryos was not influenced by insulin (20-27 micrograms/ml) but the same amount of insulin prevents the decrease of AChE activity in cultured brain cells originating from 17-day-old-embryos. Biochemical studies of NGF treated cultures (30 ng/ml) revealed that nerve growth factor resulted in 5-12-fold increase in specific activity of the cholinergic enzyme, choline acetyltransferase (ChAT). NGF did not influence the AChE activity in cultured brain cells (13-17-day-old).  相似文献   

9.
Quantitative measurements were made of choline acetyltransferase (CAT) activity, acetylcholinesterase (AChE) acitivity and cholinergic muscarinic receptor binding ([3H]QNB) in eight areas of a cross-section of the rat medulla oblongata. A fourth cholinergic parameter, high-affinity choline uptake, was measured in three groups of these areas. CAT, AChE and [3H]QNB binding were found to be highest in the hypoglossal nucleus and the dorsal motor nucleus of the vagus; the lowest value was in the area which contains the inferior olive and the corticospinal tract. The distribution of AChE and CAT acitivities varied approximately 7- to 10-fold among the eight regions examined, whereas that of the muscarinic receptor varied only about 4-fold. The Na+-dependent high-affinity choline uptake varied approximately 20-fold from the region with the lowest activity (inferior olivary nucleus and corticospinal tract) to that with the highest activity (tissue areas containing the dorsal motor nucleus, hypoglossal nucleus, nucleus of the solitary tract and nucleus cuneatus). The four cholinergic parameters are statistically correlated throughout all the areas of the medulla which were studied.  相似文献   

10.
Abstract The activities of the various molecular forms of acetylcholinesterase (AChE) were measured in monolayer cultures of neonatal rat pineal cells grown alone and in co-culture with sympathetic neurons. AChE forms characterized by sedimentation coefficients of 4S, 6.5S, and 10S were found in the neuronal and pineal cultures, as well as in the co-cultures. The 16S AChE form was found only in the neuronal cultures. Total AChE activity increased with culture age in the co-cultures, but it decreased in pineal cells cultured alone. The low level of activity present in the neuronal cultures did not change markedly over the 27-day culture period. These results, which show bidirectional neuron-pineal cell effects, suggest that AChE molecular forms may be important markers to study the mechanisms underlying neuron-target cell interaction in the developing sympathetic nervous system.  相似文献   

11.
Regulation of peptide neurotransmitter metabolism was examined in dissociated cell cultures of neonatal rat sympathetic and sensory ganglia. Previous studies have shown that pineal gland conditioned medium (PCM) influences substance P (SP) and somatostatin (SS) metabolism in sympathetic neurons in vitro. The present study examines mechanisms mediating these effects, and compares the actions of PCM on sympathetic and sensory neurons. PCM treatment increased SP levels in a dose-dependent manner without altering SS content of sympathetic neurons cultured in the presence of ganglion non-neuronal cells. Conversely, treatment of pure sympathetic neuron cultures resulted in a dose-dependent increase in SS, while SP was virtually undetectable at all doses. By contrast, dorsal root ganglion, trigeminal ganglion, and nondose ganglion sensory neurons contained SP both in the presence and absence of ganglion non-neuronal cells. Moreover, in each of these neuronal populations treatment with PCM increased SP levels both in the presence and in the absence of ganglion non-neuronal cells. These observations suggest that ganglion non-neuronal cells are necessary for sympathetic but not sensory neuron expression of SP. Moreover, PCM apparently stimulates SP in neurons which already contain the peptide, but the factor cannot foster de novo expression of the phenotype. PCM also influenced other transmitter traits in sympathetic neurons, suggesting linkage between mechanisms regulating peptides and other transmitters. In cultures containing both sympathetic neurons and non-neuronal cells, PCM treatment increased cholineacetyltransferase (CHAC) activity as well as SP, and decreased tyrosine hydroxylase (TOH) activity. By contrast, PCM treatment of pure sympathetic neuron cultures led to parallel increases in SS and TOH activity with negligible levels of SP and CHAC. These observations suggest that in sympathetic neurons, SS may be linked with noradrenergic expression, while SP is associated with cholinergic development, although more data are required to confirm this relationship. Moreover, there may be a reciprocal relationship between SP and SS expression by sympathetic neurons analogous to previous observations regarding cholinergic-noradrenergic expression (P. H. Patterson and L. L. Y. Chun, Proc. Natl. Acad. Sci. USA 71, 3607-3610, 1974; Dev. Biol. 56, 263-280, 1977). Consequently, neurotransmitter phenotypic expression is a complex process in which the environment regulates a balance among multiple transmitters.  相似文献   

12.
Under certain culture conditions, neonatal rat superior cervical ganglion neurons display not only a number of expected adrenergic characteristics but, paradoxically, also certain cholinergic functions such as the development of hexamethonium-sensitive synaptic contacts and accumulation of choline acetyltransferase (ChAc). The purpose of this study was to determine whether the entire population of cultured neurons was aquiring cholinergic capabilities, or whether this phenomenon was restricted to a subpopulation. After 1--6 and 8 wk in culture, neurons were fixed in KMnO4 after incubation in norepinephrine and prepared for electron microscopy analysis of synaptic vesicle content to determine whether vesicles were dense cored or clear. ChAc, acetylcholinesterase (AChE), and DOPA-decarboxylase (DDC) activities were assayed in sister cultures. In the period from 1 to 8 wk in culture, the average ChAc activity per neuron increased 1,100-fold, and the DDC and AChE activities increased 20- and 30-fold, respectively. After 1 wk in culture, 48 of 50 synaptic boutons contained predominantly dense-cored vesicles, but by 8 wk the synaptic vesicle population was predominantly of the clear type. At intermediate times, the vesicle population in many boutons was mixed. The morphology of the synaptic contacts on neuronal surfaces was that characteristic of autonomic systems, with no definite clustering of the vesicles adjacent to the area of contact. Increased vesicle size correlated with increasing age in culture and the presence of a dense core. Considering these data along with available physiological studies, we conclude that these cultures contain one population of neurons that is initially adrenergic. Over time, under conditions of this culture system, this population develops cholinergic mechanisms. That a neuron may, at a given time, express both cholinergic and adrenergic mechanisms is suggested by the approximately equal numbers of clear and dense-cored vesicles in the boutons found at the intermediate times.  相似文献   

13.
14.
The molecular forms of acetylcholinesterase (AcChE) have been studied in primary cultures of newborn rat sympathetic neurons grown either in the absence (CM? cultures) or in the presence (CM+ cultures) of muscle conditioned medium. The cultures were treated with a mitotic poison to eliminate non-neuronal cells. CAT activity increased with time in culture 4- to 20-fold faster in CM+ than in CM? cultures. In agreement with previous experiments (J. P. Swerts, A. Le Van Thaï, A. Vigny, and M. J. Weber, 1983, Develop. Biol.100, 1–11), AcChE activity developed at a 3-fold lower rate in CM+ than in CM? cultures. This deficit in AcChE activity in CM+ cultures resulted from a deficit in the number of enzyme molecules immunoprecipitable with an antiserum raised against rat brain AcChE. In both types of cultures, AcChE forms were separated by sucrose gradient sedimentation into three main peaks corresponding to the 16 S and 10 S forms and a mixture of the 6.5 and 4 S forms. In 3-day-old CM+ and CM? cultures, the 16 S form represented 2% of the total activity. After 12–26 days, the percentage of 16 S form raised to 15–30% in CM? cultures, but remained lower than 5% in CM+ cultures. This difference was also observed when AcChE molecular forms were analyzed in the presence of protease inhibitors. A similar result was obtained by comparing cultures grown with and without a macromolecular factor partially purified from conditioned medium. These results suggest that an inverse relationship exists between the presence of 16 S AcChE and the presence of cholinergic synapses in these cultures.  相似文献   

15.
Sweat glands in rat footpads contain a neuronal differentiation activity that switches the phenotype of sympathetic neurons from noradrenergic to cholinergic during normal development in vivo. Extracts of developing and adult sweat glands induce changes in neurotransmitter properties in cultured sympathetic neurons that mimic those observed in vivo. We have characterized further the factors present in the extract and compared their properties to those of known cholinergic factors. When assayed on cultured rat sympathetic neurons, the major activities in footpad extracts from postnatal day 21 rat pups that induce choline acetyltransferase (ChAT) and vasoactive intestinal peptide (VIP) and reduce catecholamines and neuropeptide Y (NPY) are associated with a soluble protein of 22-26 x 10(3) M(r) and a pI of 5.0. These properties are similar to those of ciliary neurotrophic factor (CNTF). Moreover, the purified fraction from footpads has ciliary neurotrophic activity. Antibodies to CNTF that immunoprecipitate all differentiation activity from sciatic nerve extracts, a rich source of CNTF, immunoprecipitate 80% of the cholinergic activity in the footpad extracts, 50% of the VIP and 20% of the NPY activities. Neither CNTF protein nor CNTF mRNA, however, can be detected in immunoblot and northern analysis of footpads even though both CNTF protein and mRNA are evident in sciatic nerve. CNTF-immunoreactivity is associated with a sparse plexus of sensory fibers in the footpad but not with sweat glands or the Schwann cells associated with them. In addition, in situ hybridization studies with oligonucleotide probes failed to reveal CNTF mRNA in sweat glands. Comparison of the sweat gland differentiation activity with the cholinergic differentiation factor from heart cells (CDF; also known as leukemia inhibitory factor or LIF) suggests that most of the cholinergic activity in foot pads is biochemically distinct from CDF/LIF. Further, antibodies that block the activity of CDF/LIF purified from heart-cell-conditioned medium do not block the ChAT-inducing activity present in footpad extracts of postnatal day 8 animals. A differentiation factor isolated from skeletal muscle did not induce cholinergic properties in sympathetic neuron cultures and therefore is unlikely to be the cholinergic differentiation factor produced by sweat glands. Taken together, our data suggest that there are at least two differentiation molecules present in the extracts and that the major cholinergic activity obtained from footpads is related to, but distinct from, CNTF. The second factor remains to be characterized. In addition, CNTF associated with sensory fibers may make a minor contribution to the cholinergic inducing activity present in the extract.  相似文献   

16.
Cells derived from the neonatal rat pineal gland were cocultured with cells derived from neonatal rat superior cervical ganglia (SCG) in an attempt to determine whether a sympathetic target organ with only adrenergic properties could enhance the development of adrenergic transmitter properties in sympathetic neurons in tissue culture. Choline acetyltransferase was measured as an index of cholinergic differentiation, and tyrosine hydroxylase was measured as an index of adrenergic differentiation. As indices of total cell number and cellular volume, DNA and protein, respectively, were also measured. We found that the pineal-SCG cocultures contained ten times greater choline acetyltransferase activity than sister neuronal cultures cultured without pineal cells, thus indicating that the pineal cells enhanced cholinergic properties in the sympathetic neurons. This cholinergic enhancement was dependent upon the presence of nerve growth factor and could not be obtained with pineal-conditioned medium. Tyrosine hydroxylase activity, measured on cultures sister to those mentioned above, was low in all cultures and decreased somewhat in SCGs cultured alone. TH activity in the pineal-SCG cocultures, however, increased slightly. Some tyrosine hydroxylating activity developed in pineals cultured alone, however, and may have been responsible for the small increase in tyrosine hydroxylase activity noted in the pineal-SCG cocultures. The implications of these results for a determination of the role that target organ plays in the development of the transmitter properties of sympathetic neurons are discussed.  相似文献   

17.
Sympathetic ganglia consist of noradrenergic and cholinergic neurons. The cholinergic marker protein vesicular acetylcholine transporter (VAChT) and the neuropeptide vasoactive intestinal peptide (VIP), co-expressed in mature cholinergic sympathetic neurons, are first detectable during embryonic development of rat sympathetic ganglia. However, the subpopulation of cholinergic sympathetic neurons which innervates sweat glands in mammalian footpads starts to express VAChT and VIP during the first postnatal weeks, under the influence of sweat gland-derived signals. In vitro evidence suggests that the sweat gland-derived cholinergic differentiation factor belongs to a group of neuropoietic cytokines, including LIF, CNTF and CT-1, that act through a LIFRbeta-containing cytokine receptor. To investigate whether the embryonic expression of cholinergic properties is elicited by a related cytokine, the expression of VAChT and VIP was analyzed in stellate ganglia of mice deficient for the cytokine receptor subunits LIFRbeta or CNTFRalpha. The density of VAChT- and VIP-immunoreactive cells in stellate ganglia of new-born animals was not different in LIFRbeta(-/-) and CNTFRalpha(-/-) ganglia as compared to ganglia from wild-type mice. These results demonstrate that the early, embryonic expression of VAChT and VIP is not induced by cytokines acting through LIFRbeta- or CNTFRalpha-containing receptors.  相似文献   

18.
The enzymatic machinery for neurotransmitter synthesis and breakdown have been compared in sister cultures of newborn rat sympathetic neurons grown for 12-28 days either in the presence (CM+ cultures) or in the absence (CM- cultures) of a culture medium conditioned by rat skeletal muscle cells. Neuron numbers, total protein, and lactate dehydrogenase activities were identical in CM+ and CM- cultures. Choline acetyltransferase activity was 27- to 100-fold higher in homogenates of CM+ than CM- cultures, whereas acetylcholinesterase activity was 2.5-fold lower. The activities of tyrosine hydroxylase (TOH), DOPA decarboxylase, and dopamine beta-hydroxylase were all about twofold lower in homogenates from CM+ cultures. All these effects were also observed in homogenates of sympathetic neuron cultures grown with and without a macromolecular factor partially purified from CM (Weber, J. (1981). Biol. Chem. 256, 3447-3453.). Experiments of mixing homogenates from CM+ and CM- cultures suggested that the differences in each of the enzyme activities did not result from differences in the concentrations of hypothetical reversible enzyme activators and/or inhibitors. In addition, the deficit in TOH activity in CM+ cultures resulted from a decrease in the enzymatic Vmax with no significant variation in the apparent Km's for the substrate and the cofactor. An identical decrease in the Vmax was observed if TOH was assayed under phosphorylating or nonphosphorylating conditions, suggesting that this decrease did not result from differences in the state of enzyme phosphorylation. Immunoprecipitation curves of TOH activity by an anti-TOH antiserum were parallel when performed on homogenates from CM+ and CM- cultures, suggesting a difference in the number of enzyme molecules without detectable alteration of their kinetic properties.  相似文献   

19.
20.
Extracts of skeletal muscle contain chromatographically distinct molecules that enhance the cholinergic development of cultured embryonic rat spinal cord neurons. We have recently purified a 20-22 kilodalton anionic polypeptide choline acetyltransferase (ChAT) development factor (CDF) from rat skeletal muscle extracts that stimulates the development of ChAT activity in rat spinal cord cultures. The maximum increase in the level of ChAT activity achieved by this factor, however, is less than that achieved by the addition of the crude extract. We now show that muscle extract also contains mitogenic activity that is immunologically related to basic fibroblast growth factor (bFGF) and also that recombinant bFGF stimulates ChAT development in rat spinal cord cultures. bFGF, however, differs from CDF in its physiochemical, chromatographic, and immunological properties and by its action on nonneuronal cells. Individually, CDF and bFGF each enhance the level of ChAT activity in rat spinal cord cultures two- to threefold after 2 days of treatment. However, their combined actions result in a five- to sixfold enhancement of ChAT activity, suggesting that they are affecting cholinergic development through different means. The demonstration that extracts of rat skeletal muscle contain two biochemically and immunologically distinct polypeptides, with additive effects on cultured embryonic spinal cord neurons, provides additional evidence for the involvement of multiple target-derived neurotrophic factors in the regulation of cholinergic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号