共查询到20条相似文献,搜索用时 15 毫秒
1.
Hormaeche I Alkorta I Moro F Valpuesta JM Goni FM De La Cruz F 《The Journal of biological chemistry》2002,277(48):46456-46462
TrwB is an integral membrane protein linking the relaxosome to the DNA transport apparatus in plasmid R388 conjugation. Native TrwB has been purified in monomeric and hexameric forms, in the presence of dodecylmaltoside from overexpressing bacterial cells. A truncated protein (TrwBDeltaN70) that lacked the transmembrane domain could be purified only in the monomeric form. Electron microscopy images revealed the hexameric structure and were in fact superimposable to the previously published atomic structure for TrwBDeltaN70. In addition, the electron micrographs showed an appendix, approximately 25 A wide, corresponding to the transmembrane region of TrwB. TrwB was located in the bacterial inner membrane in agreement with its proposed coupling role. Purified TrwB hexamers and monomers bound tightly the fluorescent ATP analogue TNP-ATP. A mutant in the Walker A motif, TrwB-K136T, was equally purified and found to bind TNP-ATP with a similar affinity to that of the wild type. However, the TNP-ATP affinity of TrwBDeltaN70 was significantly reduced in comparison with the TrwB hexamers. Competition experiments in which ATP was used to displace TNP-ATP gave an estimate of ATP binding by TrwB (K(d)((ATP)) = 0.48 mm for hexamers). The transmembrane domain appears to be involved in TrwB protein hexamerization and also influences its nucleotide binding properties. 相似文献
2.
Vecino AJ de la Arada I Segura RL Goñi FM de la Cruz F Arrondo JL Alkorta I 《Biochimica et biophysica acta》2011,1808(4):1032-1039
TrwB is an integral membrane protein that plays a crucial role in the conjugative process of plasmid R388. We have recently shown [Vecino et al., Biochim. Biophys. Acta 1798(11), 2160-2169 (2010)] that TrwB can be reconstituted into liposomes, and that bilayer incorporation increases its affinity for nucleotides and its specificity for ATP. In the present contribution we examine the structural effects of membrane insertion on TrwB, by comparing the protein in reconstituted form and in the form of protein/lipid/detergent mixed micelles. TrwB was reconstituted in PE:PG:CL (76.3:19.6:4.1mol ratio) with a final 99:1 lipid:protein mol ratio. This lipid mixture is intended to mimic the bacterial inner membrane composition, and allows a more efficient reconstitution than other lipid mixtures tested. The studies have been carried out mainly using infrared spectroscopy, because this technique provides simultaneously information on both the lipid and protein membrane components. Membrane reconstitution of TrwB is accompanied by a decrease in β-sheet contents and an increase in β-strand structures, probably related to protein-protein contacts in the bilayer. The predominant α-helical component remains unchanged. The bilayer-embedded protein becomes thermally more stable, and also more resistant to trypsin digestion. The properties of the bilayer lipids are also modified in the presence of TrwB, the phospholipid acyl chains are slightly ordered, and the phosphate groups at the interface become more accessible to water. In addition, we observe that the protein thermal denaturation affects the lipid thermal transition profile. 相似文献
3.
In order to understand the functional significance of the transmembrane domain of TrwB, an integral membrane protein involved in bacterial conjugation, the protein was purified in the native, and also as a truncated soluble form (TrwBΔN70). The intact protein (TrwB) binds preferentially purine over pyrimidine nucleotides, NTPs over NDPs, and ribo- over deoxyribonucleotides. In contrast, TrwBΔN70 binds uniformly all tested nucleotides. The transmembrane domain has the general effect of making the nucleotide binding site(s) less accessible, but more selective. This is in contrast to other membrane proteins in which most of the protein mass, including the catalytic domain, is outside the membrane, but whose activity is not modified by the presence or absence of the transmembrane segment. 相似文献
4.
Grandoso G Avila P Cayón A Hernando MA Llosa M de la Cruz F 《Journal of molecular biology》2000,295(5):1163-1172
Protein TrwC is the relaxase-helicase responsible for the initiation and termination reactions of DNA processing during plasmid R388 conjugation. Site-directed mutagenesis was used to change to phenylalanine each of a set of four conserved tyrosyl residues in the sequence of the N-terminal relaxation domain of the protein. Simultaneous mutation of both Y18 and Y26 was required to abolish in vitro cleavage and strand-transfer reactions catalyzed by protein TrwC on oligonucleotides containing the nic site. Thus, both Y18 and Y26 could be involved independently in the formation of oligonucleotide-protein covalent complexes that constitute presumed intermediates of these reactions. This hypothesis was confirmed by the observation of Y18 and Y26-specific peptide-oligonucleotide adducts after protease digestion of TrwC and mutant derivatives. Finally mutation Y18F, but not mutation Y26F, abolished nic-cleavage of a supercoiled DNA containing the R388 origin of transfer (oriT). These data allowed the construction of a model for conjugative DNA processing in which Y18 specifically catalyzes the initial cleavage reaction, while Y26 is used for the second strand-transfer reaction, which terminates conjugation. The model suggests a control mechanism that can be effective at each conjugative replication cycle. 相似文献
5.
Ana J. Vecino Begoña Ugarte-Uribe Itsaso Hormaeche Fernando de la Cruz Itziar Alkorta 《生物化学与生物物理学报:生物膜》2010,1798(11):2160-2169
Bacterial conjugative systems code for an essential membrane protein that couples the relaxosome to the DNA transport apparatus, called type IV coupling protein (T4CP). TrwB is the T4CP of the conjugative plasmid R388. In earlier work we found that this protein, purified in the presence of detergents, binds preferentially purine nucleotides trisphosphate. In contrast a soluble truncated mutant TrwBΔN70 binds uniformly all nucleotides tested. In this work, TrwB has been successfully reconstituted into liposomes. The non-membranous portion of the protein is almost exclusively oriented towards the outside of the vesicles. Functional analysis of TrwB proteoliposomes demonstrates that when the protein is inserted into the lipid bilayer the affinity for adenine and guanine nucleotides is enhanced as compared to that of the protein purified in detergent or to the soluble deletion mutant, TrwBΔN70. The protein specificity for adenine nucleotides is also increased. No ATPase activity has been found in TrwB reconstituted in proteoliposomes. This result suggests that the N-terminal transmembrane segment of this T4CP interferes with its ATPase activity and can be taken to imply that the TrwB transmembrane domain plays a regulatory role in its biological activity. 相似文献
6.
Relaxosomes are specific nucleoprotein structures involved in DNA-processing reactions during bacterial conjugation. In this work, we present evidence indicating that plasmid R388 relaxosomes are composed of origin of transfer (oriT) DNA plus three proteins TrwC relaxase, TrwA nic-cleavage accessory protein and integration host factor (IHF), which acts as a regulatory protein. Protein IHF bound to two sites (ihfA and ihfB) in R388 oriT, as shown by gel retardation and DNase I footprinting analysis. IHF binding in vitro was found to inhibit nic-cleavage, but not TrwC binding to supercoiled DNA. However, no differences in the frequency of R388 conjugation were found between IHF- and IHF+ donor strains. In contrast, examination of plasmid DNA obtained from IHF- strains revealed that R388 was obtained mostly in relaxed form from these strains, whereas it was mostly supercoiled in IHF+ strains. Thus, IHF could have an inhibitory role in the nic-cleavage reaction in vivo. It can be speculated that triggering of conjugative DNA processing during R388 conjugation can be mediated by IHF release from oriT. 相似文献
7.
Hormaeche I Iloro I Arrondo JL Goñi FM de la Cruz F Alkorta I 《The Journal of biological chemistry》2004,279(12):10955-10961
TrwB is an integral membrane protein encoded by the conjugative plasmid R388. TrwB binds ATP and is essential for R388-directed bacterial conjugation. The protein consists of a cytosolic domain, which contains an ATP-binding site, and a transmembrane domain. The complete protein has been purified in the presence of detergents, and in addition, the cytosolic domain has also been isolated in the form of a soluble truncated protein, TrwBDeltaN70. The availability of intact and truncated forms of the protein provides a convenient system to study the role of the transmembrane domain in the stability of TrwB. Protein denaturation was achieved by heat, in the presence of guanidinium HCl, or under low salt conditions. In all three cases TrwB was significantly more stable than TrwBDeltaN70 with other conditions being the same. IR spectroscopy of the native and truncated forms revealed significant differences between them. In addition, it was found that TrwBDeltaN70 was stabilized in dispersions of non-ionic detergent, suggesting the presence of hydrophobic patches on the surface of the truncated protein. IR spectroscopy also confirmed the conformational stability provided by the detergent. These results suggest that in integral membrane proteins consisting of a transmembrane and a cytosolic domain, the transmembrane portion may have a role beyond the mere anchoring of the protein to the cell membrane. In addition, this study indicates that the truncated soluble parts of two-domain membrane proteins may not reflect the physiological conformation of their native counterparts. 相似文献
8.
Bacterial conjugation implies a trans-membrane passage of DNA, mediated by proteins encoded in conjugative plasmids. This results in a spread of genetic information, including antibiotic resistance acquisition by pathogens. Special cases of conjugation are trans-kingdom gene transfer from bacteria to plants or fungi, and even bacterial sporulation and cell division. One of the main actors in this process is an integral inner membrane DNA-binding protein, called TrwB in the E. coli R388 conjugative system. It is responsible for coupling the single-strand DNA to be transferred from the donor to the acceptor cell in its complex with other proteins, with a type IV secretion system making up the mating apparatus. The TrwB protomer consists of two domains: a nucleotide-binding domain of alpha/beta topology, similar to RecA and DNA ring helicases, and an all-alpha domain. The quaternary structure reveals an almost spherical homohexamer, strikingly similar to F(1)-ATPase. A central 20 A wide channel traverses the hexamer, thus connecting cytoplasm with periplasm. 相似文献
9.
10.
Physical and genetic map of the IncW plasmid R388 总被引:7,自引:2,他引:7
11.
Specific DNA binding of the TraM protein to the oriT region of plasmid R100. 总被引:6,自引:2,他引:6 下载免费PDF全文
The product of the traM gene of plasmid R100 was purified as the TraM-collagen-beta-galactosidase fusion protein (TraM*) by using a beta-galactosidase-specific affinity column, and the TraM portion of TraM* (TraM') was separated by collagenolysis. Both the TraM* and TraM' proteins were found to bind specifically to a broad region preceding the traM gene. This region (designated sbm) was located within the nonconserved region in oriT among conjugative plasmids related to R100. The region seems to contain four core binding sites (designated sbmA, sbmB, sbmC, and sbmD), each consisting of a similar number of nucleotides and including a homologous 15-bp sequence. This result, together with the observation that the TraM* protein was located in the membrane fraction, indicates the possibility that the TraM protein has a function in anchoring the oriT region of R100 at the sbm sites to the membrane pore, through which the single-stranded DNA is transferred to the recipient. sbmC and sbmD, each of which contained a characteristic inverted repeat sequence, overlapped with the promoter region for the traM gene. This suggests that the expression of the traM gene may be regulated by its own product. 相似文献
12.
Plasmid pIJ101 from Streptomyces lividans encodes a single gene, tra, that is essential for both plasmid transfer and mobilization of chromosomes during mating. The tra gene product (Tra) is a membrane protein, a portion of which shows similarity to transfer proteins of other streptomycete plasmids as well as additional bacterial chromosome partitioning proteins. This paper reviews past and present work that has focused on elucidating the precise role of the Tra protein of pIJ101 in conjugation in Streptomyces. 相似文献
13.
14.
Summary The Escherichia coli F plasmid gene, traG, is required for two stages of the conjugation process: pilus biosynthesis and mating aggregate stabilization. The nucleotide sequence of traG has been determined and the topology of its product in the cytoplasmic membrane analysed using protease accessibility experiments. Complementation analysis employing plasmid deletions revealed a correlation between an N-terminal periplasmic segment of the protein product (TraGp) and its pilus assembly activity. Production of an anti-TraGp antiserum has facilitated the detection of TraGp*, a possible internal cleavage product of TraGp. Although its function is unknown, TraGp* is located in the periplasm and has been shown to possess sequences required for aggregate stabilization. The detection of TraGp*raises the possibility that the two functions of traG are carried out by separate products. 相似文献
15.
Interaction of the plasmid R6K-encoded replication initiator protein with its binding sites on DNA 总被引:49,自引:0,他引:49
Initiation of DNA replication in plasmid R6K is potentiated by the plasmid-encoded 35 kd replication initiator protein. We had previously reported that the initiator bound to two regions of R6K DNA called Site I and Site II. Using DNAase I footprinting technique we have demonstrated that the initiator bound to seven tandem repeats of a 22 bp long sequence in Site I. In Site II, the initiator bound to a single repeat having the same consensus sequence and to two partial repeats that most likely overlap the promoter of the initiation protein cistron. Using dimethyl sulfate as a chemical probe, we have determined the purine residues of Site I and Site II that make contact with the initiator protein. The results show that eight out of nine contact points per repeat in Site I were located on one of the two strands of the DNA. The binding of the initiator to the Site II sequence could explain the observed autoregulation of the synthesis of the initiator protein by promoter occlusion. 相似文献
16.
TraG-like proteins of type IV secretion systems: functional dissection of the multiple activities of TraG (RP4) and TrwB (R388) 下载免费PDF全文
TraG-like proteins are essential components of type IV secretion systems. During secretion, TraG is thought to translocate defined substrates through the inner cell membrane. The energy for this transport is presumably delivered by its potential nucleotide hydrolase (NTPase) activity. TraG of conjugative plasmid RP4 is a membrane-anchored oligomer that binds RP4 relaxase and DNA. TrwB (R388) is a hexameric TraG-like protein that binds ATP. Both proteins, however, lack NTPase activity under in vitro conditions. We characterized derivatives of TraG and TrwB truncated by the N-terminal membrane anchor (TraGdelta2 and TrwBdelta1) and/or containing a point mutation at the putative nucleotide-binding site (TraGdelta2K187T and TraGK187T). Unlike TraG and TrwB, truncated derivatives behaved as monomers without the tendency to form oligomers or aggregates. Surface plasmon resonance analysis with immobilized relaxase showed that mutant TraGK187T was as good a binding partner as the wild-type protein, whereas truncated TraG monomers were unable to bind relaxase. TraGdelta2 and TrwBdelta1 bound ATP and, with similar affinity, ADP. Binding of ATP and ADP was strongly inhibited by the presence of Mg(2+) or single-stranded DNA and was competed for by other nucleotides. Compared to the activity of TraGdelta2, the ATP- and ADP-binding activity of the point mutation derivative TraGdelta2K187T was significantly reduced. Each TraG derivative bound DNA with an affinity similar to that of the native protein. DNA binding was inhibited or competed for by ATP, ADP, and, most prominently, Mg(2+). Thus, both nucleotide binding and DNA binding were sensitive to Mg(2+) and were competitive with respect to each other. 相似文献
17.
18.
The MCM (minichromosome maintenance) proteins of archaea are widely believed to be the replicative DNA helicase of these organisms. Most archaea possess a single MCM orthologue that forms homo-multimeric assemblies with a single hexamer believed to be the active form. In the present study we characterize the roles of highly conserved residues in the ATPase domain of the MCM of the hyperthermophilic archaeon Sulfolobus solfataricus. Our results identify a potential conduit for communicating DNA-binding information to the ATPase active site. 相似文献
19.
General organization of the conjugal transfer genes of the IncW plasmid R388 and interactions between R388 and IncN and IncP plasmids. 总被引:8,自引:13,他引:8 下载免费PDF全文
The complete conjugal transfer gene region of the IncW plasmid R388 has been cloned in multicopy vector plasmids and mapped to a contiguous 14.9-kilobase segment by insertion mutagenesis. The fertility of the cloned region could still be inhibited by a coresident IncP plasmid. The transfer region has been dissected into two regions, one involved in pilus synthesis and assembly (PILW), and the other involved in conjugal DNA metabolism (MOBW). They have been separately cloned. PILW also contains the genes involved in entry exclusion. MOBW contains oriT and the gene products required for efficient mobilization by PILW. MOBW plasmids could also be mobilized efficiently by PILN, the specific pilus of the IncN plasmid pCU1, but not by PILP, the specific pilus of the IncP plasmid RP1. 相似文献