首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three metabolites were formed from ochratoxin A in the presence of rabbit liver microsomal fractions and NADPH. They were isolated by extraction, thin-layer chromatography, and high-pressure liquid chromatography. Two of them were identified as (4R)- and (4S)-4-hydroxyochratoxin A. It is suggested on the basis of mass and nuclear magnetic resonance spectroscopy that the third metabolite is 10-hydroxyochratoxin A. The formation of the metabolites was inhibited by carbon monoxide and metyrapone and was stimulated when microsomes from phenobarbital-treated animals were used. The results suggest that cytochrome P-450 catalyzes the formation of these metabolites.  相似文献   

2.
A metabolic product was formed from ochratoxin B by rat liver microsomal fractions in the presence of NADPH. It was isolated from the incubation mixture by extraction, thin-layer chromatography, high-pressure liquid chromatography, and crystallization. On the basis of mass and nuclear magnetic resonance spectroscopy, the structure is suggested to be 4-hydroxyochratoxin B. The Km for the formation of 4-hydroxyochratoxin B was determined, and the hydroxylation of ochratoxin A was not altered by the presence of ochratoxin B. Rats were given ochratoxin A or B, or a mixture of both intraperitoneally. The ratios of the three metabolites, ochratoxin A, (4R)-4-hydroxyochratoxin A, and ochratoxin alpha, excreted in the urine did not change in the presence of ochratoxin B. Ochratoxin B was metabolized to 4-hydroxyochratoxin B and ochratoxin beta, but in a different ratio than for the ochratoxin A metabolites. When given intraperitoneally, ochratoxin beta was excreted within 24 h. In rats treated with ochratoxin A alone, the food intake was reduced by 50%, and histologically severe lesions, degeneration, and necrosis were observed in the proximal tubules. When ochratoxin A and B given in combination, the animals were clinically unaffected and histologically there was only slight damage of proximal tubules. These observations indicate that ochratoxin B considerably reduces the toxic effects of ochratoxin A.  相似文献   

3.
A metabolic product was formed from ochratoxin B by rat liver microsomal fractions in the presence of NADPH. It was isolated from the incubation mixture by extraction, thin-layer chromatography, high-pressure liquid chromatography, and crystallization. On the basis of mass and nuclear magnetic resonance spectroscopy, the structure is suggested to be 4-hydroxyochratoxin B. The Km for the formation of 4-hydroxyochratoxin B was determined, and the hydroxylation of ochratoxin A was not altered by the presence of ochratoxin B. Rats were given ochratoxin A or B, or a mixture of both intraperitoneally. The ratios of the three metabolites, ochratoxin A, (4R)-4-hydroxyochratoxin A, and ochratoxin alpha, excreted in the urine did not change in the presence of ochratoxin B. Ochratoxin B was metabolized to 4-hydroxyochratoxin B and ochratoxin beta, but in a different ratio than for the ochratoxin A metabolites. When given intraperitoneally, ochratoxin beta was excreted within 24 h. In rats treated with ochratoxin A alone, the food intake was reduced by 50%, and histologically severe lesions, degeneration, and necrosis were observed in the proximal tubules. When ochratoxin A and B given in combination, the animals were clinically unaffected and histologically there was only slight damage of proximal tubules. These observations indicate that ochratoxin B considerably reduces the toxic effects of ochratoxin A.  相似文献   

4.
Metabolism of ochratoxin A by rats.   总被引:4,自引:4,他引:0       下载免费PDF全文
Albino rats were given ochratoxin A (6.6 mg/kg body weight) intraperitoneally or per os. Independent of route administration, 6% of a given dose was excreted as the toxin, 1 to 1.5% as (4R)-4-hydroxyochratoxin A, and 25 to 27% as ochratoxin alpha in the urine. The metabolite (4S)-4-hydroxyochratoxin A, which is formed by rat liver microsomes in the presence of NADPH, was not detected. Only traces of ochratoxins A and alpha were found in feces. Identical experiments were carried out with brown rats, since the Km value for the formation of the 4S epimer was considerably lower when brown rat microsomes were used. About the same ratios of metabolites and metabolite recoveries as those found for albino rats were found for brown rats. Brown rats were also given the two hydroxylated metabolites and ochratoxin alpha (0.66 mg/kg body weight) intraperitoneally. The three compounds were excreted in the urine; within 48 h, 90% recovery of ochratoxin alpha and 54 and 35%, respectively, of the 4R and 4S isomers were observed.  相似文献   

5.
A series of (+/-)-3-(4-aminophenyl) pyrrolidin-2,5-diones substituted in the 1-, 3- or 1,3-position with an aryl or long chain alkyl function are weak inhibitors of the metabolism of all-trans retinoic acid (RA) by rat liver microsomes (68-75% inhibition) compared with ketoconazole (85%). Further studies with the 1-cyclohexyl analogue (1) (IC50 = 98.8 microM, ketoconazole, 22.15 microM) showed that it was not stereoselective in its inhibition. (+/-)-(1) was not an inhibitor of pig brain microsomal enzyme (ketoconazole, IC50 = 20.9 microM), had little effect on human liver microsomal enzyme (19.3%, ketoconazole, 81.6%) or human placental microsomal enzyme (9.8%, ketoconazole 73.9%) but was a weak inhibitor of human and rat skin homogenates (52.6% and IC50 = 211.6 microM respectively; ketoconazole, 38.8% and 85.95 microM). In RA-induced cell cultures of human male genital fibroblasts and HaCat cells, (+/-)-(1) was a weak inhibitor (c. 53% at 200 microM) whereas ketoconazole showed high potency (c. 65% at 0.625 microM and 0.25 microM respectively). The nature of the induced target enzyme is discussed.  相似文献   

6.
A series of (±) -3-(4-aminophenyl) pyrrolidin-2,5-diones substituted in the 1-, 3- or 1,3- position with an aryl or long chain alkyl function are weak inhibitors of the metabolism of all-trans retinoic acid (RA) by rat liver microsomes (68-75% inhibition) compared with ketoconazole (85%). Further studies with the 1-cyclohexyl analogue (1) (IC 50 = 98.8 μM, ketoconazole, 22.15 μM) showed that it was not stereoselective in its inhibition. (±) - (1) was not an inhibitor of pig brain microsomal enzyme (ketoconazole, IC 50 = 20.9 μM), had little effect on human liver microsomal enzyme (19.3%, ketoconazole, 81.6%) or human placental microsomal enzyme (9.8%, ketoconazole 73.9%) but was a weak inhibitor of human and rat skin homogenates (52.6% and IC 50 = 211.6 μM respectively; ketoconazole, 38.8% and 85.95 μM). In RA-induced cell cultures of human male genital fibroblasts and HaCat cells, (±) - (1) was a weak inhibitor (c. 53% at 200 μM) whereas ketoconazole showed high potency (c. 65% at 0.625 μM and 0.25 μM respectively). The nature of the induced target enzyme is discussed.  相似文献   

7.
Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants and complete carcinogens in rodents. Metabolism of lower chlorinated congeners with rat liver microsomes was investigated in earlier studies and DNA adduction was also reported. The current study was designed to compare DNA adducts formed after bioactivation of PCBs with rat, mouse and human hepatic microsomes, and to investigate the role of quinoid PCB metabolites in DNA adduct formation. Eight congeners ranging from mono- to hexachlorinated biphenyls were tested. Metabolites obtained through microsomal bioactivation as well as synthetic quinoid metabolites of 4-monochlorobiphenyl (4-CB) were incubated with calf-thymus DNA (CT-DNA), and the resulting adducts were analyzed by the 32P-post-labelling method. DNA adducts were formed with mono- di- and tri-chlorinated congeners, but not with higher chlorinated congeners. Similar adduct patterns were observed for 2-monochlorobiphenyl (2-CB) activated with hepatic microsomes from rat, mouse and human, while 4-CB, 3,4-dichlorobiphenyl (3,4-CB) and 3,4,5-trichlorobiphenyl (3,4,5-CB) showed similar patterns for two out of the three microsomal systems tested. 4,4' -trichlorobiphenyl (4,4' -CB) showed different adduct patterns in all microsomal systems. Higher adduct levels were obtained with the rodent microsomes compared with human microsomes and were related to higher cytochrome P450 activity. When adducts derived from microsomal activation of 4-CB were compared by co-chromatography with those derived from the incubation of DNA with synthetic 2-(4' -chlorophenyl)-1,4-benzoquinone (4-BQ), one adduct co-migrated in three different chromatography systems. This study demonstrates that rodents as well as human hepatic enzymes metabolize lower chlorinated biphenyl congeners to reactive intermediates that form DNA adducts in vitro and shows that the para-quinone metabolites of PCBs are, in part, involved in direct DNA adduction.  相似文献   

8.
The tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces tumor formation in the liver, lung, nasal cavity, and pancreas of rats. Metabolic activation is required for the tumorigenicity of this compound. The involvement of cytochrome P450 enzymes in NNK bioactivation was investigated in rats by studies with chemical inducers and antibodies against P450s. Liver microsomal enzymes catalyzed the formation of 4-oxo-1-(3-pyridyl)-1-butanone (keto aldehyde), 4-hydroxy-1-(3-pyridyl)-1-butanone (keto alcohol), 4-(methylnitrosamino)-1-(3-pyridyl-N-oxide)-1-butanone (NNK-N-oxide), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) from NNK. When the activity was expressed on a per nanomole P450 basis, treatments of rats with 3-methylcholanthrene (MC), phenobarbital (PB), pregnenolone 16-alpha-carbonitrile (PCN), Aroclor 1254 (AR), safrole (SA), and isosafrole (ISA) increased the keto aldehyde formation in liver microsomes 2.0-, 2.4-, 3.8-, 2.5-, 2.1-, and 1.8-fold, respectively; PB, AR, SA, and ISA increased the keto alcohol formation 1.7-, 1.3-, 2.0-, and 1.3-fold, respectively. The extents of induction were more pronounced when expressed on a per milligram protein basis, due to the higher microsomal P450 contents in the induced microsomes. The formation of NNK-N-oxide was markedly increased by PB and PCN and slightly increased by AR, SA, and ISA. However, the formation of NNAL, the major metabolite due to carbonyl reduction, was not increased by the treatments but was decreased by AR, ISA, and acetone (AC). The kinetic parameters of NNK metabolism by control, MC-, PB-, and PCN-induced liver microsomes were obtained. A panel of monoclonal (anti-1A1, -2B1, -2C11, and -2E1) and polyclonal (anti-1A2, -2A1, and -3A) antibodies were used to assess the involvement of constitutive hepatic P450 enzymes in NNK metabolism. Keto aldehyde formation was inhibited by anti-1A2 and anti-3A (about 15%) but not by others; the formation of keto alcohol was inhibited by anti-1A2, anti-2A1, and anti-3A (by 13-26%). In incubations with lung microsomes, the formation of keto aldehyde, keto alcohol, NNK-N-oxide, and NNAL were observed. With nasal mucosa microsomes, however, only keto aldehyde and keto alcohol formation were appreciable. SA and AC significantly decreased NNK metabolism in lung and nasal mucosa microsomes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
A highly sensitive assay has been developed for measuring the rate of formation of 2-hydroxyestradiol and 4-hydroxyestradiol from estradiol by microsomal preparations. Catechol estrogens were converted to heptafluorobutyryl esters, which were separated by capillary column gas chromatography and quantified using electron-capture detection. 2-Hydroxyestradiol 17-acetate was used as an internal standard. The identity of catechol estrogen derivatives was verified by gas chromatography—mass spectrometry using negative-ion chemical ionization. Estrogens were identified by negative molecular ions and/or by characteristic fragments. This procedure permits quantification of catechol estrogens at the subpicogram level. The assay was validated by comparing estrogen 2- and 4-hydroxylase activities in microsomes from hamster and rat liver with values reported previously.  相似文献   

10.
Ring hydroxylation of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea was shown to occur in the presence of liver microsomes prepared from both normal and phenobarbital induced rats. The metabolite was identified by mass spectrometry after selective extraction and purification by liquid chromatography. The microsomal catalyzed reaction was oxygen and NADPH dependent, inhibited by carbon monoxide and induced 4–5 fold by in vivo phenobarbital pre-treatment. Phenobarbital induced microsomes hydroxylated the substrate at a rate of 17.6 nmoles/min/mg protein at 37°. A Type I difference spectrum was observed with phenobarbital induced microsomes that also displayed a substrate binding constant (Ks of 4 × 10?5 M.  相似文献   

11.
125I-labeled 1-(p-hydroxyphenyl) 2-guanidinoethane (N-guanyltyramine), previously used to assay for the bacterial toxin choleragen (Mekalanos, J.J., Collier, R.J. and Romig, W.R. (1979) J. Biol. Chem. 254, 5849-5854) was utilized to identify NAD:arginine ADPribosyltransferases in animal tissues. The use of this radiolabelled ADPribose acceptor, rather than radiolabelled NAD, would bypass the problem posed by the almost ubiquitous presence of enzymes that degrade NAD. With a homogeneous ADPribosyltransferase from turkey erythrocytes, NAD and 125I-labeled guanyltyramine as ADPribose acceptor, formation of ADPribosyl 125I-guanyltyramine was linear with time and enzyme concentration. The product was indistinguishable on both thin-layer and high-performance liquid chromatography from that formed by choleragen. Using 125I-guanyltyramine, ADPribosyltransferase activity was also demonstrated in crude turkey erythrocyte cytosolic and membrane fractions. When rat liver was fractionated, apparent activity was detected primarily in the microsomes. The NAD-dependent product of the microsomal reaction was, however, distinguished from the turkey erythrocyte transferase product by thin-layer and DEAE-Sephadex chromatography; this product had a retention time identical to that of free 125I on high-performance liquid chromatography. In addition to NAD, the microsomal deiodinase activity was supported by NADH, NADP and NADPH. Phenyl boronate selectively bound ADPribosyl 125I-guanyltyramine and other metabolites of 125I-guanyltyramine which were formed by microsomes in a NAD-dependent process. These metabolites were distinguished from ADPribosyl 125I-guanyltyramine by high-performance liquid chromatography. These results indicate that in some cases, for example, turkey erythrocyte cytosolic and membrane fractions, 125I-guanyltyramine can be used to quantify ADPribosyltransferases in crude mixtures, whereas in others, for example, rat liver microsomes, high-performance liquid chromatographic analysis must be used to identify products.  相似文献   

12.
To avoid artefactual 6 beta-hydroxylation of 3-oxo-4-ene steroids due to steroid-3-imine formation and rearrangement a combined extraction and liquid chromatography purification procedure for incubated rat liver microsomes has been worked out. With this procedure no nonenzymatic 6 beta-hydroxylation could be observed. Conventional termination of incubations with male rat liver microsomes (105,000 g sediments) and 4-14 C-labelled 4-androstene-3,17-dione (or progesterone) by solvent extraction and evaporation might lead to a 30% overestimation of the formation of 6 beta-hydroxy-derivatives at substrate saturation. Furthermore this work-up procedure produces 6-oxo-derivatives which were not observed when the new procedure was used. By elimination of the artefactual 6-oxygenation some properties of the male rat liver microsomal 4-androstene-3,17-dione 6 beta-hydroxylase have been studied, and the activity has been compared to the artefact produced by solvent extraction and evaporation. Using the combined extraction-liquid chromatography purification it was demonstrated that the microsomal 6 beta-hydroxylase active on 4-androstene-3,17-dione and progesterone was inhibited to 95% by carbon monoxide. This makes previous suggestions regarding participation of a non cytochrome P450-dependent 4-androstene-3,17-dione 6 beta-hydroxylase less likely.  相似文献   

13.
The non-K-region benz[a]anthracene (BA) 8,9- and 10,11-epoxides were isolated by normal-phase high-performance liquid chromatography as rat liver microsomal metabolites of BA. The identities of these epoxides were established by ultraviolet and mass spectral analyses and were further validated by the microsomal epoxide hydrolase catalyzed conversion to BA trans-8,9-dihydrodiol and trans-10,11-dihydrodiol, respectively. Circular dichroism spectral analyses of the metabolically formed non-K-region epoxides and dihydrodiols and mass spectral analyses of metabolically formed 18O-labeled non-K-region dihydrodiols and their acid-catalyzed dehydration products indicated that BA (8R,9S)-epoxide and (10S,11R)-epoxide were the predominant enantiomers formed in the metabolism at the 8,9- and 10,11- aromatic double bonds of BA, respectively, by rat liver microsomes. This is the first example demonstrating the direct detection and stereoselective metabolic formation of non-K-region epoxides of a polycyclic aromatic hydrocarbon.  相似文献   

14.
Hepatic microsomes isolated from untreated male rats or from rats pretreated with phenobarbital (PB) or 3-methylcholanthrene (3-MC) were labeled with the hydrophobic, photoactivated reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). [125I]TID incorporation into 3-MC- and PB-induced liver microsomal protein was enhanced 5- and 8-fold, respectively, relative to the incorporation of [125I]TID into uninduced liver microsomes. The major hepatic microsomal cytochrome P-450 forms inducible by PB and 3-MC, respectively designated P-450s PB-4 and BNF-B, were shown to be the principal polypeptides labeled by [125I]TID in the correspondingly induced microsomes. Trypsin cleavage of [125I]TID-labeled microsomal P-450 PB-4 yielded several radiolabeled fragments, with a single labeled peptide of Mr approximately 4000 resistant to extensive proteolytic digestion. The following experiments suggested that TID binds to the substrate-binding site of P-450 PB-4. [125I]TID incorporation into microsomal P-450 PB-4 was inhibited in a dose-dependent manner by the P-450 PB-4 substrate benzphetamine. In the absence of photoactivation, TID inhibited competitively about 80% of the cytochrome P-450-dependent 7-ethoxycoumarin O-deethylation catalyzed by PB-induced microsomes with a Ki of 10 microM; TID was a markedly less effective inhibitor of the corresponding activity catalyzed by microsomes isolated from uninduced or beta-naphthoflavone-induced livers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Hydroxyochratoxin A was isolated and identified from the urine of rats after injection with ochratoxin A. By incubating ochratoxin A with rat liver microsomes and reduced nicotinamide adenine dinucleotide phosphate, one major (90%) and two minor metabolites, more polar than ochratoxin A, were formed. Thin-layer chromatography revealed that the major metabolite had Rf values identical to those of hydroxyochratoxin A in six different solvent systems. Formation of the metabolites in vitro was inhibited by carbon monoxide and by metyrapone, and the rate of formation increased after pretreatment of the rats with phenobarbital. A type I spectrum appeared upon binding of ochratoxin A to microsomes with a spectral dissociation constant (Ks) of 37.6 microM. These findings strongly suggest the involvement of a cytochrome P-450 in the hydroxylation of ochratoxin A by rat liver microsomes. Apparent Km and Vmax values for the formation of hydroxyochratoxin A were determined to 50 microM and 5.5 nmol/mg of protein per h, respectively.  相似文献   

16.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is a selenoprotein which inhibits peroxidation ofmicrosomes. The human enzyme, which may play an important role in protecting the cell from oxidative damage, has not been purified or characterized. PHGPx was isolated from human liver using ammonium sulphate fractionation, affinity chromatography on bromosulphophthalein-glutathione-agarose, gel filtration on Sephadex G-50, anion exchange chromatography on Mono Q resin and high resolution gel filtration on Superdex 75. The protein was purified about 112,000-fold, and 12 μg, was obtained from 140 g of human liver with a 9% yield. PHGPx was active on hydrogen peroxide, cumene hydroperoxide, linoleic acid hydroperoxide and phosphatidylcholine hydroperoxide. The molecular weight, as estimated from non-denaturing gel filtration, was 16,100. The turnover number (37°C, pH 7.6) on (β-(13-hydroperoxy-cis-9, trans-11-octadecadienoyl)-γ-palmitoyl)-l-α-phosphatidylcholine was 91 mol mo−1 s−1. As reported for pig PHGPx, activity of the enzyme from human liver on cumene hydroperoxide and on linoleic acid hydroperoxide was inhibited by deoxycholate. In the presence of glutathione, the enzyme was a potent inhibitor of ascorbate/Fe induced lipid peroxidation in microsomes derived from human B lymphoblastic AHH-1 TK ± CHol cells but not from human liver microsomes. Human cell line microsomes contained no detectable PHGPx activity. However, microsomes prepared from human liver contained 0.009 U/mg of endogenous PHGPx activity, which is 4–5 times the activity required for maximum inhibition of lipid peroxidation when pure PHGPx was added back to human lymphoblastic cell microsomes. PHGPx from human liver exhibits similar properties to previously described enzymes with PHGPx activity isolated from pig and rat tissues, but does not inhibit peroxidation of human liver microsomes owing to a high level of PHGPx activity already present in these microsomes.  相似文献   

17.
Polychlorinated biphenyl (PCB) preparations are complete liver carcinogens in rodents and efficacious promoters in two-stage hepatocarcinogenesis. Cytochrome P450 isozymes catalyze the oxidation of PCBs to mono- and dihydroxy metabolites. The potential for further enzymatic or nonenzymatic oxidation of ortho- and para-dihydroxy PCB metabolites to (semi)quinones raises the possibility that redox cycling involving reactive oxygen species may be involved in PCB toxicity. Seven synthetic 2-(x'-chlorophenyl)-1, 4-benzoquinones (containing one to three chlorines) were investigated for their participation in oxidation-reduction reactions by following the oxidation of NADPH. These observations were made: (i) NADPH alone directly reduced all quinones but only 2-(2'-chlorophenyl)- and 2-(4'-chlorophenyl)-1,4-benzoquinone supported NADPH consumption beyond that required to quantitatively reduce the quinone. (ii) For all quinones, superoxide dismutase increased NADPH oxidation in excess of the amount of quinone, demonstrating the participation of the superoxide radical. (iii) The presence of microsomal enzymes from rat liver increased the rate of NADPH consumption, but only 2-(2'-chlorophenyl)- and 2-(4'-chlorophenyl)-1,4-benzoquinone autoxidized. (iv) The combination of superoxide dismutase with microsomal enzymes accelerated autoxidation from 1.6- to 6.8-fold higher than that found in the absence of microsomal protein. These data support the concept that in the absence of microsomal protein, there occurs a two-electron reduction of the quinone by NADPH to the corresponding hydroquinone that comproportionates with the large reservoir of quinone to initiate autoxidation. In the presence of microsomes, enzymatic one-electron reduction generates a semiquinone radical whose autoxidation with oxygen propagates the redox cycle. These results show the potential of some 2-(x'-chlorophenyl)-1, 4-benzoquinones to initiate the wasteful loss of NADPH.  相似文献   

18.
The metabolism of benzo(a)pyrene [BP], a model carcinogenic PAH, by hepatic microsomes of two duck species, mallard (Anas platyrhynchos) and common merganser (Mergus merganser americanus) collected from chemically-contaminated and relatively non-contaminated areas was investigated. The rate of metabolism of BP by liver microsomes of common merganser and mallard collected from polluted areas (2,650 +/- 310 and 2,200 +/- 310 pmol/min per mg microsomal protein, respectively) was significantly higher than that obtained with liver microsomes of the two species collected from non-polluted areas (334 +/- 33 and 231 +/- 30 pmol/min per mg microsomal protein, respectively). The level of cytochrome P-450 1A1 was significantly higher in the liver microsomes of both duck species from the polluted areas as compared to the ducks from the non-polluted areas. The major BP metabolites, including BP-9, 10-diol, BP-4, 5-diol, BP-7, 8-diol, BP-1, 6-dione, BP-3, 6-dione, BP-6, 12-dione, 9-hydroxy-BP and 3-hydroxy-BP, formed by liver microsomes of both duck species from polluted and non-polluted areas, were qualitatively similar. However, the patterns of these metabolites were considerably different from each other. Liver microsomes of ducks from the polluted areas produced a higher proportion of benzo-ring dihydrodiols than the liver microsomes of ducks from the non-polluted areas, which converted a greater proportion of BP to BP-phenols. The predominant enantiomer of BP-7,8-diol formed by hepatic microsomes of the two duck species had an (-)R,R absolute stereochemistry. The data suggest that duck and rat liver microsomal enzymes have different regioselectivity but similar stereoselectivity in the metabolism of BP.  相似文献   

19.
4-Methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) has been identified as one of the strongest nitrosamine carcinogens in tobacco products in all species tested. Carbonyl reduction to 4-methylnitrosamino-1-(3-pyridyl)-1-butanol (NNAL) followed by glucuronosylation is considered to be the main detoxification pathway in humans. In previous investigations, we have identified a microsomal NNK carbonyl reductase as being identical to 11ß-hydroxysteroid dehydrogenase 1, a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Recently, we provided evidence that carbonyl reduction of NNK does also take place in cytosol from mouse and human liver and lung. In human liver cytosol, carbonyl reductase, a SDR enzyme, and AKR1C1, AKR1C2 and AKR1C4 from the aldo-keto reductase (AKR) superfamily were demonstrated to be responsible for NNK reduction. Since NNK and/or its metabolites can diffuse through the placenta and reach fetal tissues, we now investigated NNK carbonyl reduction in the cytosolic fraction of human placenta in addition to that in microsomes. Concluding from the sensitivity to menadione, ethacrynic acid, rutin and quercitrin as specific inhibitors, mainly carbonyl reductase (EC 1.1.1.184) seems to perform this reaction in human placenta cytosol. The presence of carbonyl reductase was confirmed by RT-PCR. This is the first report to provide evidence that NNAL formation in placenta is mediated by carbonyl reductase.  相似文献   

20.
4-Methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) has been identified as one of the strongest nitrosamine carcinogens in tobacco products in all species tested. Carbonyl reduction to 4-methylnitrosamino-1-(3-pyridyl)-1-butanol (NNAL) followed by glucuronosylation is considered to be the main detoxification pathway in humans. In previous investigations, we have identified a microsomal NNK carbonyl reductase as being identical to 11beta-hydroxysteroid dehydrogenase 1, a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Recently, we provided evidence that carbonyl reduction of NNK does also take place in cytosol from mouse and human liver and lung. In human liver cytosol, carbonyl reductase, a SDR enzyme, and AKR1C1, AKR1C2 and AKR1C4 from the aldo-keto reductase (AKR) superfamily were demonstrated to be responsible for NNK reduction. Since NNK and/or its metabolites can diffuse through the placenta and reach fetal tissues, we now investigated NNK carbonyl reduction in the cytosolic fraction of human placenta in addition to that in microsomes. Concluding from the sensitivity to menadione, ethacrynic acid, rutin and quercitrin as specific inhibitors, mainly carbonyl reductase (EC 1.1.1.184) seems to perform this reaction in human placenta cytosol. The presence of carbonyl reductase was confirmed by RT-PCR. This is the first report to provide evidence that NNAL formation in placenta is mediated by carbonyl reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号