首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulation of vitamin A-derived lipofuscin fluorophores in the retinal pigment epithelium (RPE) is a pathologic feature of recessive Stargardt macular dystrophy, a blinding disease caused by dysfunction or loss of the ABCA4 transporter in rods and cones. Age-related macular degeneration, a prevalent blinding disease of the elderly, is strongly associated with mutations in the genes for complement regulatory proteins (CRP), causing chronic inflammation of the RPE. Here we explore the possible relationship between lipofuscin accumulation and complement activation in vivo. Using the abca4(-/-) mouse model for recessive Stargardt, we investigated the role of lipofuscin fluorophores (A2E-lipofuscin) on oxidative stress and complement activation. We observed higher expression of oxidative-stress genes and elevated products of lipid peroxidation in eyes from abca4(-/-) versus wild-type mice. We also observed higher levels of complement-activation products in abca4(-/-) RPE cells. Unexpectedly, expression of multiple CRPs, which protect cells from attack by the complement system, were lower in abca4(-/-) versus wild-type RPE. To test whether acute exposure of healthy RPE cells to A2E-lipofuscin affects oxidative stress and expression of CRPs, we fed cultured fetal-derived human RPE cells with rod outer segments from wild-type or abca4(-/-) retinas. In contrast to RPE cells in abca4(-/-) mice, human RPE cells exposed to abca4(-/-) rod outer segments adaptively increased expression of both oxidative-stress and CRP genes. These results suggest that A2E accumulation causes oxidative stress, complement activation, and down-regulation of protective CRP in the Stargardt mouse model. Thus, Stargardt disease and age-related macular degeneration may both be caused by chronic inflammation of the RPE.  相似文献   

2.
Stargardt disease, also known as juvenile macular degeneration, occurs in approximately one in 10,000 people and results from genetic defects in the ABCA4 gene. The disease is characterized by premature accumulation of lipofuscin in the retinal pigment epithelium (RPE) of the eye and by vision loss. No cure or treatment is available. Although lipofuscin is considered a hallmark of Stargardt disease, its mechanism of formation and its role in disease pathogenesis are poorly understood. In this work we investigated the effects of long-term administration of deuterium-enriched vitamin A, C20-D(3)-vitamin A, on RPE lipofuscin deposition and eye function in a mouse model of Stargardt's disease. Results support the notion that lipofuscin forms partly as a result of the aberrant reactivity of vitamin A through the formation of vitamin A dimers, provide evidence that preventing vitamin A dimerization may slow disease related, retinal physiological changes and perhaps vision loss and suggest that administration of C20-D(3)-vitamin A may be a potential clinical strategy to ameliorate clinical symptoms resulting from ABCA4 genetic defects.  相似文献   

3.
The age-dependent accumulation of lipofuscin in the retinal pigment epithelium (RPE) has been associated with the development of retinal diseases, particularly age-related macular degeneration and Stargardt disease. A major component of lipofuscin is the bis-retinoid N-retinylidene-N-retinylethanolamine (A2E). The current model for the formation of A2E requires photoactivation of rhodopsin and subsequent release of all-trans-retinal. To understand the role of light exposure in the accumulation of lipofuscin and A2E, we analyzed RPEs and isolated rod photoreceptors from mice of different ages and strains, reared either in darkness or cyclic light. Lipofuscin levels were determined by fluorescence imaging, whereas A2E levels were quantified by HPLC and UV-visible absorption spectroscopy. The identity of A2E was confirmed by tandem mass spectrometry. Lipofuscin and A2E levels in the RPE increased with age and more so in the Stargardt model Abca4(-/-) than in the wild type strains 129/sv and C57Bl/6. For each strain, the levels of lipofuscin precursor fluorophores in dark-adapted rods and the levels and rates of increase of RPE lipofuscin and A2E were not different between dark-reared and cyclic light-reared animals. Both 11-cis- and all-trans-retinal generated lipofuscin-like fluorophores when added to metabolically compromised rod outer segments; however, it was only 11-cis-retinal that generated such fluorophores when added to metabolically intact rods. The results suggest that lipofuscin originates from the free 11-cis-retinal that is continuously supplied to the rod for rhodopsin regeneration and outer segment renewal. The physiological role of Abca4 may include the translocation of 11-cis-retinal complexes across the disk membrane.  相似文献   

4.
The accumulation of lipofuscin in the retinal pigment epithelium (RPE) has been implicated in the development of age-related macular degeneration (AMD) in humans. The exact composition of lipofuscin is not known but its best characterized component is N-retinylidene-N-retinylethanolamine (A2E), a byproduct of the retinoid visual cycle. Utilizing our recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI–IMS)-based technique to determine the spatial distribution of A2E, this study compares the relationships of lipofuscin fluorescence and A2E in the murine and human RPE on representative normal tissue. To identify molecules with similar spatial patterns, the images of A2E and lipofuscin were correlated with all the individual images in the MALDI–IMS dataset. In the murine RPE, there was a remarkable correlation between A2E and lipofuscin. In the human RPE, however, minimal correlation was detected. These results were reflected in the marked distinctions between the molecules that spatially correlated with the images of lipofuscin and A2E in the human RPE. While the distribution of murine lipofuscin showed highest similarities with some of the known A2E-adducts, the composition of human lipofuscin was significantly different. These results indicate that A2E metabolism may be altered in the human compared to the murine RPE.  相似文献   

5.
The eye uses vitamin A as a cofactor to sense light and, during this process, some vitamin A molecules dimerize, forming vitamin A dimers. A striking chemical signature of retinas undergoing degeneration in major eye diseases such as age-related macular degeneration (AMD) and Stargardt disease is the accumulation of these dimers in the retinal pigment epithelium (RPE) and Bruch’s membrane (BM). However, it is not known whether dimers of vitamin A are secondary symptoms or primary insults that drive degeneration. Here, we present a chromatography-free method to prepare gram quantities of the vitamin A dimer, A2E, and show that intravenous administration of A2E to the rabbit results in retinal degeneration. A2E-damaged photoreceptors and RPE cells triggered inflammation, induced remolding of the choroidal vasculature and triggered a decline in the retina’s response to light. Data suggest that vitamin A dimers are not bystanders, but can be primary drivers of retinal degeneration. Thus, preventing dimer formation could be a preemptive strategy to address serious forms of blindness.KEY WORDS: Vitamin A, Neurodegeneration, Bisretinoids, A2E, RPE, Vitamin A dimer, Age-related macular degeneration, AMD, Stargardt  相似文献   

6.
Lipofuscin accumulation in retinal pigment epithelial (RPE) cells of the eye implicates the etiologies of Stargardt disease and age-related macular degeneration, a leading cause of blindness in the elderly. Here, we have identified a previously unknown RPE lipofuscin component. By one- and two-dimensional NMR techniques and mass spectrometry, we confirmed that this compound is a new type of pyridinium bisretinoid presenting an unusual structure, in which two polyenic side chains are attached to adjacent carbons of a pyridinium ring. This pigment is a light-induced isomer of isoA2E, rather than A2E, referred to as iisoA2E. This pigment is a fluorescent lipofuscin compound with absorbance maxima at ∼430 and 352 nm detected in human, pig, mouse, and bovine eyes. Formation of iisoA2E was found in reaction mixtures of all-trans-retinal and ethanolamine. Excess intracellular accumulation of this adduct in RPE cells in vitro leads to a significant loss of cell viability and caused membrane damage. Phospholipase D-mediated phosphodiester cleavage of the A2PE series generated isoA2E and iisoA2E, in addition to A2E, thus corroborating the presence of isoA2PE and iisoA2PE that may serve as biosynthetic precursors of isoA2E and iisoA2E.  相似文献   

7.
Autophagy is an essential mechanism for clearing damaged organelles and proteins within the cell. As with neurodegenerative diseases, dysfunctional autophagy could contribute to blinding diseases such as macular degeneration. However, precisely how inefficient autophagy promotes retinal damage is unclear. In this study, we investigate innate mechanisms that modulate autophagy in the retinal pigment epithelium (RPE), a key site of insult in macular degeneration. High-speed live imaging of polarized adult primary RPE cells and data from a mouse model of early-onset macular degeneration identify a mechanism by which lipofuscin bisretinoids, visual cycle metabolites that progressively accumulate in the RPE, disrupt autophagy. We demonstrate that bisretinoids trap cholesterol and bis(monoacylglycero)phosphate, an acid sphingomyelinase (ASMase) cofactor, within the RPE. ASMase activation increases cellular ceramide, which promotes tubulin acetylation on stabilized microtubules. Live-imaging data show that autophagosome traffic and autophagic flux are inhibited in RPE with acetylated microtubules. Drugs that remove excess cholesterol or inhibit ASMase reverse this cascade of events and restore autophagosome motility and autophagic flux in the RPE. Because accumulation of lipofuscin bisretinoids and abnormal cholesterol homeostasis are implicated in macular degeneration, our studies suggest that ASMase could be a potential therapeutic target to ensure the efficient autophagy that maintains RPE health.  相似文献   

8.
The nondegradable pigments that accumulate in retinal pigment epithelial (RPE) cells as lipofuscin constituents are considered to be responsible for the loss of RPE cells in recessive Stargardt disease, a blindness macular disorder of juvenile onset. This autofluorescent material may also contribute to the etiology of age-related macular degeneration. The best characterized of these fluorophores is A2E, a compound consisting of two retinoid-derived side arms extending from a pyridinium ring. Evidence indicates that photochemical mechanisms initiated by excitation from the blue region of the spectrum may contribute to the adverse effects of A2E accumulation, with the A2E photooxidation products being damaging intermediates. By studying the oxidation products (oxo-A2E) generated using oxidizing agents that add one or two oxygens at a time, together with structural analysis by heteronuclear single quantum correlation-NMR spectroscopy, we demonstrated that the oxygen-containing moieties generated within photooxidized A2E include a 5,8-monofuranoid and a cyclic 5,8-monoperoxide. We have shown that the oxidation sites can be assigned to the shorter arm of A2E, to the longer arm, or to both arms by analyzing changes in the UV-visible spectrum of A2E, and we have observed a preference for oxidation on the shorter arm. By liquid chromatography-mass spectrometry, we have also detected both monofuran-A2E and monoperoxy-A2E in aged human RPE and in eye cups of Abca4/Abcr-/- mice, a model of Stargardt disease. Because the cytotoxicity of endoperoxide moieties is well known, the production of endoperoxide-containing oxo-A2E may account, at least in part, for cellular damage ensuing from A2E photooxidation.  相似文献   

9.
Kim SR  He J  Yanase E  Jang YP  Berova N  Sparrow JR  Nakanishi K 《Biochemistry》2007,46(35):10122-10129
Bisretinoid lipofuscin pigments that accumulate in retinal pigment epithelial cells are implicated in the etiology of several forms of macular degeneration, including juvenile onset Stargardt disease, Best vitelliform macular degeneration, and age-related macular degeneration. One of these compounds, A2E, is generated by phosphate hydrolysis of a phosphatidyl-pyridinium bisretinoid (A2PE) that forms within photoreceptor outer segments. Here, we demonstrate that the formation of the aromatic pyridinium ring of A2PE follows from the oxidation of a dihydropyridinium intermediate. Time-dependent density functional theory calculation, based on the structure of dihydro-A2E, produced a simulated UV-visible absorbance spectrum characterized by maxima of 494 and 344 nm. Subsequently, a compound exhibiting similar UV-visible absorbance maxima (lambdamax 490 and 330 nm) was identified in the A2E biomimetic reaction mixture. By liquid chromatography-mass spectrometry (LC-MS) this bischromophore had the expected mass of the dihydro-pyridinium bisretinoid. The compound also exhibited the behavior of a biosynthetic intermediate since it formed in advance of the final product A2E and was consumed as A2E accumulated. Moreover, under deoxygenated conditions, conversion to the aromatic pyridinium bisretinoid was inhibited. Taken together, these findings indicate that A2E biosynthesis involves the oxidation of a dihydropyridinium intermediate dihydro-A2PE. An understanding of the biosynthetic pathways of retinal pigment epithelial lipofuscin pigments is critical to the development of therapies for macular degeneration that are based on limiting the formation of these damaging compounds.  相似文献   

10.
Degenerative eye diseases are the most common causes of untreatable blindness. Accumulation of lipofuscin (granular deposits) in the retinal pigment epithelium (RPE) is a hallmark of major degenerative eye diseases such as Stargardt disease, Best disease, and age-related macular degeneration. The intrinsic reactivity of vitamin A leads to its dimerization and to the formation of pigments such as A2E, and is believed to play a key role in the formation of ocular lipofuscin. We sought a clinically pragmatic method to slow vitamin A dimerization as a means to elucidate the pathogenesis of macular degenerations and to develop a therapeutic intervention. We prepared vitamin A enriched with the stable isotope deuterium at carbon twenty (C20-D(3)-vitamin A). Results showed that dimerization of deuterium-enriched vitamin A was considerably slower than that of vitamin A at natural abundance as measured in vitro. Administration of C20-D(3)-vitamin A to wild-type rodents with no obvious genetic defects in vitamin A processing, slowed A2E biosynthesis. This study elucidates the mechanism of A2E biosynthesis and suggests that administration of C20-D(3)-vitamin A may be a viable, long-term approach to retard vitamin A dimerization and by extension, may slow lipofuscin deposition and the progression of common degenerative eye diseases.  相似文献   

11.
Maiti P  Gollapalli D  Rando RR 《Biochemistry》2005,44(44):14463-14469
Membrane-bound RPE65 (mRPE65) is a binding protein for all-trans-retinyl esters, which are the substrates for the isomerization reaction that completes the visual cycle. RPE65 is essential for rhodopsin regeneration and, hence, for vision. As RPE65 appears to be part of the rate-limiting pathway in the visual cycle, specific antagonists of the molecule will be important in evaluating its full physiological role. The protein is known to stereoselectively bind all-trans-retinyl esters (tREs), with dissociation constants in the 50 nM range. This study explores the overall binding specificity of RPE65 with respect to both retinoids and other isoprenoids in an effort to define the specificity of binding, and to begin the process of designing specific antagonists for it. The nature of the specificity directed toward the three main structural elements (retinoid, linker, and acyl moieties) in the tRE molecule is reported. In the all-trans-retinyl ester series, binding affinity increased as a function of the hydrophobicity of the fatty acyl group. In the linker region, binding affinities were little affected by amide, ketone, and ether replacements for the carboxy ester moiety of the naturally occurring tRE ligand. Finally, modifications in the all-trans-retinoid moiety are also tolerated. For example, E,E-farnesyl palmitate binds with approximately the same affinity as does all-trans-retinyl palmitate. Other isoprenoid analogues also bind, as do truncated retinoids in the beta-ionone series. Therefore, mRPE65 is a moderately specific retinoid binding protein directed at long chain all-trans-retinyl esters.  相似文献   

12.
10-20% of individuals over the age of 65 suffer from age-related macular degeneration (AMD), the leading cause of severe visual impairment in humans living in developed countries. The pathogenesis of this complex disease is poorly understood, and no efficient therapy or prevention exists to date. A precondition for AMD appears to be the accumulation of the age pigment lipofuscin in lysosomes of retinal pigment epithelial (RPE) cells. In AMD, these cells seem to die by apoptosis with subsequent death of photoreceptor cells, and light may accelerate the disease process. Intracellular factors leading to cell death are not known. Here we show that the lipophilic cation N-retinyl-N-retinylidene ethanolamine (A2E), a lipofuscin component, induces apoptosis in RPE and other cells at concentrations found in human retina. Apoptosis is accompanied by the appearance of the proapoptotic proteins cytochrome c and apoptosis-inducing factor in the cytoplasm and the nucleus. Biochemical examinations show that A2E specifically targets cytochrome oxidase (COX). With both isolated mitochondria and purified COX, A2E inhibits oxygen consumption synergistically with light. Inhibition is reversed by the addition of cytochrome c or cardiolipin, a negatively charged phospholipid that facilitates the binding of cytochrome c to membranes. Succinate dehydrogenase activity is not altered by A2E. We suggest that A2E can act as a proapoptotic molecule via a mitochondria-related mechanism, possibly through site-specific targeting of this cation to COX. Loss of RPE cell viability through inhibition of mitochondrial function might constitute a pivotal step toward the progressive degeneration of the central retina.  相似文献   

13.
A2E, an important constituent of lipofuscin in human retinal pigment epithelium (RPE), is thought to mediate light-induced oxidative damage associated with aging and other ocular disorders. Ocular carotenoids in overlying retinal tissues were measured by HPLC and mass spectrometry and were correlated with levels of RPE A2E. We observed a statistically significant increase in total A2E levels in human RPE/choroid with age, and A2E levels in macular regions were approximately 1/3 lower than in peripheral retinal regions of the same size. There was a statistically significant inverse correlation between peripheral retina carotenoids and peripheral RPE/choroid A2E. Prospective carotenoid supplementation studies in Japanese quail demonstrated nearly complete inhibition of A2E formation and oxidation. These findings support current recommendations to increase dietary intake of xanthophyll carotenoids in individuals at risk for macular degeneration and highlight a new potential mechanism for their protective effects—inhibition of A2E formation and oxidation in the eye.  相似文献   

14.
α-Phenyl-N-tert-butylnitrone (PBN), a free radical spin trap, has been shown previously to protect retinas against light-induced neurodegeneration, but the mechanism of protection is not known. Here we report that PBN-mediated retinal protection probably occurs by slowing down the rate of rhodopsin regeneration by inhibiting RPE65 activity. PBN (50 mg/kg) protected albino Sprague-Dawley rat retinas when injected 0.5-12 h before exposure to damaging light at 2,700 lux intensity for 6 h but had no effect when administered after the exposure. PBN injection significantly inhibited in vivo recovery of rod photoresponses and the rate of recovery of functional rhodopsin photopigment. Assays for visual cycle enzyme activities indicated that PBN inhibited one of the key enzymes of the visual cycle, RPE65, with an IC(50) = 0.1 mm. The inhibition type for RPE65 was found to be uncompetitive with K(i) = 53 μm. PBN had no effect on the activity of other visual cycle enzymes, lecithin retinol acyltransferase and retinol dehydrogenases. Interestingly, a more soluble form of PBN, N-tert-butyl-α-(2-sulfophenyl) nitrone, which has similar free radical trapping activity, did not protect the retina or inhibit RPE65 activity, providing some insight into the mechanism of PBN specificity and action. Slowing down the visual cycle is considered a treatment strategy for retinal diseases, such as Stargardt disease and dry age-related macular degeneration, in which toxic byproducts of the visual cycle accumulate in retinal cells. Thus, PBN inhibition of RPE65 catalytic action may provide therapeutic benefit for such retinal diseases.  相似文献   

15.
In the aging human eye, oxidative damage and accumulation of pro-oxidant lysosomal lipofuscin cause functional decline of the retinal pigment epithelium (RPE), which contributes to age-related macular degeneration. In mice with an RPE-specific phagocytosis defect due to lack of αvβ5 integrin receptors, RPE accumulation of lipofuscin suggests that the age-related blindness we previously described in this model may also result from oxidative stress. Cellular and molecular targets of oxidative stress in the eye remain poorly understood. Here we identify actin among 4-hydroxynonenal (HNE) adducts formed specifically in β5(-/-) RPE but not in neural retina with age. HNE modification directly correlated with loss of resistance of actin to detergent extraction, suggesting cytoskeletal damage in aging RPE. Dietary enrichment with natural antioxidants, grapes or marigold extract containing macular pigments lutein/zeaxanthin, was sufficient to prevent HNE-adduct formation, actin solubility, lipofuscin accumulation, and age-related cone and rod photoreceptor dysfunction in β5(-/-) mice. Acute generation of HNE adducts directly destabilized actin but not tubulin cytoskeletal elements of RPE cells. These findings identify destabilization of the actin cytoskeleton as a consequence of a physiological, sublethal oxidative burden of RPE cells in vivo that is associated with age-related blindness and that can be prevented by consuming an antioxidant-rich diet.  相似文献   

16.
A2E and related toxic molecules are part of lipofuscin found in the retinal pigment epithelial (RPE) cells in eyes affected by Stargardt’s disease, age-related macular degeneration (AMD), and other retinal degenerations. A novel therapeutic approach for treating such degenerations involves slowing down the visual cycle, which could reduce the amount of A2E in the RPE. This can be accomplished by inhibiting RPE65, which produces 11-cis-retinol from all-trans-retinyl esters. We recently showed that phenyl-N-tert-butylnitrone (PBN) inhibits RPE65 enzyme activity in RPE cells. In this study we show that like PBN, certain PBN-derivatives (PBNDs) such as 4-F-PBN, 4-CF3-PBN, 3,4-di-F-PBN, and 4-CH3-PBN can inhibit RPE65 and synthesis of 11-cis-retinol in in vitro assays using bovine RPE microsomes. We further demonstrate that systemic (intraperitoneal, IP) administration of these PBNDs protect the rat retina from light damage. Electroretinography (ERG) and histological analysis showed that rats treated with PBNDs retained ~90% of their photoreceptor cells compared to a complete loss of function and 90% loss of photoreceptors in the central retina in rats treated with vehicle/control injections. Topically applied PBN and PBNDs also significantly slowed the rate of the visual cycle in mouse and baboon eyes. One hour dark adaptation resulted in 75–80% recovery of bleachable rhodopsin in control/vehicle treated mice. Eye drops of 5% 4-CH3-PBN were most effective, inhibiting the regeneration of bleachable rhodopsin significantly (60% compared to vehicle control). In addition, a 10% concentration of PBN and 5% concentration of 4-CH3-PBN in baboon eyes inhibited the visual cycle by 60% and by 30%, respectively. We have identified a group of PBN related nitrones that can reach the target tissue (RPE) by systemic and topical application and slow the rate of rhodopsin regeneration and therefore the visual cycle in mouse and baboon eyes. PBNDs can also protect the rat retina from light damage. There is potential in developing these compounds as preventative therapeutics for the treatment of human retinal degenerations in which the accumulation of lipofuscin may be pathogenic.  相似文献   

17.
Autosomal recessive Stargardt macular dystrophy is caused by mutations in the photoreceptor disc rim protein ABCA4/ABCR. Key clinical features of Stargardt disease include relatively mild rod defects such as delayed dark adaptation, coupled with severe cone defects reflected in macular atrophy and central vision loss. In spite of this clinical divergence, there has been no biochemical study of the effects of ABCA4 deficiency on cones vs. rods. Here we utilize the cone-dominant Abca4(-/-)/Nrl(-/-) double knockout mouse to study this issue. We show that as early as post-natal day (P) 30, Abca4(-/-)/Nrl(-/-) retinas have significantly fewer rosettes than Abca4(+/+)/Nrl(-/-) retinas, a phenotype often associated with accelerated degeneration. Abca4-deficient mice in both the wild-type and cone-dominant background accumulate more of the toxic bisretinoid A2E than their ABCA4-competent counterparts, but Abca4(-/-)/Nrl(-/-) eyes generate significantly more A2E per mole of 11-cis-retinal (11-cisRAL) than Abca4(-/-) eyes. At P120, Abca4(-/-)/Nrl(-/-) produced 340 ± 121 pmoles A2E/nmol 11-cisRAL while Abca4(-/-) produced 50.4 ± 8.05 pmoles A2E/nmol 11-cisRAL. Nevertheless, the retinal pigment epithelium (RPE) of Abca4(-/-)/Nrl(-/-) eyes exhibits fewer lipofuscin granules than the RPE of Abca4(-/-) eyes; at P120: Abca4(-/-)/Nrl(-/-) exhibit 0.045 ± 0.013 lipofuscingranules/μm2 of RPE vs. Abca4(-/-) 0.17 ± 0.030 lipofuscingranules/μm2 of RPE. These data indicate that ABCA4-deficient cones simultaneously generate more A2E than rods and are less able to effectively clear it, and suggest that primary cone toxicity may contribute to Stargardt's-associated macular vision loss in addition to cone death secondary to RPE atrophy.  相似文献   

18.
ABCA4, also known as ABCR or the rim protein, is a member of the ABCA subfamily of ATP binding cassette (ABC) transporters expressed in vertebrate rod and cone photoreceptor cells and localized to outer segment disk membranes. ABCA4 is organized in two tandem halves, each consisting of a transmembrane segment followed successively by a large exocytoplasmic domain, a multispanning membrane domain, and a nucleotide-binding domain. Over 400 mutations in ABCA4 have been linked to Stargardt macular degeneration and related retinal degenerative diseases that cause severe vision loss in affected individuals. Direct binding studies and ATPase activation measurements have identified N-retinylidene-phosphatidylethanolamine, a product generated from the photobleaching of rhodopsin, as the substrate for ABCA4. Mice deficient in ABCA4 accumulate phosphatidylethanolamine, all-trans retinal, and N-retinylidene-phosphatidylethanolamine in photoreceptors and the diretinal pyridinium compound A2E in retinal pigment epithelial cells. On the basis of these studies, ABCA4 is proposed to actively transport or flip N-retinylidene-phosphatidylethanolamine from the lumen to the cytoplasmic side of disc membranes following the photobleaching of rhodopsin. This transport activity insures that retinoids do not accumulate in disc membranes. Disease-linked mutations in ABCA4 that result in diminished transport activity lead to an accumulation of all-trans retinal and N-retinylidene-PE in disc membranes which react to produce A2E precursors. A2E progressively accumulates as lipofuscin deposits in retinal pigment epithelial cells as a result of phagocytosis of outer segment discs. A2E and photo-oxidation products cause RPE cell death and consequently photoreceptor degeneration resulting in a loss in vision in individuals with Stargardt macular degeneration and other retinal degenerative diseases associated with mutations in ABCA4.  相似文献   

19.
Kopitz J  Holz FG  Kaemmerer E  Schutt F 《Biochimie》2004,86(11):825-831
In people over 50, age-related macular degeneration (ARMD) has become the most common cause for severe visual loss and legal blindness in all industrialized nations. Currently, there is no effective treatment for the majority of patients. To develop new and effective modes of therapy, understanding of the molecular basis of the disease in mandatory. However, the pathogenesis of ARMD is still poorly understood. Several lines of evidence suggest that aging changes of the retinal pigment epithelium (RPE), in particular the accumulation of autofluorescent lipofuscin granules in the lysosomal compartment of postmitotic RPE cells, play a key role in the pathogenesis of the disease. Recent studies indicate that lipidic compounds of lipofuscin, represented by the retinoid A2-E, and protein damage by lipid peroxidation products, in particular malondialdehyde and 4-hydroxynonenal, induce lysosomal dysfunction and lipofuscinogenesis in the RPE. The possible mechanisms underlying this lysosomal dysfunction and the resulting adverse effects on overall RPE function are discussed.  相似文献   

20.
Autophagy is an evolutionarily conserved catabolic mechanism that relieves cellular stress by removing/recycling damaged organelles and debris through the action of lysosomes. Compromised autophagy has been implicated in many neurodegenerative diseases, including retinal degeneration. Here we examined retinal phenotypes resulting from RPE-specific deletion of the autophagy regulatory gene Atg7 by generating Atg7flox/flox;VMD2-rtTA-cre+ mice to determine whether autophagy is essential for RPE functions including retinoid recycling. Atg7-deficient RPE displayed abnormal morphology with increased RPE thickness, cellular debris and vacuole formation indicating that autophagy is important in maintaining RPE homeostasis. In contrast, 11-cis-retinal content, ERGs and retinal histology were normal in mice with Atg7-deficient RPE in both fasted and fed states. Because A2E accumulation in the RPE is associated with pathogenesis of both Stargardt disease and age-related macular degeneration (AMD) in humans, deletion of Abca4 was introduced into Atg7flox/flox;VMD2-rtTA-cre+ mice to investigate the role of autophagy during A2E accumulation. Comparable A2E concentrations were detected in the eyes of 6-month-old mice with and without Atg7 from both Abca4−/− and Abca4+/+ backgrounds. To identify other autophagy-related molecules involved in A2E accumulation, we performed gene expression array analysis on A2E-treated human RPE cells and found up-regulation of four autophagy related genes; DRAM1, NPC1, CASP3, and EIF2AK3/PERK. These observations indicate that Atg7-mediated autophagy is dispensable for retinoid recycling and A2E deposition; however, autophagy plays a role in coping with stress caused by A2E accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号