首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Generalization is a common symptom of many anxiety disorders, and females are 60% more likely to suffer from an anxiety disorder than males. We have previously demonstrated that female rats display significantly accelerated rates of contextual fear generalization compared to male rats; a process driven, in part, by activation of ERβ. The current study was designed to determine the impact of estrogens on contextual fear generalization in male rats. For experiment 1, adult male rats were gonadectomized (GDX) and implanted with a capsule containing testosterone proprionate, estradiol, dihydrotestosterone proprionate (DHT), or an empty capsule. Treatment with testosterone or estradiol maintained memory precision when rats were tested in a different (neutral) context 1 day after training. However, male rats treated with DHT or empty capsules displayed significant levels of fear generalization, exhibiting high levels of fear in the neutral context. In Experiment 2, we used acute injections of gonadal hormones at a time known to elicit fear generalization in female rats (e.g. 24 h before testing). Injection treatment followed the same pattern of results seen in Experiment 1. Finally, animals given daily injections of the aromatase inhibitor, Fadrozole, displayed significant fear generalization. These data suggest that testosterone attenuates fear generalization likely through the aromatization testosterone into estradiol as animals treated with the non-aromatizable androgen, DHT, or animals treated with Fadrozole, displayed significant generalized fear. Overall, these results demonstrate a sex-dependent effect of estradiol on the generalization of contextual fear.  相似文献   

2.
Hormones highly influence female behaviors. However, research on this topic has not usually considered the variable hormonal status. The prelimbic cortex (PrL) is commonly engaged in fear learning. Connections from and to this region are known to be critical in regulating anxiety, in which serotonin (5-HT) plays a fundamental role, particularly through changes in 5-HT1A receptors functioning. Also, hormone fluctuations can greatly influence anxiety in humans and anxiety-related behavior in rodents, and this influence involves the functioning of 5-HT brain systems. The present investigation sought to determine whether fluctuations in ovarian hormones relative to the estrous cycle would influence the expression of learned fear in female rats previously selected as low- (LA) or high-anxious (HA). Furthermore, we investigate the role of the 5-HT system of the PrL, particularly the 5-HT1A receptors, as a possible modulator of estrous cycle influence on the expression of learned fear through intra-PrL microinjections of 5-HT itself or the full 5-HT1A agonist 8-OH-DPAT (8-hydroxy-2-(di-n-propylamine)tetralin). Behavioral changes were assessed using the fear-potentiated startle (FPS) procedure. The results showed that fear intensity is associated with hormonal decay, being more accentuated during the estrus phase. This increase in fear levels was found to be negatively correlated with the expression of potentiated startle. In rats prone to anxiety and tested during the proestrus and estrus phases, 5-HT mechanisms of the PrL seem to play a regulatory role in the expression of learned fear. These results were not replicated in the LA rats. Similar but less intense results were found regarding the early and late diestrus. Our data indicate that future studies on this subject need to take into account the dissociation between low- and high-responsive females to understand how hormones affect emotional behavior.  相似文献   

3.
The prenatally stressed (PS) rat shows enhanced conditioned fear and increased behavioral inhibition in response to footshock compared to control (CON) rats. It is unclear whether this facilitated learning will occur only with aversive stimulation, or if it will also be observed in the context of positive reinforcement. There are limited and inconsistent data regarding sex differences and the impact of prenatal stress on learning. The present study was designed to examine lever-press acquisition with a 10-s delay to food reinforcement in male and female PS and CON rats. Overall, twice as many PS male rats acquired the lever-press response than the PS female rats, CON male rats, and CON female rats. PS male rats also earned significantly more reinforcers and responded on the operative lever at a significantly greater rate than the other three rat groups. These findings suggest that PS rats exhibit altered learning with a task involving positive reinforcement, and this effect of PS is sex specific for male rats.  相似文献   

4.

Methamphetamine (meth) use is often comorbid with anxiety disorders, with both conditions predominant during adolescence. Conditioned fear extinction is the most widely used model to study the fear learning and regulation that are relevant for anxiety disorders. The present study investigates how meth binge injections or meth self-administration affect subsequent fear conditioning, extinction and retrieval in adult and adolescent rats. In experiment 1, postnatal day 35 (P35—adolescent) and P70 (adult) rats were intraperitoneally injected with increasing doses of meth across 9 days. At P50 or P85, they underwent fear conditioning followed by extinction and test. In experiments 2a–c, P35 or P70 rats self-administered meth for 11 days then received fear conditioning at P50 or P85, followed by extinction and test. We observed that meth binge exposure caused a significant disruption of extinction retrieval in adult but not adolescent rats. Interestingly, meth self-administration in adolescence or adulthood disrupted acquisition of conditioned freezing in adulthood. Meth self-administration in adolescence did not affect conditioned freezing in adolescence. These results suggest that intraperitoneal injections of high doses of meth and meth self-administration have dissociated effects on fear conditioning and extinction during adulthood, while adolescent fear conditioning and extinction are unaffected.

  相似文献   

5.
Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.  相似文献   

6.
The first two weeks of life are a critical period for hippocampal development. At this time gonadal steroid exposure organizes sex differences in hippocampal sensitivity to activational effects of steroids, hippocampal cell morphology and hippocampus dependent behaviors. Our laboratory has characterized a robust sex difference in neonatal neurogenesis in the hippocampus that is mediated by estradiol. Here, we extend our knowledge of this sex difference by comparing the male and female hippocampus to the androgen insensitive testicular feminized mutant (Tfm) rat. In the neonatal Tfm rat hippocampus, fewer newly generated cells survive compared to males or females. This deficit in cell genesis is partially recovered with the potent androgen DHT, but is more completely recovered following estradiol administration. Tfm rats do not differ from males or females in the level of endogenous estradiol in the neonatal hippocampus, suggesting other mechanisms mediate a differential sensitivity to estradiol in male, female and Tfm hippocampus. We also demonstrate disrupted performance on a hippocampal-dependent contextual fear discrimination task. Tfm rats generalize fear across contexts, and do not exhibit significant loss of fear during extinction exposure. These results extend prior reports of exaggerated response to stress in Tfm rats, and following gonadectomy in normal male rats.  相似文献   

7.
The developing brain undergoes substantial maturation into adulthood and the development of specific neural structures occurs on differing timelines. Transient imbalances between developmental trajectories of corticolimbic structures, which are known to contribute to regulation over fear learning and anxiety, can leave an individual susceptible to mental illness, particularly anxiety disorders. There is a substantial body of literature indicating that the endocannabinoid (eCB) system critically regulates stress responsivity and emotional behavior throughout the life span, making this system a novel therapeutic target for stress‐ and anxiety‐related disorders. During early life and adolescence, corticolimbic eCB signaling changes dynamically and coincides with different sensitive periods of fear learning, suggesting that eCB signaling underlies age‐specific fear learning responses. Moreover, perturbations to these normative fluctuations in corticolimbic eCB signaling, such as stress or cannabinoid exposure, could serve as a neural substrate contributing to alterations to the normative developmental trajectory of neural structures governing emotional behavior and fear learning. In this review, we first introduce the components of the eCB system and discuss clinical and rodent models showing eCB regulation of fear learning and anxiety in adulthood. Next, we highlight distinct fear learning and regulation profiles throughout development and discuss the ontogeny of the eCB system in the central nervous system, and models of pharmacological augmentation of eCB signaling during development in the context of fear learning and anxiety.  相似文献   

8.
The effects of ultra low power pulse-width + modulation electromagnetic radiation (EMR, power density 10 mc/Wt/cm2, carrying frequency 915 MHz, modulating pulses with frequency 4, 6, 16 and 20 Hz, duration 10 min) on the rat emotional behavior and motor activity in the elevated plus-maze were studied. It was established that EMR (frequency of modulation 4 and 6 Hz) significantly decreased the emotionally negative reactions of anxiety and fear by a factor of 3.7 (p < 0.01) and 4.5 (p < 0.01) correspondingly and increased by a factor of 1.9-2.2 (p < 0.05) exploratory activity. On the contrary EMR (frequency of modulation 20 Hz) significantly increased by a factor of (p < 0.05) emotionally negative reactions of anxiety and fear and decreased by a factor of 1.8 (p < 0.05) the exploratory activity in rats.  相似文献   

9.
10.
RationaleAffective disorders are twice as likely to occur in women as they are in men suggesting a critical role for gonadal hormones in their etiology. In particular, testosterone has been shown to have protective effects in men.ObjectiveTo investigate antidepressant effects and interactions between testosterone and imipramine in socially isolated male and female rats.MethodsA chronic social isolation model was used to induce an anxiety and depressive-like state in adult gonadectomized (Gnx) male and ovariectomized (Ovx) female rats receiving chronic testosterone and imipramine treatments. Their anxiety and depression-like behaviors were examined using the light–dark box, elevated plus maze, open field, sucrose preference and novelty induced hypophagia tests.ResultsIn socially isolated rats, the anxiolytic and antidepressant effects of testosterone and imipramine were limited to male rats. Additionally, testosterone enhanced the neurogenic effect of imipramine on hippocampal cell proliferation in male rats. Although female rats exhibited signs of anxiety and depressive-like behaviors following social isolation, testosterone and/or imipramine administration had no anxiolytic or antidepressant effects in Ovx females.ConclusionsTestosterone and imipramine had anxiolytic and antidepressant effects in socially isolated male, but not female rats. Testosterone enhanced the effect of imipramine on cell proliferation in the hippocampus of male rats.  相似文献   

11.
Bisphenol A (BPA) is an endocrine disrupting agent that can alter the normal gonadal steroid-sensitive sexual differentiation of the brain and behavior. While reproductive behavior and physiology are known to be altered by perinatal exposure to this compound, less is known about BPA's effects on sex differences in learning and measures of affect. In order to evaluate the effects of perinatal BPA treatment on learning and affect in adulthood, we exposed rats to one of five doses of BPA through gestation and lactation then examined adult behavior in the Morris Water Maze (MWM), the Elevated Plus Maze (EPM) and the Forced Swim Test (FST). No effect of BPA was observed in the MWM, but on both the EPM and FST, low doses (5 μg/kg) of BPA eliminated sex differences found between controls; furthermore, a non-monotonic dose-response observed in previous studies was confirmed for these tasks. Overall, our study adds to the growing data suggesting that BPA interferes with the normal development of affective behaviors in a non-linear, dose-dependent manner.  相似文献   

12.
Exposure of rats to footshocks leads to an enduring behavioral state involving generalized fear responses and avoidance. Recent evidence suggests that the expression of negative emotional behaviors produced by a stressor is in part mediated by dynorphin and its main receptor, the kappa opioid receptor (KOR). The purpose of this study was to determine if a subcutaneous injection of the long-acting KOR antagonist norbinaltorphimine (norBNI; 15.0 and 30.0 mg/kg) given 2 days after an acute exposure of rats to footshooks (5×2 s episodes of 1.5 mA delivered over 5 min) attenuates the expression of lasting fear and anxiety. We report that exposure of rats to acute footshock produced long-lasting (>4 weeks) fear (freezing) and anxiety (avoidance of an open area in the defensive withdrawal test). The 30 mg dose of norBNI attenuated the fear expressed when shock rats were placed in the shock context at Day 9 but not Day 27 post-shock. The same dose of norBNI had no effect on the expression of generalized fear produced when shock rats were placed in a novel chamber at Days 8 and 24. In contrast, the 30 mg dose of norBNI produced consistent anxiolytic effects in shock and nonshock rats. First, the 30 mg dose was found to decrease the latency to enter the open field in the defensive withdrawal test done 30 days after the shock exposure. Second, the same high dose also had anxiolytic effects in both nonshock and shock rats as evidence by a decrease in the mean time spent in the withdrawal box. The present study shows that systemic injection of the KOR antagonist norBNI had mixed effect on fear. In contrast, norBNI had an anxiolytic effect which included the attenuation of the enhanced avoidance of a novel area produced by a prior shock experience.  相似文献   

13.
Sex differences in the prevalence of affective disorders might be attributable to different sex hormone milieu. The effects of short-term sex hormone deficiency on behavior, especially on anxiety have been studied in numerous animal experiments, mainly on young adult rats and mice. However, sex differences in aged animals and the effects of long-term hypogonadism are understudied. The aim of our study was to analyze sex differences in anxiety-like behavior in aged rats and to prove whether they can be attributed to endogenous sex hormone production in males. A battery of tests was performed to assess anxiety-like behavior in aged female, male and gonadectomized male rats castrated before puberty. In addition, the aged gonadectomized male rats were treated with a single injection of estradiol or testosterone or supplemented with estradiol for two-weeks. Female rats displayed a less anxious behavior than male rats in most of the conducted behavioral tests except the light-dark box. Long-term androgen deficiency decreased the sex difference in anxiety either partially (open field, PhenoTyper cage) or completely (elevated plus maze). Neither single injection of sex hormones, nor two-week supplementation of estradiol in gonadectomized aged male rats significantly affected their anxiety-like behavior in the elevated plus maze. In conclusion, our results confirm sex differences in anxiety in aged rats likely mediated by endogenous testosterone production in males. Whether long-term supplementation with exogenous sex hormones could affect anxiety-like behavior in elderly individuals remains to be elucidated.  相似文献   

14.
The cholinergic system is a critical regulator of Pavlovian fear learning and extinction. As such, we have begun investigating the cholinergic system's involvement in individual differences in cued fear extinction using a transgenic ChAT::Cre rat model. The current study extends behavioral phenotyping of a transgenic ChAT::Cre rat line by examining both freezing behavior and ultrasonic vocalizations (USVs) during a Pavlovian cued fear learning and extinction paradigm. Freezing, 22 kHz USVs, and 50 kHz USVs were compared between male and female transgenic ChAT::Cre+ rats and their wildtype (Cre-) littermates during fear learning, contextual and cue-conditioned fear recall, cued fear extinction, and generalization to a novel tone. During contextual and cued fear recall ChAT::Cre+ rats froze slightly more than their Cre- littermates, and displayed significant sex differences in contextual and cue-conditioned freezing, 22 kHz USVs, and 50 kHz USVs. Females showed more freezing than males in fear recall trials, but fewer 22 kHz distress calls during fear learning and recall. Females also produced more 50 kHz USVs during exposure to the testing chambers prior to tone (or shock) presentation compared with males, but this effect was blunted in ChAT::Cre+ females. Corroborating previous studies, ChAT::Cre+ transgenic rats overexpressed vesicular acetylcholine transporter immunolabeling in basal forebrain, striatum, basolateral amygdala, and hippocampus, but had similar levels of acetylcholinesterase and numbers of ChAT+ neurons as Cre- rats. This study suggests that variance in behavior between ChAT::Cre+ and wildtype rats is sex dependent and advances theories that distinct neural circuits and processes regulate sexually divergent fear responses.  相似文献   

15.
Neuropeptide S (NPS) is a neuropeptide involved in the regulation of fear. Because safety learning is impaired in patients suffering from anxiety‐related psychiatric disorders, and polymorphisms of the human neuropeptide S receptor (NPSR) gene have also been associated with anxiety disorders, we wanted to investigate whether NPSR‐deficiency interferes with safety learning, and how prior stress would affect this type of learning. We first investigated the effect of pre‐exposure to two different types of stressors (electric stimuli or immobilization) on safety learning in female and male C57Bl/6 mice, and found that while stress induced by electric stimuli enhanced safety learning in males, there were no differences in safety learning following immobilization stress. To further investigate the role of the NPS system in stress‐induced modulation of safety learning, we exposed NPSR‐deficient mice to stress induced by electric stimuli 10 days before safety learning. In nonstressed male mice, NPSR‐deficiency enhanced safety learning. As in male C57Bl/6 mice, pre‐exposure to electric stimuli increased safety learning in male NPSR +/+ mice. This pre‐exposure effect was blocked in NPSR‐deficient male mice showing impaired, but still intact, safety learning in comparison to their NPSR +/+ and NPSR +/? littermates. There was neither a pre‐exposure nor a genotype effect in female mice. Our findings provide evidence that pre‐exposure to stress induced by electric stimuli enhances safety learning in male mice, and that NPSR‐deficiency prevents the beneficial effect of stress exposure on safety learning. We propose an inverted U‐shape relationship between stress and safety learning.  相似文献   

16.
This study investigated the effects of maternal separation in C57BL/6 male and female mice during infancy on later adult fear and anxiety behaviors. Additionally, we observed the maternal behavior of the dams to examine aspects of maternal care that may be modulated by daily bouts of separation. In males, mice that experienced maternal separation during the neonatal period displayed significantly higher levels of anxiety and fear behavior, as measured by the open field test and elevated plus maze, compared to control, standard facility reared males. In females, however, maternal separation reduced anxiety and fear behavior in the open field test, but only when the females were in the diestrous phase of their estrous cycle. The 30-min daily observation of the dams revealed that the separation did not significantly alter the frequency of the maternal care provided by the dam at the time point measured. These results indicate that the emotionality of adult male and female mice can be modulated by maternal separation. However, this effect is dependent on the sex of the offspring and the phase of the estrous cycle of the female.  相似文献   

17.
Sex-related peculiarities of dynamics of brain sex steroids in the process of learning and extinction of the conditioned reflex of passive avoidance have been studied in model experiment. Prior to learning of the conditioned reflex, female rats were found to be distinguished by manifestation of anxiety and fear as compared with male rats. At formation of the conditioned reflex, no significant sex-related differences were detected between males and females, whereas extinction of the conditioned reaction of passive avoidance in males occurred by 2–3 days faster than in females. At learning of conditioned reaction of passive avoidance, in sexually mature male rats there was revealed an increase of the testosterone content in various brain structures, especially in hippocampus and frontal cortex, while its level in blood plasma remained unchanged. Also shown was an elevation of estradiol concentration in female amygdale, whereas at extinction of the conditioned reaction of passive avoidance, a rise of estradiol values was noted in hippocampus and cingular cortex. At the same time, the testosterone level in blood plasma did not change, whereas after extinction of the conditioned reflex the estradiol concentration decreased statistically significantly. Different dynamics of changes of the sex steroid levels in brain and blood plasma can indicate a possibility of their formation in the nervous tissue. The performed correlation analysis confirms the concept of selective involvement of testosterone and estradiol of individual brain structures in realization of processes of learning and memory in sexually mature male and female rats.  相似文献   

18.
Estrogen may have differing effects on 'anxiety' responses under different conditions. The current study tested the effects of estrogen on anxiety-like behavior when administered for 6-7 days in ovariectomized (OVX) female rats. Two animal paradigms were utilized; the elevated plus maze (EPM), measuring changes in innate fear of exploration of open spaces; and the social interaction test (SIT), measuring the exploration of a novel, same gender partner. In the EPM, estradiol-treated OVX females both entered and spent more time in the open arms than control OVX females, indicating an anxiolytic-like action of estradiol. In contrast, estradiol treated OVX females interacted less with the partner animal in the SIT compared with controls suggesting anxiogenic-like effects. The possible anxiogenic effect of estradiol in the SIT is supported by two findings: (1) the effect is reversed by the anxiolytic drug alprazolam and (2) estrogen did not affect locomotion and therefore, the reduced social interaction is not due to reduced activity. Acute administration of progesterone (5 mg/kg), which has anxiolytic properties, did not reverse estradiol-induced social interaction deficits, suggesting that lack of progesterone did not account for estradiol's anxiogenic effects. These results, while seemingly contradictory when interpreted within a unified concept of anxiety, may well reflect the ethological roles of reproductive hormones and their effects on different types of exploratory anxiety.  相似文献   

19.
Aromatase activity is higher in the male than in the female anterior hypothalamic-preoptic area (POA) in both the avian and the rodent adult brain. This sex difference is abolished after castration of the male and restored by androgen treatment. Gonadectomy has no effect on POA aromatase in the female. The aim of this study was to find out whether sex dimorphism in adult POA aromatase is only due to a sex difference in circulating gonadal hormones or dependent upon sexual differentiation of the brain. Aromatase activity was measured in vitro in microdissected POA samples using a sensitive radiometric assay. We examined the effects of gonadectomy and testosterone treatment on enzyme activity in adult rats and doves of both sexes. We also studied the effects of neonatal gonadectomy and hormone substitution in male and female rats. The results suggest that levels of POA aromatase in the adult depend primarily on gonadal activity, but that mechanisms involved in the regulation of aromatase and enzyme induction may be sex-specific and could result from sexual differentiation of the brain in early life. Further work will be required to determine the developmental stage when this occurs and the exact mechanism(s) responsible for increased sensitivity of the adult male POA to the inductive effect of testosterone.  相似文献   

20.
Aromatase activity is higher in the male than in the female anterior hypothalamic-preoptic area (POA) in both the avian and the rodent adult brain. This sex difference is abolished after castration of the male and restored by androgen treatment. Gonadectomy has no effect on POA aromatase in the female. The aim of this study was to find out whether sex dimorphism in adult POA aromatase is only due to a sex difference in circulating gonadal hormones or dependent upon sexual differentiation of the brain. Aromatase activity was measured in vitro in microdissected POA samples using a sensitive radiometric assay. We examined the effects of gonadectomy and testosterone treatment on enzyme activity in adult rats and doves of both sexes. We also studied the effects of neonatal gonadectomy and hormone substitution in male and female rats. The results suggest that levels of POA aromatase in the adult depend primarily on gonadal activity, but that mechanisms involved in the regulation of aromatase activity and enzyme induction may be sex-specific and could result from sexual differentiation of the brain in early life. Further work will be required to determine the developmental stage when this occurs and the exact mechanism(s) responsible for increased sensitivity of the adult male POA to the inductive effect of testosterone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号