首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of HeLa cell DNA topoisomerase I by ATP and phosphate.   总被引:3,自引:0,他引:3       下载免费PDF全文
The relaxation activity of DNA topoisomerase I from HeLa cell nuclei is strongly inhibited by a variety of purine nucleotides in the presence but not absence of 1 mM potassium phosphate. For ATP, 3-4 mM causes nearly complete inhibition. The 2'-and 3'-AMP isomer are active as well in the presence of 1 mM phosphate, but the 5'-AMP isomer and adenosine are inert. At 3 mM ATP, the titration curve for phosphate is sigmoidal with inhibition beginning abruptly at about 0.5 mM. The negatively-supercoiled DNA isolated from an "inhibited" reaction is relaxed as well as the standard DNA template in the absence of ATP and phosphate suggesting that inhibition does not result from an alteration of the template which protects against its relaxation. Relaxation of positively-supercoiled DNA is also inhibited. Catalysis by E. coli DNA topoisomerase I and HeLa DNA topoisomerase II is not inhibited at concentrations of ATP and phosphate sufficient to cause 80-90% inhibition of HeLa type 1 enzyme.  相似文献   

2.
1-Methylnicotinamide, a direct methylation product of nicotinamide, stimulates the DNA synthesis and proliferation of rat liver cells (RLC) in culture at concentrations higher than 20 μM. The effect of nicotinamide, which is a potent inhibitor of DNA synthesis and proliferation, is counteracted by 1-methylnicotinamide. The intracellular NAD concentration decreases within 2 h under 1-methylnicotinamide, whereas it increases in the presence of nicotinamide. The poly(ADP-ribose) synthesizing activity in the isolated nuclei remained unchanged. These results suggest a physiological role of 1-methylnicotinamide in the cell growth through a lowering of intracellular NAD level.  相似文献   

3.
The activity of DNA polymerase alpha and beta was assayed in heated HeLa S3 cells as well as in nuclei isolated from these cells. The enzyme activity as measured in cells and in nuclei has been compared with the extent of cell survival after the different hyperthermic doses. It was found that although the activity of the cellular DNA polymerases was related to cell survival after single heat doses, no correlation was found when thermotolerant cells were heated. When the activity of the DNA polymerases was determined in nuclei isolated from non-heated and heated cells, more polymerase activity was found in the nuclei of the heated cells. However, the heat sensitivity of DNA polymerase activity was the same for nuclei isolated from control, pre-heated and thermotolerant cells. Heat protection of polymerase activity by erythritol and sensitization by procaine was found when cells, but not when nuclei, were heated in the presence of these modifiers. It is concluded that (the nuclear bound) DNA polymerases are not to be considered as key enzymes in cellular heat sensitivity of HeLa S3 cells.  相似文献   

4.
To analyze the function of the laminin-binding protein precursor p40 (LBP-p40) in higher eukaryotic cells, plasmid DNA expressing antisense or sense cDNA for p40 under the control of the LacSwitch system was introduced into HeLa cells. Stable transformants were isolated, and the expression of p40 was assayed by Western and Northern blotting. The expression level of p40 was not affected in HeLa cell transformants cultured in 10% serum-supplemented media with the induction of antisense (AS)-p40 with 5 mM IPTG. However, both the protein and message for endogenous p40 in serum-depleted media with 5 mM IPTG were reduced to about 30 - 10% of the expression level in serum-free media without 5 mM IPTG. Colony formation was inhibited with the suppression of p40. AS-p40 clones died in 7 days when cultured in serum-depleted media with 5 mM IPTG, while clones without 5 mM IPTG AS-p40 clones never died, even in serum-depleted media. Additionally, sense (S)-p40 clones and control CAT clones survived more than 2 weeks in serum-free media with 5 mM IPTG. DNA fragmentation assay revealed that cell death induced by the reduction of AS-p40 resulted from apoptosis. Both the inhibition of cell growth and apoptotic cell death were partially rescued by the transfer of the p40 cDNA expression vector to AS-p40 clones. Moreover, the introduction of a synthetic hammerhead ribozyme for LBP-p40 using a fusigenic viral liposome suppressed the message for LBP-p40 even in the presence of 10% serum, and it also induced apoptosis.  相似文献   

5.
The application of DNA flow cytometry (FCM) for analysis of sodium butyrate-induced intercellular adhesion in human carcinoma (HeLa S3) cell cultures is described. To prepare cell suspensions for FCM, the monolayers of cells were treated with medium containing 10% serum, 0.2% non-ionic detergent Triton X-100 and 1 μg/ml DNA fluorochrome 4,6′-diamidino-2-phenylindole (DAPI). Total numbers of single cells, and aggregates containing two, three, four or more cells, were determined from DNA histograms. In cultures treated with 5 mM butyrate for 16 h, more than 80% of the cells were aggregated. Intercellular adhesion began to appear 8 h after addition of butyrate, was maximal at 16–24 h and stable in the presence of butyrate, but disappeared 24 h after its removal. Treatment with EDTA (0.2%) dissociated only 50%, whereas trypsin (0.1%) separated all cell aggregates into single cells. Actinomycin D (actD) (0.5 μg/ml) prevented cell adhesion while blocking of cells in S phase with 250 μM 5-fluorouracil or 10 μM methotrexate did not interfere with aggregation. The number of cell aggregates estimated from DNA histograms of butyrate-treated HeLa S3 cultures was the same after staining with DAPI in the presence of Triton X-100 or after vital staining with Hoechst 33342. The DNA content was used as a marker to estimate the cellular composition of aggregates in mixed cultures of HeLa S3 cells and human fibroblasts (U cells). Intercellular adhesion in these cultures was seen only between HeLa S3 cells, indicating specificity of butyrate-induced cell aggregation. FCM provides fast automatic measurement of cell aggregate formation, estimates frequency of aggregates containing different cell numbers, shows participation of cells at different cycle phases in aggregates, and allows the detection of homotypic from heterotypic cell aggregates if the interacting cells have different DNA ploidy.  相似文献   

6.
The nuclei of Plasmodium yoelii nigeriensis contain an enzyme, ADP-ribosyltransferase, that will incorporate the ADP-ribose moiety of NAD+ into acid-insoluble product. The time, pH and temperature optima of this incorporation are 30 min, 8.5 and 25 degrees C respectively. Maximum stimulation of the enzyme activity is obtained with 1.0 mM-dithiothreitol or 2.0 mM-2-mercaptoethanol. Ca2+ and Mg2+ ions at optimum concentrations of 5 mM and 10 mM respectively stimulated the activity of the enzyme by 21% and 91%. The enzyme activity is, however, inhibited by 24% in the presence of 10 mM-MnSO4. The substrate, NAD+, exhibits an apparent Km of 500 microM, and the activity of the enzyme is inhibited by four chemical classes of inhibitors: nicotinamides, methylxanthines, thymidine and aromatic amides. The inhibitors are effective in the following increasing order: nicotinamide less than 3-aminobenzamide less than thymidine less than 5-methylnicotinamide less than theophylline less than m-methoxybenzamide less than theobromine. The enzyme activity is also inhibited by some DNA-binding anti-malarial drugs.  相似文献   

7.
The role of topoisomerase enzymes in the response of HeLa S3 cells to ionizing radiation was investigated. Exposure of cells to 100 Gy of X-radiation had no detectable effect either on the total cellular topoisomerase activity as measured by the relaxation of supercoiled plasmid DNA by cell sonicates or on the total cellular topoisomerase II activity as measured by plasmid DNA catenation. Total topoisomerase II activity remained constant for up to 90 min after cell irradiation. The effect of 2 drugs (caffeine and novobiocin) which inhibit topoisomerase II activity on the HeLa cell response to radiation was determined. Both drugs were found to inhibit topoisomerase II in vitro and to inhibit the recovery of nucleoid sedimentation in irradiated cells in vivo to the same extent. Topoisomerase II was inhibited by 50% by exposure to 10 mM caffeine and 0.79 mM novobiocin. At low concentrations neither drug affected the induction frequency, nor the rejoining rate, of DNA double-strand breaks. Caffeine (5 mM) inhibited the short-term recovery of cells from radiation while novobiocin (0.79 mM) had no detectable effect on the capacity of cells to recover from radiation exposure. The results indicate that topoisomerase II is not required for DNA double-strand break rejoining though it could be required for the recovery of DNA coiling in the irradiated cell. If topoisomerase II is involved at all in cell recovery from irradiation, this role does not apparently involve an ATP-dependent enzyme activity.  相似文献   

8.
The effect of 3-aminobenzamide, a potent inhibitor of poly(ADP-ribosyl)ation, on UV-induced DNA excision repair was investigated. HeLa cells were treated with DNA replication inhibitors, hydroxyurea (HU) and 1-beta-D-arabinofuranosyl cytosine (araCyt), before and after ultraviolet light (UV) irradiation, to accumulate DNA single-strand breaks. The activity of poly(ADP-ribosyl)ation measured in the permeable cell system of HeLa cells was enhanced in a UV dose-dependent manner after the combined treatment with HU and araCyt in vivo. However, DNA repair synthesis in vitro was not affected by addition of 1 mM 3-aminobenzamide or nicotinamide, while incorporation of [3H]NAD in the same system was completely inhibited. Furthermore, neither the magnitude of UV-induced DNA single-strand breaks accumulated by the combined treatment of HU and araCyt nor the rate of their rejoining after release from the HU and araCyt block were influenced even in the presence of 10 mM 3-aminobenzamide. As the cytotoxicity of UV irradiation was significantly potentiated by 5 mM 3-aminobenzamide, these results suggest that poly(ADP-ribosyl)ation is involved in a process other than DNA excision repair induced by UV irradiation.  相似文献   

9.
Endogenous forms of the protein B23 were for the first time isolated from HeLa cell nuclei and their structural states were analyzed. It was demonstrated that incubation of HeLa cell nuclei in 10 mM Tris-HCl buffer (pH 7.4) led, not only to their swelling, but also to the release of several nuclear proteins, including the protein B23. PAGE of the supernatant fraction allowed nine major stained protein bands to be detected; the bands were identified by MALDI mass spectrometry (matrix-assisted laser desorption and ionization). The proteins in the range of 35-40 kDa were identified as nucleophosmin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1. Analysis of the N- and C-terminal amino acid sequences showed the presence of the isoforms B23.1 and B23.2, GAPDH, and the isoform hnRNP B1 and made it possible to describe the C- and N- terminal processing patterns and demonstrate the presence of isoform B23.2 at a protein level.  相似文献   

10.
The synchronization effects of the plant amino acid mimosine on proliferating higher eukaryotic cells are still controversial. Here, I show that 0.5 mM mimosine can induce a cell cycle arrest of human somatic cells in late G1 phase, before establishment of active DNA replication forks. The DNA content of nuclei isolated from mimosine-treated cells was determined by flow cytometry. The presence or absence of DNA replication forks in these isolated nuclei was then detected by DNA replication run-on assays in vitro. Treatment of asynchronously proliferating HeLa or EJ30 cells for 24 h with 0.5 mM mimosine resulted in a population synchronized in late G1 phase. S phase entry was inhibited by 0.5 mM mimosine in cells released from a block in mitosis or from quiescence. When added to early S phase cells, 0.5 mM mimosine did not prevent S phase transit, but delayed progression through late stages of S phase after a lag of 4 h, eventually resulting in a G1 phase population by preventing entry into the subsequent S phase. In contrast, lower concentrations of mimosine (0.1-0.2 mM) failed to prevent S phase entry, resulting in cells containing active DNA replication foci. The G1 phase arrest by 0.5 mM mimosine was reversible upon mimosine withdrawal. This synchronization protocol using 0.5 mM mimosine can be exploited for studying the initiation of human DNA replication in vitro.  相似文献   

11.
Endogenous forms of the protein B23 were for the first time isolated from HeLa cell nuclei and their structural states were analyzed. It was demonstrated that incubation of HeLa cell nuclei in 10 mM Tris-HCl buffer (pH 7.4) led, not only to their swelling, but also to the release of several nuclear proteins, including the protein B23. PAGE of the supernatant fraction allowed nine major stained protein bands to be detected; the bands were identified by MALDI mass spectrometry (matrix-assisted laser desorption and ionization). The proteins in the range of 35–40 kDa were identified as nucleophosmin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1. Analysis of the N- and C-terminal amino acid sequences showed the presence of the isoforms B23.1 and B23.2, GAPDH, and the isoform hnRNP B1 and made it possible to describe the C-and N-terminal processing patterns and demonstrate the presence of isoform B23.2 at a protein level.  相似文献   

12.
The induction of premature chromosome condensation in an interphase cell immediately following fusion with a mitotic cell suggests the presence of factors in the mitotic cell that are responsible for the transformation of an interphase nucleus into prematurely condensed chromosomes (PCC). Several lines of evidence suggest that these factors are proteins present in the cytoplasm of mitotic cells. The objective of this study was to raise antibodies to the factors responsible for PCC. Cytosol from synchronized mitotic HeLa cells was injected into rabbits in order to obtain antiserum. The IgG fraction from this antiserum reacted with 98% of mitotic HeLa cells when tested by indirect immunofluorescence. Most of the fluorescence was localized on the chromosomes. About 5% of the interphase nuclei also reacted with the antiserum, but 50% of these cells were in early G1. Antigenic reactivity was induced in the condensing interphase chromatin in 31% of the interphase nuclei found in mitotic-interphase fused cells. Rodent cells did not react with the antibody by indirect immunofluorescence. Mitotic HeLa cells were able to induce antigenic reactivity in 23 % of interphase Chinese hamster ovary (CHO) cell nuclei in fused binucleate cells, whereas the converse was not true of mitotic CHO cells. Enzyme digestion and incubation with denaturing agents suggested that antigenic reactivity depended on a DNA-non-histone protein complex.  相似文献   

13.
The mode of [14C]lnicotinamide conversion to NAD and 1-methylnicotinamide and the effects of exogenous 1-methylnicotinamide on this metabolic conversion were studied using rat livers slices incubated in a chemically defined culture medium. It was shown that at the physiological nicotinamide concentrations tested (11–500 μM), 1-methylnicotinamide is preferentially produced, rather than NAD. Upon increasing nicotinamide concentration to the levels that cause cytotoxicity (1–10 mM and higher), the rate of NAD synthesis dramatically increased and reached a level 6-fold higher than that of 1-methylnicotinamide. A dose-dependent inhibition (up to 60%) of NAD synthesis was seen by the exogenous addition of 1-methylnicotinamide; the degree of inhibition is affected also by the concentrations of nicotinamide present as a precursor. A large depletion of intracellular ATP, associated with a marked accumulation of NAD, occurred in slices in response to the addition of high amounts of nicotinamide. However, loss of ATP was overcome, when nicotinamide was given together with 1-methylnicotinamide. Finally, 1-methylnicotinamide per se was proven active in regulating cell growth by comparing the cytosolic activity of 1-methylnicotinamide oxidation of cultured RLC cells with that of rat liver. Thus, the previously observed growth stimulation of hepatic cells by 1-methylnicotinamide can reasonably been explained by its ATP-sparing effect due to the inhibition of NAD synthesis, a reaction which requires ATP.  相似文献   

14.
The mode of [14C]nicotinamide conversion to NAD and 1-methylnicotinamide and the effects of exogenous 1-methylnicotinamide on this metabolic conversion were studied using rat liver slices incubated in a chemically defined culture medium. It was shown that at the physiological nicotinamide concentrations tested (11-500 microM), 1-methylnicotinamide is preferentially produced, rather than NAD. Upon increasing nicotinamide concentration to the levels that cause cytotoxicity (1-10 mM and higher), the rate of NAD synthesis dramatically increased and reached a level 6-fold higher than that of 1-methylnicotinamide. A dose-dependent inhibition (up to 60%) of NAD synthesis was seen by the exogenous addition of 1-methylnicotinamide; the degree of inhibition is affected also by the concentration of nicotinamide present as a precursor. A large depletion of intracellular ATP, associated with a marked accumulation of NAD, occurred in slices in response to the addition of high amounts of nicotinamide. However, the loss of ATP was overcome, when nicotinamide was given together with 1-methylnicotinamide. Finally, 1-methylnicotinamide per se was proven active in regulating cell growth by comparing the cytosolic activity of 1-methylnicotinamide oxidation of cultured RLC cells with that of rat liver. Thus, the previously observed growth stimulation of hepatic cells by 1-methylnicotinamide can reasonably been explained by its ATP-sparing effect due to the inhibition of NAD synthesis, a reaction which requires ATP.  相似文献   

15.
S Kassis 《Biochemistry》1985,24(20):5666-5672
Exposure of HeLa cells to 5 mM sodium butyrate, but not 0.6 mM, resulted in a more efficient coupling between their beta-adrenergic receptors and the guanine nucleotide binding stimulatory (Ns) component of adenylate cyclase. Both concentrations of the fatty acid, however, caused an increase in receptor number. beta receptors from control and butyrate-treated cells had the same affinity for isoproterenol. Modulation of this affinity by GTP was greatly enhanced, however, in cells treated with 5 mM butyrate compared to untreated and 0.6 mM butyrate treated cells. The concentration of isoproterenol required to half-maximally stimulate adenylate cyclase (Kact) was reduced in cells treated with 5 mM butyrate. In addition, the Kact for GTP in the presence, but not the absence, of isoproterenol was reduced. The effect of butyrate on the coupling between beta receptors and Ns was analyzed in detail by monitoring the activation of Ns by guanine 5'-O-(3-thiotriphosphate) (GTP gamma S) in a two-step assay. In the absence of isoproterenol, Ns from control and 5 mM butyrate treated cells was activated to the same extent with the same time course and Kact for GTP gamma S. In the presence of isoproterenol, Ns from 5 mM butyrate treated cells was activated more rapidly and extensively than Ns from control cells. The Kact for both GTP gamma S and isoproterenol also was reduced. The rate of agonist-mediated activation of Ns was strongly dependent on temperature, which accentuated the differences between 5 mM butyrate treated and control cells. At 4 degrees C, the difference in rate was 8.8-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In a system containing isolated HeLa cell nuclei the release of RNA from the nuclei may be paralleled with the antagonistic process, i. e., RNA translocation into the nuclei. The RNA release from the nuclei depends on incubation time, pH, Mg2+ and nucleoside triphosphate concentration. The rate of reverse transport depends on pH, size of RNA to be translocated and the physiological state of the nuclear membrane. Low molecular weight RNAs (less than 10 S) are translocated into the nuclei most effectively. The nuclei of synchronized HeLa cells in the G1-period are more "permeable" for translocated RNA as compared with the S-phase HeLa cell nuclei.  相似文献   

17.
Isolated nuclei from HeLa cells synthesize dCDP-diglyceride from dCTP at the rapid rate of 5–10 nmol/20 min/108 nuclei. The incorporation of dCTP into this phospholipid precursor is thus 10 to 20 times faster than the incorporation of dCTP into DNA, in vitro, under the same conditions. ATP, phosphatidic acid, and MgCl2 are required for optimal synthesis of dCDP-diglyceride. The reaction is completely inhibited by the presence of 0.04% Triton N-101. Liponucleotide formation occurs equally well with dCTP or CTP in this system and competition studies suggest that a single enzyme catalyzes the formation of dCDP- and CDP-diglyceride.  相似文献   

18.
HeLa、HEK293、SH-SY5Y细胞中的Tau蛋白   总被引:3,自引:0,他引:3  
通过间接免疫荧光测定了HeLa、HEK-293、SH-SY5Y细胞内Tau蛋白的分布,观察到在细胞间期单克隆抗体Tau-1的荧光信号分布于细胞质和胞核中.特别是HeLa细胞,其胞核内具有相对较高的Tau蛋白免疫荧光信号.通过分离SH-SY5Y的细胞核,更为清楚地显示了Tau蛋白在细胞核中的分布,并且免疫荧光信号与DNA的Hoechst33258染色信号相重合.Western blotting的测定结果进一步证明了SH-SY5Y细胞的胞质和胞核中均含有Tau蛋白的不同异构体.以上结果提示,Tau蛋白不仅存在于神经、肌肉等细胞内,也存在于肿瘤细胞系,并且分布于间期的胞核中.  相似文献   

19.
An endoribonuclease has been isolated from HeLa cell nuclei. Approximately 70% of the enzyme appears to be nucleolar bound; 30% is in the nucleoplasm. Studies of the purified enzyme reveal that the enzyme is an endonuclease of estimated molecular weight 16,000. It produces oligonucleotides bearing 5'-phosphate end groups. The enzyme degrades poly(C) and poly(U), as well as rRNA and heterogeneous nuclear RNA, Poly(A), double-stranded RNA, and DNA are not cleaved. The enzyme is heat-labile and is inhibited by 10mM Mg2+ and 50 mM NaCl. The enzyme is probably distinct from previously described nuclear endonucleases.  相似文献   

20.
1. The effects of injecting nicotinamide, 5-methylnicotinamide, ethionine, nicotinamide+5-methylnicotinamide and nicotinamide+ethionine on concentrations in rat liver of NAD, NADP and ATP were investigated up to 5hr. after injection. 2. Nicotinamide induced three- to four-fold increases in hepatic NAD concentration even in the presence of 5-methylnicotinamide or ethionine, whereas 5-methylnicotinamide or ethionine alone did not cause marked changes in hepatic NAD concentration. 3. Nicotinamide alone also induced a twofold increase in hepatic NADP concentration. However, in the presence of 5-methylnicotinamide+nicotinamide, the NADP concentration decreased by 25% after 5hr., and in the presence of nicotinamide+ethionine by 30% in the same time. In the presence of 5-methylnicotinamide or ethionine alone hepatic NADP concentrations fell by 50% after 5hr. 4. 5-Methylnicotinamide inhibited the microsomal NAD(+) glycohydrolase (EC 3.2.2.6) by 60% at a concentration of 1mm and the NADP(+) glycohydrolase by 40% at the same concentration. 5. The rat liver NAD(+) kinase (EC 2.7.1.23) was found to have V(max.) 4.83mumoles/g. wet wt./hr. and K(m) (NAD(+)) 5.8mm. This enzyme was also inhibited by 5-methylnicotinamide in a ;mixed' fashion. 6. The results are discussed with respect to the control of NAD synthesis. It is suggested that in vivo the NAD(P)(+) glycohydrolases are effectively inactive and that the increased NAD concentrations induced by nicotinamide are due to increased substrate concentration available to both the nicotinamide and nicotinic acid pathways of NAD formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号