首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Respiratory Activity of Honeydew Melons During the Climacteric   总被引:1,自引:0,他引:1  
Honeydew melons are climacteric fruits showing a typical risein respiration at the onset of ripening. Using tissue discsit is shown that at the time of the climacteric peak the majorpart of respiration is accounted for by the tissue adjacentto the internal cavity. Respiratory activity of tissue nearthe rind is not maximal until after the climacteric. The rateof oxygen uptake by tissue discs is increased by the additionof succinate and ADP indicating respiration to be limited bya shortage of substrate. Mitochondria are more active when isolatedfrom post- than from preclimacteric fruit, although the degreeof coupling of oxidative phosphorylation is similar in bothcases. Mitochondria are largely insensitive to cyanide.  相似文献   

2.
Linamarase (EC. 3.2.1.21) was purified from different tissues of cassava (leaf, rind and tuber) to compare the kinetic properties and characteristics of the enzyme in these tissues. Purified enzyme preparation appeared as single band of average molecular size 70 kD in SDS-PAGE gels. The kinetic properties of linamarase with respect to pH and temperature indicated that tuber linamarase possessed a broader pH optimum and higher temperature stability as compared to leaf and rind enzymes. Differences in Km values for linamarin were observed with leaf linamarase having the highest Km value (500 μM) followed by rind (400 μM) and then tuber (250 μM) linamarases. Rind enzyme appeared to be less susceptible to urea denaturation than the leaf enzyme. Comparison of elution profiles from DEAE-Cellulose indicated that the relative amounts of the various ionic forms of the enzyme differed in the case of each tissue. Elution patterns of the enzyme from Con A-Sepharose also differed, suggesting difference in glycosylation among leaf, rind and tuber enzymes. This was confirmed by carbohydrate analysis which showed that the tuber linamarase contained significantly higher amount of protein bound carbohydrate. These results suggest the possible occurrence of different forms of linamarase in cassava.  相似文献   

3.
The hypothesis that cyanogenic potential in cassava is a defense mechanism against arthropod pests is one of the crucial questions relevant to current efforts to reduce or eliminate cyanogenic potential (CNP) in cassava. The generalist arthropod Cyrtomenus bergi, which attacks cassava roots, was used in a bioassay relating oviposition and survival to CNP, concentration of nonglycosidic cyanogens, and linamarase (beta-glycosidase) activity in twelve selfed cassava siblings and their parental clone, which has segregated for different levels of cyanogenesis. Electron microscopic evaluation revealed an intracellular pathway of the stylet of C. bergi in the cassava root tissue to rupture cell walls. This feeding behavior causes cyanogenesis and increased linamarin content in the hemolymph of C. bergi while feeding on a cyanogenic diet. This diet resulted in a significant reduction in oviposition, especially at levels of CNP above 150 ppm (expressed as hydrogen cyanide) on fresh weight basis (or 400 ppm on dry weight basis) in cassava roots. An exponential decline in oviposition was observed with increasing levels of CNP, beginning 12 d after exposure to the cyanogenic diet. Cyanogenic potential and dry matter content showed a positive effect on survival. No relationship was found between concentrations of nonglycosidic cyanogens or linamarase activity in the cassava root and either oviposition or survival. According to our results, there is a significant difference between potentially noncyanogen and high cyanogen clones, but there may not be a significant difference between potentially noncyanogen and low cyanogen clones. Consequently, more frequent outbreaks or higher levels of damage might not be anticipated in potentially noncyanogen cassava clones than that anticipated in low cyanogenic clones. The negative effect of cyanogenesis on oviposition concurrent with a positive effect on survival of this pest is most likely the result of a physiological trade-off between survival and oviposition. The question of whether ovipositional rates could be recovered after a long-term exposure to cyanide remains unanswered.  相似文献   

4.
5.
The cyanogenic potentials and residual cyanide contents of local cassava parenchyma and their locally processed food products in southeastern Nigeria were studied. Seven species of cassava locally grown and four main food products from them were analyzed colorimetrically for their cyanide contents. Results of the analyses indicated that five of the species contain cyanide potentials between 50 and 100 mg HCN/kg fresh weight while only one contains cyanogens level greater than 100 mg HCN/kg fresh weight. Of the cassava products analyzed, two contained cyanide above the level recommended by the WHO/FAO (10 mg HCN/kg). The result raises concern as these cassava products constitute about 80–90% of the diet of the local people and the facts known about cyanide poisoning from intake of high cyanide containing food.  相似文献   

6.
Twelve grapevine (Vitis vinifera L.) cultivars were surveyed for 'cyanide potential' (i.e. the total cyanide measured in beta-glucosidase-treated crude, boiled tissue extract) in mature leaves. Two related cultivars (Carignan and Ruby Cabernet) had mean cyanide potential (equivalent to 110 mgHCNkg-1fr.wt) ca. 25-fold greater than that of the other 10 cultivars, and so the trait is polymorphic in the species. In boiled leaf extracts of Carignan and Ruby Cabernet, free cyanide constituted a negligible fraction of the total cyanide potential because beta-glucosidase treatment was required to liberate the major cyanide fraction - which is therefore bound in glucosylated cyanogenic compound(s) (or cyanogenic glucosides). In addition, cyanide was liberated from ground leaf tissue of Ruby Cabernet but not Sultana (a cultivar with low cyanide potential). Hence, the high cyanide potential in Ruby Cabernet leaves is coupled with endogenous beta-glucosidase(s) activity and this cultivar may be considered 'cyanogenic'. A method was developed to detect and identify cyanogenic glucosides using liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). Two putative cyanogenic glucosides were found in extracts from leaves of Carignan and Ruby Cabernet and were identified as the epimers prunasin and sambunigrin. Cyanide potential measured at three times over the growing season in young and mature leaves, petioles, tendrils, flowers, berries, seeds and roots of Ruby Cabernet was substantially higher in the leaves compared with all other tissues. This characterisation of cyanogenic glucoside accumulation in grapevine provides a basis for gauging the involvement of the trait in interactions of the species with its pests and pathogens.  相似文献   

7.
The hypothesis that cyanogenic potential in cassava roots deters polyphagous insects in the field is relevant to current efforts to reduce or eliminate the cyanogenic potential in cassava. To test this hypothesis, experiments were conducted in the field under natural selection pressure of the polyphagous root feeder Cyrtomenus bergi Froeschner (Hemiptera: Cydnidae). A number of cassava varieties (33) as well as 13 cassava siblings and their parental clone, each representing a determined level of cyanogenic potential (CNP), were scored for damage caused by C. bergi and related to CNP and nonglycosidic cyanogens, measured as hydrogen cyanide. Additionally, 161 low-CNP varieties (< 50 ppm hydrogen cyanide, fresh weight) from the cassava germplasm core collection at Centro Internacional de Agricultura Tropical (CIAT) were screened for resistance/tolerance to C. bergi. Low root damage scores were registered at all levels of CNP. Nevertheless, CNP and yield (or root size) partly explained the damage in cassava siblings (r2 = 0.82) and different cassava varieties (r2 = 0.42), but only when mean values of damage scores were used. This relation was only significant in one of two crop cycles. A logistic model describes the underlying negative relation between CNP and damage. An exponential model describes the underlying negative relation between root size and damage. Damage, caused by C. bergi feeding, released nonglycosidic cyanogens, and an exponential model fits the underlying positive relation. Fifteen low-CNP clones were selected for potential resistance/tolerance against C. bergi.  相似文献   

8.
Manihot esculenta (cassava) is a root crop originating from South America that is a major staple in the tropics, including in marginal environments. This study focused on South American and African germplasm and investigated the genetic architecture of hydrogen cyanide (HCN), a major component of root quality. HCN, representing total cyanogenic glucosides, is a plant defense component against herbivory but is also toxic for human consumption. We genotyped 3354 landraces and modern breeding lines originating from 26 Brazilian states and 1389 individuals were phenotypically characterized across multi-year trials for HCN. All plant material was subjected to high-density genotyping using genotyping by sequencing. We performed genome-wide association mapping to characterize the genetic architecture and gene mapping of HCN. Field experiments revealed strong broad- and narrow-sense trait heritability (0.82 and 0.41, respectively). Two major loci were identified, encoding for an ATPase and a MATE protein, and contributing up to 7 and 30% of the HCN concentration in roots, respectively. We developed diagnostic markers for breeding applications, validated trait architecture consistency in African germplasm and investigated further evidence for the domestication of sweet and bitter cassava. Fine genomic characterization revealed: (i) the major role played by vacuolar transporters in regulating HCN content; (ii) the co-domestication of sweet and bitter cassava major alleles are dependent upon geographical zone; and (iii) the major loci allele for high HCN in M. esculenta Crantz seems to originate from its ancestor, M. esculenta subsp. flabellifolia. Taken together, these findings expand our insights into cyanogenic glucosides in cassava roots and its glycosylated derivatives in plants.  相似文献   

9.
10.
The respiration of thin aerated discs of potato tuber tissue rises sigmoidally through 24 h. Aged disc respiration is ostensibly resistant to concentrations of cyanide which inhibit the respiration of fresh discs. It has been shown that cyanide-resistant respiration does not represent indifference to the inhibitor, but is rather due to the suppression of one respiratory carbon path and the evocation of another. The predominant respiratory carbon path of aged discs in the absence of cyanide comprises glycolysis linked to the tricarboxylic acid cycle. The carbon path mediating the cyanide-induced respiration reflects tricarboxylic acid cycle-independent lipid degradation.

The respiratory substrate at any time was deduced by comparing the 13C/12C ratio of respired CO2, collected from discs in the presence or absence of cyanide, with the 13C/12C ratios characterizing endogenous potential metabolites. The determination of the predominant respiratory substrate in potato discs, which have an endogenous substrate reserve, proved possible because the relative concentrations of the stable carbon isotopes in endogenous compounds such as lipid and starch are widely different.  相似文献   


11.
Cyanogenic glucosides are amino acid-derived defence compounds found in a large number of vascular plants. Their hydrolysis by specific β-glucosidases following tissue damage results in the release of hydrogen cyanide. The cyanogenesis deficient1 (cyd1) mutant of Lotus japonicus carries a partial deletion of the CYP79D3 gene, which encodes a cytochrome P450 enzyme that is responsible for the first step in cyanogenic glucoside biosynthesis. The genomic region surrounding CYP79D3 contains genes encoding the CYP736A2 protein and the UDP-glycosyltransferase UGT85K3. In combination with CYP79D3, these genes encode the enzymes that constitute the entire pathway for cyanogenic glucoside biosynthesis. The biosynthetic genes for cyanogenic glucoside biosynthesis are also co-localized in cassava (Manihot esculenta) and sorghum (Sorghum bicolor), but the three gene clusters show no other similarities. Although the individual enzymes encoded by the biosynthetic genes in these three plant species are related, they are not necessarily orthologous. The independent evolution of cyanogenic glucoside biosynthesis in several higher plant lineages by the repeated recruitment of members from similar gene families, such as the CYP79s, is a likely scenario.  相似文献   

12.
The cyanogenic low-temperature basidiomycete (Coprinus psychromorbidus Redhead and Traquair), unlike other cyanide-tolerant fungi, does not detoxify cyanide via formamide hydro-lyase. Instead, tolerance apparently depends on cyanide-insensitive respiration involving activity of the mitochondrial alternative oxidase. Respiration and growth of young mycelium that lacks alternative oxidase activity are blocked both by cyanide and 1 mum antimycin. When activity of the alternative oxidase is elicited in young mycelium by 0.05 mm cyanide, subsequent treatment with antimycin stimulates respiration and fails to halt growth. Older mycelium becomes tolerant coincidentally with the release of cyanide by the mycelium. Tolerant older mycelium in medium containing 0.05 to 1.0 mum antimycin grows at 30 to 45% of the control rate. Cyanide- and antimycin-tolerant growth and respiration are blocked by salicyl hydroxamic acid, an inhibitor of the alternative oxidase, and by rotenone, which inhibits ATP synthesis at site I.  相似文献   

13.
14.
 The effects of fermentation of cassava by Aspergillus niger B-1 β-glucosidase on its cyanide and protein content, and the optimal conditions for this enzyme’s activity, were examined. This fermentation process reduced the cyanide content of cassava by 95% to 2 mg/kg, and increased its total protein content by 50%, thereby improving its nutritional value. A significant decrease in cyanogenic glycosides was detected after 3 days of fermentation. The optimal pH for A. nigerβ-glucosidase activity on the cyanogenic glycoside linamarin was determined to be 3, the optimal temperature 55 °C, and its K m 0.3 mM. The findings presented here will facilitate the development of an improved method for detoxification of cassava and for enhancement of its nutritional value. Received: 17 August 1995/Received revision: 27 October 1995/Accepted: 30 October 1995  相似文献   

15.
Cassava is the major source of calories for more than 250 million Sub-Saharan Africans, however, it has the lowest protein-to-energy ratio of any major staple food crop in the world. A cassava-based diet provides less than 30% of the minimum daily requirement for protein. Moreover, both leaves and roots contain potentially toxic levels of cyanogenic glucosides. The major cyanogen in cassava is linamarin which is stored in the vacuole. Upon tissue disruption linamarin is deglycosylated by the apolplastic enzyme, linamarase, producing acetone cyanohydrin. Acetone cyanohydrin can spontaneously decompose at pHs >5.0 or temperatures >35°C, or is enzymatically broken down by hydroxynitrile lyase (HNL) to produce acetone and free cyanide which is then volatilized. Unlike leaves, cassava roots have little HNL activity. The lack of HNL activity in roots is associated with the accumulation of potentially toxic levels of acetone cyanohydrin in poorly processed roots. We hypothesized that the over-expression of HNL in cassava roots under the control of a root-specific, patatin promoter would not only accelerate cyanogenesis during food processing, resulting in a safer food product, but lead to increased root protein levels since HNL is sequestered in the cell wall. Transgenic lines expressing a patatin-driven HNL gene construct exhibited a 2-20 fold increase in relative HNL mRNA levels in roots when compared with wild type resulting in a threefold increase in total root protein in 7 month old plants. After food processing, HNL overexpressing lines had substantially reduced acetone cyanohydrin and cyanide levels in roots relative to wild-type roots. Furthermore, steady state linamarin levels in intact tissues were reduced by 80% in transgenic cassava roots. These results suggest that enhanced linamarin metabolism contributed to the elevated root protein levels.  相似文献   

16.
Cassava (Manihot esculenta, Crantz) roots are the primary source of calories for more than 500 million people, the majority of whom live in the developing countries of Africa. Cassava leaves and roots contain potentially toxic levels of cyanogenic glycosides. Consumption of residual cyanogens (linamarin or acetone cyanohydrin) in incompletely processed cassava roots can cause cyanide poisoning. Hydroxynitrile lyase (HNL), which catalyses the conversion of acetone cyanohydrin to cyanide, is expressed predominantly in the cell walls and laticifers of leaves. In contrast, roots have very low levels of HNL expression. We have over-expressed HNL in transgenic cassava plants under the control of a double 35S CaMV promoter. We show that HNL activity increased more than twofold in leaves and 13-fold in roots of transgenic plants relative to wild-type plants. Elevated HNL levels were correlated with substantially reduced acetone cyanohydrin levels and increased cyanide volatilization in processed or homogenized roots. Unlike acyanogenic cassava, transgenic plants over-expressing HNL in roots retain the herbivore deterrence of cyanogens while providing a safer food product.  相似文献   

17.
18.
Diseases like tropical ataxic neuropathy and endemic goitre have been reported to have definite correlation with a chronic ingestion of cassava (Manihot esculenta Crantz). The toxicity of cassava has been attributed to its two cyanogenic glycosides, linamarin and lotaustralin. In this study, an attempt has been made to understand the pattern of changes in certain clinically significant enzymes brought about by the chronic administration of sublethal doses of linamarin to rabbits. The profound elevation in rhodanese activity observed in the linamarin and cyanide treated rabbits indicated the attempt of the tissues to detoxify cyanide. That intact linamarin could be hydrolysed in vivo was a significant finding from the study. The mode of toxicity of linamarin was similar to that of cyanide by producing a gradual shift from aerobic to anaerobic metabolism.  相似文献   

19.
Purified, right side-out plasmalemma vesicles were isolated from 7-day-old roots of dark-grown wheat ( Triticum aestivum L. cv. Drabant) by aqueous polymer two-phase partitioning. The oxygen consumption by these vesicles at pH 6.5 in the presence of 1 m M NADH [12–29 nmol (mg protein)−1min−1] was 66% inhibited by 1 m M KCN and ca 40% by 1 m M EDTA. It was unaffected by rotenone, antimycin A, carbonyl cyanide trifluoromethoxyphenylhydrazone (FCCP), mersalyl, chlorotetracycline + Ca2+, and EGTA. Salicylhydroxamic acid (SHAM) and its analogue, m -chlorobenzhydroxamic acid, stimulated the rate of oxygen consumption 10–20 fold in the presence of 1 m M NAD(P)H with an apparent Km (SHAM) of ca 40 μ M (with NADH). The dependence of O2 consumption on NADH concentration in the presence of SHAM (2 m M ) was sigmoidal, possibly due to endogenous catalase activity, and half-maximal rate was obtained at 1.5 m M . In the absence of SHAM the rate increased with increasing acidity and no pH optimum was detectable between pH 4.5 and 8.5. In the presence of SHAM an optimum was observed at pH 6.5 and 0.8 mol of H2O2 was produced for every 1 mol O2 consumed. Endogenous catalase converted this H2O2 to O2 and after complete conversion the stoichiometry was 2 mol NADH consumed for every mol O3. SHAM was not consumed in the reaction. The possible involvement of a cytochrome P-450/420 system is discussed.  相似文献   

20.
Spinach (Spinacia oleracea L.) leaf discs floating on buffer solution were treated with Kresoxim-methyl (KROM), an inhibitor of respiratory electron transport. In the leaf tissue, actual and maximal nitrate reductase (NR) activities, nitrite content and ATP levels were determined. In darkened leaf discs incubated without KROM (control) actual NR activity decreased to 20% after 6 h in the dark. Treatment with 10 μg ml−1 (corresponding to 32 μM) KROM totally prevented inactivation of NR in the dark and also diminished NR-protein degradation during prolonged darkness. Due to restricted nitrite reduction in darkened leaf tissues, nitrite accumulated in KROM-treated discs. Inhibition of respiration decreased ATP and increased AMP levels in KROM-treated discs. In illuminated leaf discs, NR was highly activated to 65%. Nevertheless, KROM-treatment caused an additional activation of NR (activation state 76%) in the light. Possible side-effects of KROM on nitrite reduction and photosynthesis were also checked in the leaf-disc system. Neither nitrite reduction nor photosynthesis were altered in KROM-treated discs. The extent of KROM-induced activation of NR was dependent on the applied concentration and on the pH of the external medium. The highest activation of NR was achieved at an external pH of 4.8, confirming previous results (Kaiser and Brendle-Behnisch, 1995, Planta 196: 1–6) that cytosolic acidification might play an important role in the modulation of NR activity. Received: 17 June 1998 / Accepted: 2 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号