首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prior to meiosis tapetal cells become binucleate, and callose deposition separates spore mother cells from each other. No cytomictic channels are present during meiosis. Cytokinesis is simultaneous, by furrowing. The primexine and a rudimentary exine are laid down while the microspores are still in tetrads. After callose dissolution the released microspores gradually become vacuolate and the exine becomes more complex and massive. During the tetrad stage tapetal walls are gradually lost and orbicules are deposited outside the plasmalemma. This continues after microspore release. Later, at the vacuolate microspore stage, the tapetal cells become amoeboid and intrude among the microspores. Tapetal dissolution occurs just prior to the appearance of large amounts of starch and lipids in the microspores.  相似文献   

2.
Each of the four microsporangia has three or four wall layers, a uninucleate tapetum of various cell shapes with nuclei that remain in prophase, and 12-24 pollen mother cells (PMCs). A sterile transverse septum sometimes bisects the microsporangium. PMCs secrete callose but not uniformly, and contact among them continues through meiosis. Simultaneous cytokinesis by furrowing isolates each microspore in callose, which later disperses. The separated microspores become vacuolate, undergo mitosis to become pollen, and later become filled with food reserves. Endothecial wall thickening and tapetal dissolution occur after pollen engorgement. Calcium oxalate crystals form in tapetal cells during the sporogenous stage, reach maximum size during early meiosis, and remain prominent until tapetal dissolution.  相似文献   

3.
运用焦锑酸钾沉淀法研究了华北落叶松(Larix principis-rupprechtii Mayr)小孢子发育过程中不同阶段Ca2 的分布情况.减数分裂时期,小孢子囊壁表皮和中层细胞的细胞壁及细胞间隙Ca2 分布较多,绒毡层只有外切向面的细胞膜有Ca2 分布,小孢子母细胞的各部位则很少有Ca2 ;四分体时期,包围四分小孢子的胼胝质壁上有大量的Ca2 分布,在四分孢子壁上也有较多沉淀;游离小孢子时期,钙离子在小孢子壁的分布较四分体时期有所减少,而到花粉成熟时又逐渐增多;从四分体到花粉成熟,乌氏体周围的Ca2 有增多的趋势.对四分体外壁Ca2 的大量分布与花粉壁的形成及信号物质在花粉表面贮存的关系,以及小孢子囊的外壁、绒毡层和乌氏体在Ca2 向花粉运输中所起的作用进行了讨论.  相似文献   

4.
On squash preparations of anthers from pollen fertile and sterile plants of sweet pepper (Capsicum annuum L. cv. Severka) callose envelopes of microsporocytes, stained specifically with resorcin blue, were investigated microscopically. During normal course of microsporogenesis in fertile plants the envelopes remained intact up to the stage of microspore tetrads. Then callose begins to dissolve, and that from individual microspores towards the envelope periphery. In sterile analogues of the same cultivar the callose breakdown occurred precociously, usually in the course of the second, but sometimes as early as the first meiotic division of PMCs. Having completed meiosis sporadic microsporocytes formed microspore tetrads. Most PMCs contained an undivided four-nucleate protoplast rimmed with a narrow or wider unstained zone of dissolved callose. In certain cases more condensed callose septa pointing to the furrows on the surface of the PMC protoplast were well-observable in this lytic zone, as a residuum of normal mechanism of tetradogenesis.  相似文献   

5.
采用焦锑酸钾沉淀钙离子技术,对洋葱(Alliumcepa)花药发育中Ca^2+分布进行了研究。在小孢子母细胞时期,小孢子母细胞中的钙沉淀颗粒很少,但绒毡层细胞的内切向壁已出现明显的钙沉淀颗粒。在四分体时期,四分体小孢子的胼胝质壁中出现较多的钙沉淀颗粒;绒毡层细胞内切向壁的钙沉淀颗粒消失,而在外切向壁和径向壁部位的钙沉淀颗粒增加。在小孢子早期,小孢子中也出现了钙沉淀颗粒,而绒毡层细胞内切向壁表面出现了很多絮状物,其上附有细小钙沉淀颗粒。到小孢子晚期,小孢子中出现一些小液泡,细胞质中的钙沉淀颗粒有所下降。此时绒毡层细胞已明显退化,但在绒毡层膜上仍有一些乌氏体和钙沉淀颗粒。在二胞花粉早期,营养细胞中的液泡收缩、消失,细胞质中又出现了较多的钙沉淀颗粒,在质体和其内部的淀粉粒表面上附有较多的钙沉淀颗粒。到二胞花粉晚期,花粉中的钙沉淀颗粒已明显下降,仅在花粉外壁中还有一地钙沉淀颗粒.  相似文献   

6.
芝麻(Sesamum indicum)核雄性不育系ms86-1姊妹交后代表现为可育、部分不育(即微粉)及完全不育(简称不育)3种类型。不同育性类型的花药及花粉粒形态差异明显。Alexander染色实验显示微粉植株花粉粒外壁为蓝绿色, 内部为不均一洋红色, 与可育株及不育株花粉粒的染色特征均不相同。为探明芝麻微粉发生机理, 在电子显微镜下比较观察了可育、微粉、不育类型的小孢子发育过程。结果表明, 可育株小孢子母细胞减数分裂时期代谢旺盛, 胞质中出现大量脂质小球; 四分体时期绒毡层细胞开始降解, 单核小孢子时期开始出现乌氏体, 成熟花粉时期花粉囊腔内及花粉粒周围分布着大量乌氏体, 花粉粒外壁有11–13个棱状凸起, 表面存在大量基粒棒, 形成紧密的覆盖层。不育株小孢子发育异常显现于减数分裂时期, 此时胞质中无脂质小球出现, 细胞壁开始积累胼胝质; 四分体时期绒毡层细胞未见降解; 单核小孢子时期无乌氏体出现; 成熟花粉时期花粉囊腔中未发现正常的乌氏体, 存在大量空瘪的败育小孢子, 外壁积累胼胝质, 缺乏基粒棒。微粉株小孢子在减数分裂时期可见胞质内有大量脂质小球, 四分体时期部分绒毡层发生变形, 单核小孢子时期有部分绒毡层开始降解; 绒毡层细胞降解滞后为少量发育进程迟缓的小孢子提供了营养物质, 部分小孢子发育为正常花粉粒; 这些花粉粒比较饱满, 表面有少量颗粒状突起, 但未能形成覆盖层, 花粉囊腔中及小孢子周围存在少量的乌氏体。小孢子形成的育性类型与绒毡层降解是否正常有关。  相似文献   

7.
越南篦齿苏铁小孢子发生及其系统学意义   总被引:3,自引:0,他引:3  
运用常规石蜡切片方法,结合显微荧光技术对越南篦齿苏铁Cycas elongata 小孢子发生和花粉个体发育进行了研究。结果表明:其小孢子叶球5月中下旬开始萌动,小孢子囊着生在小孢子叶远轴面,且3-5小孢子囊以辐射状排列方式聚生成聚合囊。小孢子囊壁由6-7层细胞组成,包括表皮、中层及绒毡层。绒毡层来源于成熟造孢组织的外围细胞,其退化形式为分泌型。6月中旬,小孢子母细胞进入减数分裂I,至6月下旬形成四分体。母细胞减数分裂后胞质分裂的方式与其他苏铁类植物不同,具有连续型与同时型两种类型。7月中旬,小孢子经过2次有丝分裂后,形成3细胞的成熟花粉粒。7月下旬进入散粉状态。在花粉发育过程中,母细胞内淀粉粒的积累及其壁上胼胝质的沉积均呈现规律性变化。  相似文献   

8.
We examined callase activity in anthers of sterile Allium sativum (garlic) and fertile Allium atropurpureum. In A. sativum, a species that produces sterile pollen and propagates only vegetatively, callase was extracted from the thick walls of A. sativum microspore tetrads exhibited maximum activity at pH 4.8, and the corresponding in vivo values ranged from 4.5 to 5.0. Once microspores were released, in vitro callase activity peaked at three distinct pH values, reflecting the presence of three callase isoforms. One isoform, which was previously identified in the tetrad stage, displayed maximum activity at pH 4.8, and the remaining two isoforms, which were novel, were most active at pH 6.0 and 7.3. The corresponding in vivo values ranged from pH 4.75 to 6.0. In contrast, in A. atropurpureum, a sexually propagating species, three callase isoforms, active at pH 4.8-5.2, 6.1, and 7.3, were identified in samples of microsporangia that had released their microspores. The corresponding in vivo value for this plant was 5.9. The callose wall persists around A. sativum meiotic cells, whereas only one callase isoform, with an optimum activity of pH 4.8, is active in the acidic environment of the microsporangium. However, this isoform is degraded when the pH rises to 6.0 and two other callase isoforms, maximally active at pH 6.0 and 7.3, appear. Thus, factors that alter the pH of the microsporangium may indirectly affect the male gametophyte development by modulating the activity of callase and thereby regulating the degradation of the callose wall.  相似文献   

9.
Using light, transmission and scanning electron microscopy, the development of the pollinium of Goodyera procera (Ker-Gawler) Hooker. was investigated. At the early stage, sporogenous cells inside the microsporangium were seen grouping together into small aggregates each containing few cells. After the aggregates have formed the sporogenous cells inside the aggregates (which could now be called massulae) divide to form numerous pollen mother cells. Later, the pollen mother cells undergo meiosis to form tetrads. The pattern of formation of the exine of tetrads varies according to the location of the tetrads inside the micro- sporangium. Those tetrads that are situated near the outer region of the massulae can form: exine with well developed tectum, bacula and foot layer; and the sequence of events leading to the formation of this type of well developed exine is as follows the original wall and the cyto- plasmic channels associated with the wall become surrounded by a thick layer of callose thus isolating the wall from the plasmalemma. Near the plasmalemma a layer of primexine containing callose and cellulose begins to form. Later, the primexine develops into exine and between the exine and plasmalemma a layer of intine is laid down. Similar type of exine with well developed tectum, bacula and foot layer, is also present in tetrads facing the tapetum. But in this case the original wall of the tedtrad is not retained but undergoes dissolution and in its place a new exine formed. The pattern of formation of exine in the region between tetrads is even more different. Here the original wall also undergoes dissolution but instead of forming a proper exine it only forms a thin foot layer with bulges at places. The pattern of formation of the exine in the cells inside the tetrad is even more different. Here the original wall of the cells only undergoes partial dissolution. The loose fibrils of the partially dissolved wall then become mixed with the callose layer surrounding the cell. Inside this wall-fibril/callose mixture thin sheets of exine appear, but these thin sheets of exine do not develop further into tectum or bacula. In Goodyera a quite substantial amount of callose is retained in the regions between massulae and tetrads, and we believe that it is this callose which is holding the massulae and tetrads together to form pollinium.  相似文献   

10.
以不同发育时期的凤仙花花药为实验材料,采用组织化学方法,对花药发育中的结构变化及多糖和脂滴物质分布进行观察。结果表明:(1)凤仙花的花药壁由6层细胞组成,包括1层表皮细胞,2层药室内壁细胞,2层中层细胞和1层绒毡层细胞。其中绒毡层细胞的形态不明显,很难与造孢细胞区分,且在小孢子母细胞时期退化。(2)在小孢子母细胞中出现了一些淀粉粒,但减数分裂后,早期小孢子中的淀粉粒消失,又出现了一些小的脂滴;随着花粉的发育,小孢子形成大液泡,晚期小孢子中的脂滴也消失;小孢子分裂形成二胞花粉后,营养细胞中的大液泡降解、消失,二胞花粉中又开始积累淀粉;接近开花时,成熟花粉中充满细胞质,其中包含了较多的淀粉粒和脂滴。(3)在凤仙花的花药发育中,绒毡层细胞很早退化,为小孢子母细胞和四分体小孢子提供了营养物质;其后的中层细胞退化则为后期花粉发育提供了营养物质。  相似文献   

11.
The quartet (qrt) mutants of Arabidopsis thaliana produce tetrad pollen in which microspores fail to separate during pollen development. Because the amount of callose deposition between microspores is correlated with tetrad pollen formation in other species, and because pectin is implicated as playing a role in cell adhesion, these cell-wall components in wild-type and mutant anthers were visualized by immunofluorescence microscopy at different stages of microsporogenesis. In wild-type, callose was detected around the pollen mother cell at the onset of meiosis and around the microspores during the tetrad stage. Microspores were released into the anther locule at the stage where callose was no longer detected. Deposition and degradation of callose during tetrad pollen formation in qrt1 and qrt2 mutants were indistinguishable from those in wild-type. Enzymatic removal of callose from wild-type microspores at the tetrad stage did not release the microspores, suggesting that callose removal is not sufficient to disperse the microspores in wild-type. Pectic components were detected in the primary wall of the pollen mother cell. This wall surrounded the callosic wall around the pollen mother cell and the microspores during the tetrad stage. In wild-type, pectic components of this wall were no longer detectable at the time of microspore release. However, in qrt1 and qrt2 mutants, pectic components of this wall persisted after callose degradation. This result suggests that failure of pectin degradation in the pollen mother cell wall is associated with tetrad pollen formation in qrt mutants, and indicates that QRT1 and QRT2 may be required for cell type-specific pectin degradation to separate microspores.  相似文献   

12.
Electron microscopy was used to study pollen wall ontogeny in Zea mays. The initial stage of development consisted of compartmentalization of microspores within callose special walls. Microspore plasma membranes retracted and tubular elements of the endoplasmic reticulum became perpendicularly oriented to the plasma membranes. Evaginations of the endoplasmic reticulum into the microspore plasma membrane resulted in the establishment of a template or blueprint of the mature pollen wall. Sporopollenin deposition upon the template began immediately after dissolution of the callose special walls and release of the microspores into the anther locule. The columellae were the first pollen wall units to be formed; the tectum and foot layer became established shortly thereafter. The granular endexine was the last-formed unit. The relationships of membrane systems to the ontogeny of the pollen wall units and the mode of pollen wall growth are discussed.  相似文献   

13.
Anther and pollen development in male-fertile and male-sterile green onions was studied. In the male-fertile line, both meiotic microspore mother ceils and tetrads have a callose wall. Mature pollen grains are 2-celled. The elongated generative cell with two bended ends displays a PAS positive cell wall. The tapetum has the character of both secretory and invasive types. From microspore stage onwards, many oil bodies or masses accumulate in the cytoplasm of the tapetal cells. The tapetum degenerates at middle 2-celled pollen stage. In male-sterile line, meiosis in microspore mother cells proceeds normally to form the tetrads. Pollen abortion occurs at microspore with vacuole stage. Two types of pollen abortion were observed. In type I, the protoplasts of the microspores contract and gradually disintegrate. At the same time the cytoplasm of microspores accumulates oil bodies which remain in the empty pollen. The tapetal cells behave normally up to the microspore stage and early stage of microspore abortion, but contain fewer oil bodies or masses than those in the male-fertilt line. At late stage of microspore abortion, three forms of the tapetal ceils can be observed: (1) the tapetal cells with degenerating protoplasts become flattened, (2) the tapetal cells enlarge but protoplasts retractor, (3) the cells break down and tile middle layer enlarges. In type Ⅱ, the cytoplasm degenerates earlier than the nucleus of the microspores and no protoplast is found in the anther locule. There are fibrous thickenings iii the endothecium of both types. It is difficult to verify whether the tapetum behavior and pollen abortion is the cause or the effect.  相似文献   

14.
WHITE  JULIE 《Annals of botany》1990,65(3):231-239
The development of the microspore mother cell walls in Actinidiadeliciosa (kiwifruit) has been studied using light and electronmicroscopy. The microspore mother cell wall is similar, histochemically,and structurally in anthers from both functionally staminateand functionally pistillate flowers. Deposition, which beginsduring early prophase I, produces an electron-dense multilaminatedwall layer (layer a) and by the end of meiosis I a thick electron-lucentlayer (layer b) to the inside of this multilayered wall. Thereasons for histochemical differences and similarities betweenthese layers are discussed. The original primary wall persistsuntil the late uninucleate microspore stage. Layer (b), whichis probably mainly callose, dissolves at the late tetrad/earlymicrospore stage while layer (a), which probably also containsother polysaccharides, persists and dissolves concurrently withthe primary wall. Actinidia deliciosa, kiwifruit, microspore mother cell wall, callose, histochemistry, light microscopy, electron microscopy, male sterility  相似文献   

15.
This paper describes megasporogenesis, microsporogenesis, and development of female and male gametophytes in Eleutherococcus senticosus. The main results are as follows: Flowers of E. senticosus are epigynous, pentamerous. Anthers are 4 -microsporangiate. An ovary has 5 loculi. Each ovary loculus has 2 ovules: the upper ovule and the lower ovule. The upper one is orthotropous and degenerates after the formation of archesporial cell, while the lower one is anatropous, unitegmic and crassinucellar, and able to continue developing. In male plants, microsporogenesis and development of male gametophytes took place in regular way, but a series of abnormal phenomena were found in megasporogenesis and development of female gametophytes. The microspore mother cells gave rise to tetrahedral tetrads by meiosis. Cytokinesis was of the simultaneous type. The mature pollen was 3-celled and shed singly. The anther wall formation belonged to the dicotyledonous type. At the stage of microspore mother cell, the anther wall consisted of four layers, i.e. epidermis, endothecium, middle layer, and tapetum. The tapetum was of glandular type and its most cells were binucleate. When microspores were at the uninucleate stage, the tapetum began to degenerate in situ. When microspores developed into 3-celled pollen grains, the tapetum had fully degenerates. In the lower ovule of male flower, the megaspore mother cell gave rise to a linear or “T” -shaped tetrad. In some cases, a new archesporial cell over the tetrad or two tetrads parallel or in a series were observed. Furthermore, the position of functional megaspore was variable; any one or two megaspores might be functional, or one megaspore gave rise to a uninucleate embryo sac, but two other megaspores also had a potentiality of developing into the embryo sac. In generally, on the day when flowers opened, female gametophytes contained only 4 cells: a central cell, two irregular synergids and one unusual egg cell. In female plants, microspore mother cells and secondary sporogenous cells were observed. But at the stage of secondary sporogenous cell, the newly differentiated tapetum took the appearance of degeneration. Later, during the whole stage of meiosis, the trace of degenerative tapetum could be seen. At last, the microsporangium degenerated and no tetrad formed. On the blossom day, all anthers shriveled without pollen grains. In female flowers, megasporogenesis and development of female gametophytes were normal: the tetrad of megaspores was linear or “T”-shaped; the chalazal megaspore was usually functional; the development of embryo sac was of the Polygonum type. On the blossom day, most embryo sacs consisted of 7 cells with 8 nuclei or 7 cells with 7 nuclei; but the egg apparatus was not fully developed. In hermaphroditic plants, microsporogenesis was normal but the development of male gametophytes was partially abnormal. When the hermaphroditic flowers blossomed, there were more or less empty pollen grains in the microsporangium and these pollen grains were quite different in size. The development of most gynoecia was normal but numerous abnormal embryo sacs could be seen. On the blossom day, female gametophytes were mainly 7-celled with 8-nuclei or with 7-nuclei or 4-celled with antipodal cells degenerated; the egg apparatus wasnot fully developed either.  相似文献   

16.
七叶树小孢子发生及雄配子体发育研究   总被引:1,自引:0,他引:1  
用石蜡切片法观察了七叶树花药的发育过程.结果表明:(1)雄蕊花药四室,花药壁完全分化时,从外到内依次是表皮、药室内壁、中层和绒毡层,花药壁发育为基本型.表皮细胞1层,发育过程中始终存在;药室内壁在花药成熟时形成带状纤维层加厚;幼小花药壁的中层3~4层细胞,在花药发育成熟时退化消失;绒毡层1层细胞,发育类型为分泌型,小孢子母细胞减数分裂时绒毡层开始退化解体,花药成熟完全消失,仅剩1层绒毡层膜.每一花药中有多列雄性孢原细胞,发生于幼小花药表皮下方;(2)小孢子母细胞减数分裂为同时型,四分体多呈正四面体排列;减数分裂过程中,小孢子母细胞外方被胼胝质壁所包被,小孢子形成后胼胝质壁逐渐消失.成熟花粉二细胞型,外形呈圆三角状,具三孔沟.  相似文献   

17.
Cytoplasmic male sterility (CMS) in sunflower anthers is compared with its normal (N) line by using light and electron microscopy. Degeneration and disintegration of CMS tapetum and microspore tetrads occur after meiosis II, resulting in sterility. At the onset of meiosis, the CMS tapetum enlarges radially and shows signs of disorganization of organelles and walls. The developing CMS meiocytes and tetrads of microspores do not show these abnormalities when compared with their N counterparts. The CMS microspore tetrads remain viable until a rudimentary exine forms around each microspore. At this time, the radially enlarged tapetum disintegrates, followed by disintegration of the tetrads. In N-line microsporogenesis, a peripheral, dense tapetum is present at the tetrad stage, and as each locule enlarges, free spaces occur around the tetrads. After a rudimentary exine with associated spines and colpi is formed around each microspore, the callose holding each tetrad together dissolves, freeing the microspores for further development. Eventually the binucleate tapetum becomes plasmodial, persisting until the vacuolate pollen stage.  相似文献   

18.
水鬼蕉(Hymenocallis littoralis)花药发育中,脂滴的积累和分布具有明显的特点。在花药中部的造孢细胞中积累了很多脂滴。在形成胼胝质壁的小孢子母细胞中仍有大量脂滴的分布;与此同时,在花药壁绒毡层细胞中的脂滴也明显增加,而在其他药壁细胞中出现了少量淀粉粒。在四分体时期,四分体小孢子形态不规则,依然含有大量脂滴。在小孢子早期,形态不规则的小孢子开始形成花粉外壁,细胞质中的脂滴明显减少;绒毡层细胞外形变得不规则,内部仍含较多脂滴。在小孢子晚期,小孢子形成许多液泡,小孢子变为圆形,在花粉外壁内侧出现红色多糖成分;此时,绒毡层细胞降解,在退化细胞残迹中仍有较多脂滴。在二胞花粉早期,花粉粒中的液泡逐渐消失,脂滴数量又明显增加;而绒毡层细胞残迹变为很大的脂滴。水鬼蕉成熟花粉为二胞型,其中积累了大量的脂滴作为花粉储存物。  相似文献   

19.
Barley microspores from five field-grown breeding lines were isolated using an ultra-speed blender and the effect of co-culture with young florets was investigated. Floret co-culture in the induction stage increased the formation of MCS, ELS and green plant regeneration. The florets of teraploid plant were more effective than ones of diploid plant. For line S23, co-culture with florets from tetraploid plants gave rise to 2.6 and 7.8 times more MCS and ELS, respectively, than non-co-culture control, whereas co-culture with florets from diploid plants resulted in 1.8 and 6.1 times more MCS and ELS, respectively, than non-co-culture control (Table 2). Florets subjected to cold treatment for 10–20 days induced a greater response than fresh ones, and florets with uninucleate microspores surpassed binucleate microspores. For microspores culture from 15-day cold pre-treated spikes, 93A floret co-culture gave rise to 3.6 and 6.8 times more MCS and ELS, respectively, than the non-co-cultured control, while SD1 floret co-culture resulted in 1.9 and 4.0 times more, respectively. Similarly, for microspore culture from 20-day cold pre-treated spikes, 93A floret co-culture gave rise to 2.6 and 5.1 times more MCS and ELS, respectively, than non-co-cultured control, while SD1 floret co-culture resulted in 1.5 and 3.0 times more, respectively (Table 3). Some microspores formed dense MCS that did not develop further. Compared with the control, floret co-culture resulted in less dense MCS formation, indicating that the isolated florets were beneficial to the normal development of MCS. Floret co-culture was only effective when the spikes were cold pre-treated before microspore isolation. Spike cold pre-treatment before microspore preparation was crucial for dedifferentiation of cultured isolated microspores, and this could not be replaced by floret co-culture. It is postulated that the florets provided essential substances for in vitro cultured isolated microspores to undergo dedifferentiation and embryogenesis. Both the genotype selection and the physiological status (developmental status and cold treatment) adjustment of the florets for co-culture could improve barley microspore culture. Compared with ovary co-culture, floret co-culture is more efficient. The technique is of simple application in breeding programs and can be a solution for coping with recalcitrant genotypes and or plant donor condition.  相似文献   

20.
Wan L  Zha W  Cheng X  Liu C  Lv L  Liu C  Wang Z  Du B  Chen R  Zhu L  He G 《Planta》2011,233(2):309-323
Plant β-1,3-glucanases are involved in plant defense and development. In rice (Oryza sativa), 14 genes encoding putative β-1,3-glucanases have been isolated and sequenced. However, only limited information is available on the function of these β-1,3-glucanase genes. In this study, we report a detailed functional characterization of one of these genes, Osg1. Osg1 encodes a glucanase carrying no C-terminal extension. Osg1 was found to be expressed throughout the plant and highly expressed in florets, leaf sheaths, and leaf blades. Investigations using real-time PCR, immunocytochemical analysis, and a GUS-reporter gene driven by the Osg1 promoter indicated that Osg1 was mainly expressed at the late meiosis, early microspore, and middle microspore stages in the florets. To elucidate the role of Osg1, we suppressed expression of the Osg1 gene by RNA interference in transgenic rice. The silencing of Osg1 resulted in male sterility. The pollen mother cells appeared to be normal in Osg1-RI plants, but callose degradation was disrupted around the microspores in the anther locules of the Osg1-RI plants at the early microspore stage. Consequently, the release of the young microspores into the anther locules was delayed, and the microspores began to degenerate later. These results provide evidence that Osg1 is essential for timely callose degradation in the process of tetrad dissolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号