首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal changes of starch and soluble carbohydrates in leaves,bark and xylem tissues of olive tree were examined during acomplete annual cycle. Leaf starch and soluble carbohydrateswere detected at high levels during the spring and autumn metabolicallyactive periods. The low level of leaf starch in combinationwith the drastic reduction of soluble carbohydrates and mannitol,defined the summer period of the low metabolic state of thetree. The low leaf starch level in conjunction with the risensoluble carbohydrate levels in leaves in winter were associatedwith cold acclimation processes. The bark and xylem tissueswere performing as starch deposition sites, and differencesin the extent of starch accumulation in these tissues were detectedduring the seasons. The starch fluctuations in bark and xylemwere discussed in relation to the translocation of metabolitesand other physiological processes. Mannitol, the most abundantleaf carbohydrate, was examined in relation to the reducingsugars exported to the bark. The bark mannitol was examinedin conjunction with the sucrose, glucose and starch levels inthe maturing bark tissues and was correlated to the low wintertemperatures. During the winter there was a drastic reductionof mannitol circulation from the bark to xylem. Olive tree, Olea europaea, L, carbohydrates  相似文献   

2.
This paper describes the differentiation process of regenerated tissue after ordinary girdling or after removal of a section of xylem from the stem, and the disparity in differentiation of the regenerated tissues after being differently treateds in Broussonetia papyrifera. After ordinary girdling for 3–4 weeks, new bark regenerated in the xylem. During the process of rind' formation, many specks of meristematic tissue were formed in the callus, from which vascular tissue clusters were developed. In addition, the new periderm appeared almost at the same time as the new vascular cambium was seen. When a section of xylem was removed from the stem, numerous calli developed rapidly on the inner surface of the bark. Meanwhile, the vascular cambium appeared in the immature phloem. Soon after, discontinued meristematic tissue bands also occurred in the callus. These meristematic tissues then connected with each other to form a concave oblate cambial ring which developed xylem inward and phloem outward. About 2–3 weeks later, the concave oblate trunk grew lengthwisely connecting with the upper anct lower portions of the normal stem. By then, the tree continued to grow. The inner surface tissue of the bark, after the xylem was removed, differentiated about one week earlier than the tissue on the surface of the xylem after girdling.  相似文献   

3.
Defoliation of alfalfa (Medicago sativa L.) results in a cyclic pattern of starch degradation followed by reaccumulation in taproots. Characterization of changes in anatomical distribution of starch grains in taproots will aid our understanding of biochemical and physiological mechanisms involved in starch metabolism in taproots of this species. Our objectives were to determine the influence of defoliation on starch grain distribution and size variation in taproots of two alfalfa lines selected for contrasting concentrations of taproot starch. In addition, we used electron microscopy to examine the cellular environment of starch grains, and computer-based image optical analysis to determine how cross-sectional area of tissues influenced starch accumulation. Taproots of field-grown plants were sampled at defoliation and weekly thereafter over a 28-day period. Taproot segments were fixed in glutaraldehyde and prepared for either light or electron microscopy. Transverse sections were examined for number and size of starch grains and tissue areas were measured. Starch grains were located throughout bark tissues, but were confined primarily to ray parenchyma cells in wood tissues. During the first week of foliar regrowth after defoliation, starch grains in ray cells near the cambium disappeared first, while degradation of those near the center of the taproot was delayed. During the third and fourth weeks of regrowth, there was a uniform increase in number of starch grains per cell profile across the rays, but by 28 days after defoliation there were more starch grains in ray cells near the cambium than in cells near the center of the taproot (low starch line only). Bark tissues from both lines showed synchronous degradation and synthesis of starch grains that was not influenced greatly by cell location. Diameter of starch grains varied with cell location in medullary rays during rapid starch degradation, but was not influenced by cell position in bark tissues. Therefore, during foliar regrowth there is a spatial separation in starch degradation and synthesis in alfalfa taproots. Amyloplasts from alfalfa taproots contained numerous starch grains, prolamellar-, and electron-dense bodies. The high starch line had 23% more cross-sectional area as ray cells in wood tissues when compared to the low starch line, which may explain part of the difference in starch accumulation between these alfalfa lines.  相似文献   

4.
龙眼剥皮再生的解剖学研究   总被引:2,自引:0,他引:2  
谭志雄  廖建良   《广西植物》1991,11(4):312-315+395
龙眼(Dimocarpus tongan Lour.)茎干经过大面积环剥,都能再生出新皮。环剥初期,愈伤组织都由近暴露面的射线细胞产生,稍后,其他未成熟木质部细胞也参加愈伤组织的形成,这些愈伤组织一般在靠近表面都可发生木栓形成层,以后迅速形成正常的周皮。在愈伤组织与木质部交界处的未成熟木质部细胞发生维管形成层。新发生的形成层正常地向外分化出次生韧皮部,向内分化出次生木质部。初期有些原来的射线将新形成层带分割成许多小区,二个月后,由于新的形成层不断平周活动,逐渐将形成层连成一圈,以后基本上与正常树皮维管组织的发育一样。  相似文献   

5.
The cambium of Pinus bungeana Zucc. resumed its activities in early April with cell proliferation and increase in immature xylem and phloem cells. Some mature xylem cells occurred dunng the last ten days of April. The xylem and phloem were rapidly formed after May. The late- wood was firstly formed in the beginning of June. It ceased to produce new xylem in early August, mid phloem cells in mid-September. The seasonal changes of polysaccharide grain content in the tissues of P. bungeana evidenced significant correlation with the annual cycle of cambial activity. Polysaccharide grains continued to increase before and after cambial reactivity and then decreased gradaally from June onwards after the late-wood had been firstly formed, until almost disappeared by next January, and again were gradually accumulated after March. Isoenzymic study revealed only one band of amylase after cambium reactivity, three peculiar bands after ceasing to produce xylem, and another two peculiar bands that occurred in early December. These 5 bands all disappeared after reactivity of cambium.  相似文献   

6.
Circular patches of bark were surgically isolated on the sides of sugar maple (Acer saccharum Marsh.) trees at breast height at various times during the dormant and growing seasons. Subsequently, samples of wood and attached bark were taken from isolated and control sites to determine the effects of isolation of the bark on cambial activity and xylem and phloem development. In control sites cambial activity and xylem and phloem development occurred normally. Isolation of bark during the dormant season (in November, February, or March) prevented initiation of cambial activity and xylem and phloem development in isolated areas of half of the trees. Varying degrees of cambial activity (periclinal divisions) occurred in the remaining isolated areas, but normal cambial activity and xylem and phloem development were prevented. Isolation of bark after initiation of cambial activity and phloem differentiation, but prior to initiation of xylem differentiation, resulted in the formation of very narrow xylem and phloem increments with atypically short vessel members and sieve-tube members, respectively. The xylem increments consisted primarily of parenchyma cells. Isolation of bark after initiation of xylem differentiation resulted in curtailment of secondary wall formation in the last-formed part of many increments. The last-formed vessel members of all these xylem increments were atypically short. Similarly, the last formed sieve-tube members of corresponding phloem increments were atypically short. The atypically short cells in the xylem and phloem of isolated areas reflected the effect of isolation on the cambial region, viz., the subdivision of all fusiform cells into strands of cells. Ultimately, the strands of short fusiform cells lapsed into maturity, leaving only strands of parenchymatous elements between xylem and phloem.  相似文献   

7.
4月初,白皮松(Pinus bungeana Zucc.)形成层带细胞开始增大,未成熟的木质部和韧皮部细胞增多,下旬出现成熟的木质部细胞。5月以后,木质部和韧皮部的形成速度加快,6月初进入晚材形成期。8月初停止产生木质部,9月中旬停止产生韧皮部。多糖颗粒的消长与形成层活动有较强的相关性,恢复活动前后颗粒含量持续增长,6月进入晚材形成期才持续减少,至翌年1月初完全消失,3月又重新积累,并迅速达到高峰。淀粉酶同工酶在活动期只有一条酶带,形成层停止产生木质部后出现了3条特异酶带,12月初又出现了2条特异酶带,这5条酶带都一直存在到形成层恢复活动。  相似文献   

8.
When Laccifer lacca fed in the bark of Dalbergia balansae, the penetration in the bark by a stylet was mainly intracellular, seldom intercellular. Finally, the stylet arrived at the funtional sieve element, and fed in it. The tip of tt,e stylet was at a distance of 0.48–0.78 mm from the surface of periderm. 70.3% of the stylets fed in the zone of newly-differentiated sieve elements. The fed sieve element had P-protein and callose, and exhibited no serious reaction of injury. The parenchyma cells that were pierced through by the stylet and the neighbouring cells Lad obvious reaction of injury, such as: thickened cytoplasm and plasmolysed; dark stained nuclei; smaller starch grains and intracellular deposition of concentrated golden material. The stylet that pierced through the bark was encircled by a stylet sheath consisted of proteins. The stylet sheath looked like a string of beads as a whole. Branching stylet sheath was observed. Some branches even reached far into the xylem, but the stylet finally reached the sieve element. At the same time, the stylet might penetrate through many sieve elements, finally reach newly-differentiated sieve elements. These results suggest that feeding of Laccifer lacca was a process of initiative choice. Two years after collecting shellac by means of skinning instead of cutting the branch, tb.e stylets and styler sheaths still remained in the bark. Several layers of ceils around them were dead and fully imbued with yellow-brown material. Stylers and styler sheaths in the outer cortex were surrounded by bending phellogen and separated from the living cells, forming many cyst-like structures in the periderm. Such bark should not be further used for feeding.  相似文献   

9.
Methods of sampling and sections preparaction were the same as reported previously. Except that sampling was made at monthly intervals between May 20 and July 30, then at 7–14 day-intervals between July 30 and October 14, and then at monthly intervals between October 14 and March 25 in the next year. The stored starch in various tissues was stained with PAS reaction. During active period of cambium in Broussonetia papyrifera after July 30, the cell layers of immature xylem and phloem decreased progressively, and the formation of mature xylem and phloem increased rapidly. The formation of late wood started early in August, formation of xylem ceased after September 5, followed by ceasation of phloem formation about 1.5 months later. Increasing and decreasing of stored starch were closely related to the periodicity of cambial activity during the year. Starch grains decreased progressively after cambial activity was resumed in early spring until they disappeared in all the stem tissues. Then, starch accumulated progressively again after cambial activity slowed down, particularly after the ceasation of xylem formation. However, after the formation of phloem had ceased, the stored starch once again disappeared progressively until the end of December, and accumulated again. Such changes might be related to the transition of cambium activity involving two periods of dormancy.  相似文献   

10.
Methods of sampling and sections preparaction were the same as reported previously. Except that sampling was made at monthly intervals between May 20 and July 30, then at 7–14 day-intervals between July 30 and October 14, and then at monthly intervals between October 14 and March 25 in the next year. The stored starch in various tissues was stained with PAS reaction. During active period of cambium in Broussonetia papyrifera after July 30, the cell layers of immature xylem and phloem decreased progressively, and the formation of mature xylem and phloem increased rapidly. The formation of late wood started early in August, formation of xylem ceased after September 5, followed by ceasation of phloem formation about 1.5 months later. Increasing and decreasing of stored starch were closely related to the periodicity of cambial activity during the year. Starch grains decreased progressively after cambial activity was resumed in early spring until they disappeared in all the stem tissues. Then, starch accumulated progressively again after cambial activity slowed down, particularly after the ceasation of xylem formation. However, after the formation of phloem had ceased, the stored starch once again disappeared progressively until the end of December, and accumulated again. Such changes might be related to the transition of cambium activity involving two periods of dormancy.  相似文献   

11.
油松茎次生木质部中树脂道的发育过程和组织化学研究   总被引:4,自引:0,他引:4  
利用组织化学方法对油松茎次生木质部树脂道发育过程中上皮细胞内树脂滴和淀粉粒的动态变化进行了研究。发现在树脂道原始细胞阶段,每个原始细胞含淀粉粒较少,含树脂滴稀少。在树脂道形成阶段,淀粉粒数目较多,体积增大,树脂滴也呈递增趋势。在树脂道成熟阶段,淀粉粒数目变化不大,而体积明显变小,树脂滴的体积增大,数目减少。  相似文献   

12.
构树形成层的活动周期及其淀粉贮量的变化   总被引:5,自引:2,他引:5  
在构树(Broussonetia papyrifera (L.) Vent.)形成层活动周期中,每年7月末以后,未成熟的木质部和韧皮部逐渐减少,成熟的木质部和韧皮部急剧增多。8月初开始分化晚材。进入9月后木质部的形成逐渐停止,而一个半月以后才停止形成韧皮部。淀粉贮量的消长与形成层的活动周期有很强的相关关系。早春形成层恢复活动后,淀粉贮量逐渐减少直至消失。尔后,形成层活动减慢,特别是木质部分化停止后,淀粉又开始积累。当韧皮部分化也停止后,淀粉又消失,直至翌年1月才重新积累,这似乎与两个休眠期的转化有关  相似文献   

13.
Zhang J  Gao G  Chen JJ  Taylor G  Cui KM  He XQ 《The New phytologist》2011,192(4):869-884
Regeneration is a common strategy for plants to repair damage to their tissue after attacks from other organisms or physical assaults. However, how differentiating cells acquire regenerative competence and rebuild the pattern of new tissues remains largely unknown. Using anatomical observation and microarray analysis, we investigated the morphological process and molecular features of secondary vascular tissue regeneration after bark girdling in trees. After bark girdling, new phloem and cambium regenerate from differentiating xylem cells and rebuild secondary vascular tissue pattern within 1 month. Differentiating xylem cells acquire regenerative competence through epigenetic regulation and cell cycle re-entry. The xylem developmental program was blocked, whereas the phloem or cambium program was activated, resulting in the secondary vascular tissue pattern re-establishment. Phytohormones play important roles in vascular tissue regeneration. We propose a model describing the molecular features of secondary vascular tissue regeneration after bark girdling in trees. It provides information for understanding mechanisms of tissue regeneration and pattern formation of the secondary vascular tissues in plants.  相似文献   

14.
Circular patches of bark were surgically isolated on the sides of trembling aspen (Populus tremuloides Michx.) trees at breast height at various times during the dormant and growing seasons. Subsequently, samples of wood and attached bark were taken from isolated and control sites to determine the effects of isolation of the bark on cambial activity and xylem and phloem development. In control trees cambial activity and xylem and phloem development occurred normally. Isolation of bark during the dormant season (in November, February, or March) did not prevent initiation of cambial activity and of phloem differentiation in spring but continued normal cambial activity and phloem developmented were prevent. Xylem differentiation was essentially prevented by isolation of tissues during the dormant season. The ultimate effect of isolation of the bark on the cambium, either during the dormant season or during the growing season, was subdivision of all fusiform cambial cells into strands of parenchymatous elements; the ultimate effect on the newly formed phloem was early death of the sieve elements. The most conspicuous effect of isolation of the bark after xylem differentiation had begun was the curtailment of secondary wall formation. Shortening of cells of the cambial region was reflected in the length of the vessel members which differentiated from such cells. These results indicate that normal cambial activity and xylem and phloem development require a supply of currently translocated regulatory substances from the shoots.  相似文献   

15.
Induction of Near-vessellessness in Ephedra campylopoda C. A. Mey.   总被引:1,自引:0,他引:1  
Lev-Yadun  Simcha 《Annals of botany》1994,74(6):683-687
Near-vessellessness was induced in the secondary xylem of Ephedracampylopoda C. A. Mey. by mechanical bark blocking or by wounding.Both treatments resulted in regions of near-vesselless xylem.Xylem formed after the mechanical bark blocking also had regionsin which the orientation of the axial components was changedfrom axial to lateral. Since either mechanical arrest of phloemand cambial transport or wounding of the cambium almost stoppeddifferentiation into vessels, and instead induced differentiationinto tracheids, it seems that the developmental signal for tracheiddifferentiation is not the same as that for vessels. The possibleregulation of near-vessellessness in Ephedra is discussed.Copyright1994, 1999 Academic Press Differentiation, Ephedra campylopoda, near-vessellessness, wood formation, xylem  相似文献   

16.
The trunk of Broussonetia payrifera (L.) Vent. following an extensive length of completegirdling could regenerate new bark in the entire growing season after bud-sprouting. Severaldays after girdling, most of ray cells near the surface dilated and proliferated outward to formcallus. Then, other immature xylem cells rehabilitated the ability of cell division and tookpart in the formation of callus Later, a cork cambium developed near the surface of thecallus and a cambium near the middle part of the callus. The newly formed cambium cannormally produce phloem outward and xylem inward. However, when the girdled trunk waswrapped up with a transparent plastic shee during the growing period from late May to earlyAugust causing high temperature and humidity inside the wrapping sheet, the surface of peridem often produced loose sloughy cell layers that could regain it’s normal structure after unwrapping the sheet.  相似文献   

17.
Death and decay of trees of Mango (Mangifera indica L.) var. Kesar due to fungal infection was studied histologically. Fungal infection in the trees was observed due to various reasons like mechanical injuries in the stem, pruning of the branches, through the inflorescences, attack of Ambrosia beetle and termites. In the initial stage, fungal spores get settled on the flowers due to presence of nectar, followed by their germination and entry of the hypha into peduncle, which gradually spreads into younger branches. The inflorescences were first attacked by Fusarium moniliformis followed by other fungi like Alternaria, Chetomium sp., Aspregillus ellipticus, Aspregillus niger, etc. Fungal mycelia gradually invade the xylem tissues from the top of the branches and spread basipetally ultimately causing death of the infected branches. During monsoon, the crevices on the surface of bark of the healthy plants supported the growth of fungi like Pleurotus, Auricularia, Xyleria, Daldinia sp., and Polyporous sp. The removal of bark from such infected trees revealed minute holes on the surface of the woody cylinder made by Ambrosia beetles. During wet season fungal mycelia makes an easy entry into the xylem through the wounded portion of the stem or pruned branches. Initial entry of the hyphae into xylem was seen through the ray cells. Then the hyphae enter into the lumen of axial elements lining the ray cells through pits and intracellular spaces. The vessel elements located in the xylem (transition zone) between healthy and infected portion were filled with tyloses while axial and ray parenchyma showed heavy accumulation of tannin contents. On the other hand, the infected xylem was also found devoid of reserve metabolites while in normal trees, axial and ray parenchyma showed heavy accumulation of starch grains.  相似文献   

18.
当归根显微结构及其根腐病真菌分布研究   总被引:1,自引:0,他引:1  
利用徒手切片、石蜡切片和超薄切片及显微摄像的方法,对当归根的显微结构及根腐病致病真菌的分布进行了研究。结果表明:当归的根由周皮和次生维管组织两部分组成,周皮由外向内依次分为木栓层、木栓形成层、栓内层;次生韧皮部占根径的比例在60%以上,主要成分包括筛胞、韧皮薄壁细胞、韧皮纤维和分泌道,薄壁细胞富含淀粉粒等营养物质;次生木质部由导管、木薄壁细胞和木射线组成,木质部呈多元形,木射线和韧皮射线明显。在根的周皮细胞和中柱中均有真菌分布,说明真菌由木栓层、木栓形成层、栓内层依次向里侵入到韧皮薄壁细胞,在薄壁细胞内定殖并形成菌丝结或团块状结构,进而扩展成一定的侵染区域;真菌不仅侵染周皮和韧皮部,而且还进一步侵染木质部并破坏导管。此外,研究还发现,淀粉粒是真菌定殖的主要场所,真菌穿透或缠绕在淀粉粒上,并利用其营养不断地生长与繁殖。  相似文献   

19.
Eucommia ulmoides Oliv. (Eucommiaceae), a traditional Chinesemedicinal plant, was used to study phloem cell differentiationduring bark regeneration after girdling on a large scale. Hereit is shown that new sieve elements (SEs) appeared in the regeneratedtissues before the formation of wound cambium during bark regenerationafter girdling, and they could originate from the transdifferentiationof immature/differentiating axial xylem cells left on the trunk.Assays of water-cultured twigs revealed that girdling blockedsucrose transport until the formation of new SEs, and the regenerationof the functional SEs was not dependent on the substance providedby the axis system outside the girdled areas, while exogenousindole acetic acid (IAA) applied on the wound surface acceleratedSE differentiation. The experiments suggest that the immaturexylem cells can transdifferentiate into phloem cells under certainconditions, which means xylem and phloem cells might share someidentical features at the beginning of their differentiationpathway. This study also showed that the bark regeneration systemcould provide a novel method for studying xylem and phloem celldifferentiation. Key words: Bark regeneration, Eucommia ulmoides Oliv., immature xylem cells, sieve elements, transdifferentiation Received 19 November 2007; Revised 23 January 2008 Accepted 24 January 2008  相似文献   

20.
何首乌块根中异常结构的形成过程   总被引:4,自引:1,他引:3  
何首乌的块根是一种常用的中药,块根内具有异常的次生结构。在块根的横切面上,自外至内依次为周皮、薄壁组织、排列成一圈大小不等的异常周韧维管束和中央维管柱。在块根形成以前,根的初生和次生结构都是正常的。以后,通常由围绕在初生韧皮纤维束周围的中柱鞘和次生韧皮薄壁组织细胞形成异常形成层,产生异常维管束。此外,还发现少数由中央维管柱分支而成。在块根膨大过程中,束内外以及维管柱次生木质部的薄壁组织细胞也分裂并增大。从而使块根中薄壁组织占80%左右。上述变化过程在不定根的中部开始,向上、下两  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号