共查询到20条相似文献,搜索用时 15 毫秒
1.
中国蔷薇科绣线菊亚科的演化、分布——兼述世界绣线菊亚科植物的分布 总被引:15,自引:0,他引:15
绣线菊亚科是蔷薇科最原始的亚科,共有22属260余种, 包括常绿和落叶两大类群,前者是 原始类型。我国有8属100种,全都为落叶性。本文着重讨论中国各属的起源、演化和分布等 ,同时也概述全亚科植物在世界各植物区的分布等问题。绣线菊属Spiraea是该亚科落叶类群中最原始的属,它在早期发生趋异进化,衍生出形态各异而亲缘关系密切 的不同属,本文阐明了中国各属的系统位置和属间的亲缘关系。通过对我国各属地理分布的 分析对比,属的分布区可归纳为5个类型。对全球绣线菊亚科植物在世界各植物区中的属、种数统计表明,东亚区有8属105种,其中有96个特有种,是该亚科植物分布最多而又最集中 地区,具有在系统发育上处于各主要演化阶段的落叶类型,因此,东亚区是全球绣线菊亚科植 物的现代分布和分化中心,也是落叶类群发生和发展的关键地区。在北美洲,从马德雷区至落基山区一带分布着11属46种,均为特有种,显然北美洲西部也是该亚科植物的现代分布中心,但可能是第二分布中心。南美洲至今保存2个较古老的常绿属,即Quillaja和K ageneckia,基于此,南美洲可能是绣线菊亚科某些常绿属早期分化和发展的关键地区 。中国绣线菊亚科植物在东亚区占绝对优势,有8属82种,其中有62个特有种,分别占该区属 、种和 特有种数的100%、82%、和65%, 这些类群分布最密集地区是在中国喜马拉雅森林植物亚区 中的横断山脉地区和中国日本森林植物亚区的西部,这一带是中国绣线菊亚科的现代分布和多样性中心,很可能是某些属的发源地。由此看来,绣线菊亚科的落叶属可能起源于劳亚古陆。据化石记载,该亚科植物的起源时间可以追溯到白垩纪早白垩世。 相似文献
2.
F. Bernaldo de Quiros 《Human Evolution》2000,15(1-2):149-155
The evidence of ethics attitudes are quite difficult to be identified in the archaeological record. One of the first attitudes we can assume from the archeological record are those related with the recognition of death and how this recognition change the attitudes related with the deposition of humans corpses when death. The presence of graves or burials are firstly related with the Middle Palaeolithic in Eurasia. Its presence and distribution present many questions not so easy to solve. With the Upper Palaeolithic, the presence of items like decoration elements and those related broadly with “offerings”, give us the opportunity to understand the role of the individuals in the society. 相似文献
3.
There are species of Macromitrium in Guizhou province China. Among them, 2 species are endemic species, M.cavalerier Card &; Ther. and M.fortu natii Card &; Ther. During a recent re-examination of some Macromitrium specime ns from this region. A taxon closely related to species of the M. ferriei Card &; Ther. was found to be different from any known species of Macromitrium and is described here as a new species....... 相似文献
4.
5.
H. Höffler 《Hydrobiologia》1983,100(1):143-152
The age of lake basins, the onset of meromictic conditions and some consequences of eutrophication and reoligotrophication of Austrian Alpine lakes are presented. The obviously conflicting view of archeologists about lake levels during the period of lake dwellings is brought forward and some data about the effects of fish stocking are discussed. 相似文献
6.
James S. Challice 《Phytochemistry》1973,12(5):1095-1101
The subfamily Pomoideae has been surveyed for leaf phenolics and it has been shown that flavone glycosides are present in the genera Sorbus, Aronia, Chaenomeles and Hesperomeles in addition to the previously reported occurrences in Crataegus, Malus and Pyrus. The dihydrochalcone phloridzin, a typical constituent of Malus, has also been found in Docynia. Arbutin and phenolic acid-calleryanin esters are apparently restricted to Pyrus. Naringenin and eriodictyol glucosides have been detected in Pyracantha, Sorbus, Photinia, Chaenomeles and Hesperomeles. A number of Pomoideae phenolics have been found in two Spiraeoideae genera; luteolin 7-glucoside,] luteolin 7-diglucoside, luteolin 7-rhamnosylglucoside and apigenin 7-glucoside in Exochorda and the dihydrochalcone trilobatin in Sorbaria. The chemotaxonomic evidence is consistent with the hypothesis that the Pomoideae evolved through a process of allopolyploidy from primitive members of the Spiracoideae and Prunoideae. 相似文献
7.
小麦的分类、起源与进化 总被引:5,自引:0,他引:5
小麦是世界历史上最古老的作物之一,约在一万年以前,在西南亚,人类首先成功地将小麦进行栽培生产粮食,因此小麦栽培历史和人类开化有着密切的相互关系。在现代世界农业中,小麦也是最重要的作物之一。它分布面积很广,从北纬67°的挪威、芬兰和苏联到南纬45°的阿根庭都有栽培。世界生产小麦的地区有苏联南部、美国中部平 相似文献
8.
9.
被子植物起源和早期演化研究的回顾与展望 总被引:7,自引:2,他引:7
近年来,被子植物起源和早期演化研究,由于手段和技术的更新,资料大量积累,取得了许多重要进展,成为植物学领域的一大热点。本文对过去近五十年的研究作了回顾,并从分子系统学、分支系统学、花原基发生的形态学、花发育的分子遗传学及白垩纪花和其它生殖结构化石研究等五个方面对该领域在最近十几年的研究进展进行综述,最后,对今后如何开展这方面的工作作了简要评论。 相似文献
10.
丁香属植物的地理分布及其起源演化 总被引:13,自引:0,他引:13
木犀科丁香属植物主要分布在中国、朝鲜、日本以及欧洲东南部。中国是丁香属的自然分布中心,丁香主要分布在中国西南、西北、华北、东北等地区。根据植物区系的演化规律,作者认为丁香属起源于中国西南,并以此为中心主要沿中国西南-西北-华北-东北-朝鲜半岛-日本和中国西南-中亚-欧洲的路径散布。近缘种之间存在着遥远的地理隔离,中国原产的华丁香与分布在我国西北及中亚的花叶丁香、欧洲特有种欧洲丁香均为近缘种,表明欧洲丁香的散布与中国西北的种类有着密切的联系。近年分子生物学试验表明羽叶性状是演化中的过渡类型,在研究该属系统演化中具有重要作用。化石记录华北紫丁香在中新世时的华中地区已有存在,说明该属至少在中新世时完成了由西南向华中的演化、辐射。 相似文献
11.
小麦是世界历史上最古老的作物之一,约在一万年以前,在西南亚,人类首先成功地将小麦进行栽培生产粮食,因此小麦栽培历史和人类开化有着密切的相互关系。在现代世界农业中,小麦也是最重要的作物之一。它分布面积很广,从北纬67°的挪威、芬兰和苏联到南纬45°的阿根庭都有栽培。世界生产小麦的地区有苏联南部、美国中部平原和加拿大相邻地区、地中海地区、中国、印度、阿根廷北部和澳大利亚的西南部。这类作物在比较宽的环境 范围内都能获得高产。据统计,全世界有1/3的人口以小麦为主要粮食.消费的小麦食物卡值占全世界的20%以上。 相似文献
12.
13.
Lu Ling-ti 《植物分类学报:英文版》1996,34(4):361-375
The subfam. Spiraeoideae, consisting of 22 genera and more than 260 species in the world,is the most primitive subfamily of Rosaceae. It has developed into two groups,i.e. evergreen and deciduous ones, of which eight genera and 100 species in China are totally deciduous. In the present paper, the origin,evolution and distribution of the Chinese genera is discussed mainly, and the distribution of the whole subfamily in the floristic regions of the world is also mentioned. Based on evolutionary trends of morphological characters, Spiraea L. is considered as the most primitive genus in the deciduous group of subfam. Spiraeoideae, from which some genera are been derived, the systematic position and evolutionary relationships between different genera are elucidated in this paper. Through the analysis on the geographical distribution of the genera in China, the areal types may be divided as follows: (1) North Temperate Type: Spiraea, Physocarpus, Aruncus. (2) East Asian and North American Disjunct Type: Sorbaria. (3) Mediterranean, West Asian (or Central Asia) and East Asian Type: Sibiraea. (4) Temperate Asian Type: Exochorda.(5) East Asian Type: (a) Sino Himalayan Distribution: Neillia; (b) Sino Japan Distribution: Stephanandra. After analysis of the distribution of subfam. Spiraeoideae in the world, it is shown that the Eastern Asiatic Region, being the richest in genera, species and endemic species of the world,is not only the center of distribution and differentiation,but also an important region for occurrence and development of some deciduous genera of this subfamily, while in North America, the Madrean Region and Rocky Mountain Region, genera, species and endemic species are abundant, which indicates that the western part of North America is also the distribution center of this subfamily at the present, but it may be the secondary center of distribution. It can be seen that the relatively primitive and evergreen g enera, i.e. Quillaja and Kageneckia, are now confined to South America. The fact implies that the South America may be the region for early differentiation and development of the evergreen genera in Subfam. Spiraeoideae. The analysis of Chinese plants has shown that China has the most members of the subfamily in Eastern Asiatic Region, with eight genera, 82 species and 62 endemic species and that the maximum concentration is in western Sichuan, northwestern Yunnan and their adjacent areas. It is very obvious that the center of distribution and diversity of Subfam. Spiraeoideae in China lies in the Hengduan Mountain Region of Sino Himalayan Forest Subkingdom and the western part of Sino Japan Forest Subkingdom, where may be the birthplace of some genera in China. It may be considered that the deciduous genera of Subfam. Spiraeoideae might have originated in Laurasia.According to the fossil records, the time of origin of Subfam.Spiraeoideae dates back to the Lower Cretaceous. 相似文献
14.
Among the 78 eukaryotic ribosomal proteins, eleven are specific to Eukarya, 33 are common only to Archaea and Eukarya and 34 are homologous (at least in part) to those of both Bacteria and Archaea. Several other translational proteins are common only to Eukarya and Archaea (e.g., IF2a, SRP19, etc.), whereas others are shared by the three phyla (e.g., EFTu/EF1A and SRP54). Although this and other analyses strongly support an archaeal origin for a substantial fraction of the eukaryotic translational machinery, especially the ribosomal proteins, there have been numerous unique and ubiquitous additions to the eukaryotic translational system besides the 11 unique eukaryotic ribosomal proteins. These include peptide additions to most of the 67 archaeal homolog proteins, rRNA insertions, the 5.8S RNA and the Alu extension to the SRP RNA. Our comparative analysis of these and other eukaryotic features among the three different cellular phylodomains supports the idea that an archaeal translational system was most likely incorporated by means of endosymbiosis into a host cell that was neither bacterial nor archaeal in any modern sense. Phylogenetic analyses provide support for the timing of this acquisition coinciding with an ancient bottleneck in prokaryotic diversity. 相似文献
15.
The present paper analyzed 239 endemic genera in 67 families in the flora of seed plants in China.The results showed that there are five families containing more than ten endemic genera,namely,Gesneriaceae (27),which hereafter refers to the number of endemic genera in China,Composite (20),Labiatae (12),Cruciferae (11),and Umbelliferae (10),15 families with two endemic genera,and another 30 families with only one endemic genus.Four monotypic families (Ginkgoaceae,Davidiaceae,Eucommiaceae and Acanthochlamydaceae)are the most ancient,relict and characteristic in the flora of seed plants in China.Based on integrative data of systematics,fossil history,and morphological and molecular evidence of these genera,their origin,evolution and relationships were discussed.In gymnosperms,all endemic genera are relicts of the Arctic-Tertiary flora,having earlier evolutionary history,and can be traced back to the Cretaceous or to the Jurassic and even earlier.In angiosperms,the endemic genera are mostly relicts,and are represented in all lineages in the"Eight-Class System ofClassification of Angiosperms",and endemism can be found in almost every evolutionary stage of extant angiosperms.The relict genera once occupied huge areas in the northern hemisphere in the Tertiary or the late Cretaceous,while neo-endemism mostly originated in the late Tertiary.They came from Arctic-Tertiary,Paleo-tropical-Tertiary and Tethys-Tertiary florisitic elements,and the blend of the three elements with many genera of autochthonous origin.The endemism was formed when some dispersal routes such as the North Atlantic Land Bridge,and the Bering Bridge became discontinuous during the Tertiary,as well as the climate change and glaciations in the late Tertiary and the Quaternary.Therefore,the late Tertiary is the starting point of extant endemism of the flora in China. 相似文献
16.
Nicholas J. Strausfeld Frank Hirth 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1684)
In 1665, Robert Hooke demonstrated in Micrographia the power of the microscope and comparative observations, one of which revealed similarities between the arthropod and vertebrate eyes. Utilizing comparative observations, Saint-Hilaire in 1822 was the first to propose that the ventral nervous system of arthropods corresponds to the dorsal nervous system of vertebrates. Since then, studies on the origin and evolution of the nervous system have become inseparable from studies about Metazoan origins and the origins of organ systems. The advent of genome sequence data and, in turn, phylogenomics and phylogenetics have refined cladistics and expanded our understanding of Metazoan phylogeny. However, the origin and evolution of the nervous system is still obscure and many questions and problems remain. A recurrent problem is whether and to what extent sequence data provide reliable guidance for comparisons across phyla. Are genetic data congruent with the geological fossil records? How can we reconcile evolved character loss with phylogenomic records? And how informative are genetic data in relation to the specification of nervous system morphologies? These provide some of the background and context for a Royal Society meeting to discuss new data and concepts that might achieve insights into the origin and evolution of brains and nervous systems. 相似文献
17.
mtDNA具有极少发生重组、进化速度快等特点,能忠实反映群体的母性遗传,作为人类进化研究的一类重要工具,近年来取得了突出的成就,为现代人类的起源、迁移和进化提供了大量的证据。本文拟对这一领域的研究进展作一综述。Abstract:With special features,no recombination,fast speed of evolution etc.,mtDNA has been used to study origin,evolution and migration of Homo sapiens as a available genetic marker.The results of these researches provide remarkable evidence to human origin and evolution.This paper reviews the progress in these years. 相似文献
18.
文昌鱼—研究脊柱动物起源和进化的模式动物 总被引:21,自引:0,他引:21
长久以来,文昌鱼一直被认为和生活在约5亿年前的脊椎动物的直接祖先相似。由于文昌鱼在进化上的重要性,它在动物学研究史上发挥着关键作用,近100多年来,文昌鱼作为研究对象曾数次受到动物学界青睐或冷落,大约10年前,随着分子生物学技术应用于文昌鱼研究,又激发了动物学家对文昌鱼的研究兴趣,又一次出现在文昌鱼研究的高潮,并且一直持续至今,分子生物学研究结果表明,文昌鱼样生物可能是环节动物样动物和最早的脊椎动物之间的进化中间体,因此,文昌鱼在动物学研究史上好像绕了个大圈又回到了原处,在被忽视一段时间之后,又重新占据脊椎动物起源和进化研究中心舞台的位置,成为研究脊椎动物起源和进化的模式动物。 相似文献
19.
The present paper analyzed 239 endemic genera in 67 families in the flora of seed plants in China. The results showed that there are five families containing more than ten endemic genera, namely, Gesneriaceae (27), which hereafter refers to the number of endemic genera in China, Composite (20), Labiatae (12), Cruciferae (11), and Umbelliferae (10), 15 families with two endemic genera, and another 30 families with only one endemic genus. Four monotypic families (Ginkgoaceae, Davidiaceae, Eucommiaceae and Acanthochlamydaceae) are the most ancient, relict and characteristic in the flora of seed plants in China. Based on integrative data of systematics, fossil history, and morphological and molecular evidence of these genera, their origin, evolution and relationships were discussed. In gymnosperms, all endemic genera are relicts of the Arctic-Tertiary flora, having earlier evolutionary history, and can be traced back to the Cretaceous or to the Jurassic and even earlier. In angiosperms, the endemic genera are mostly relicts, and are represented in all lineages in the “Eight-Class System of Classification of Angiosperms”, and endemism can be found in almost every evolutionary stage of extant angiosperms. The relict genera once occupied huge areas in the northern hemisphere in the Tertiary or the late Cretaceous, while neo-endemism mostly originated in the late Tertiary. They came from Arctic-Tertiary, Paleo-tropical-Tertiary and Tethys-Tertiary florisitic elements, and the blend of the three elements with many genera of autochthonous origin. The endemism was formed when some dispersal routes such as the North Atlantic Land Bridge, and the Bering Bridge became discontinuous during the Tertiary, as well as the climate change and glaciations in the late Tertiary and the Quaternary. Therefore, the late Tertiary is the starting point of extant endemism of the flora in China. __________ Translated from Acta Botanica Yunnanica, 2005, 27(6): 577–604 [译自: 云南植物研究] 相似文献
20.
有机体基因复制导致基因复杂性增加及其和脊椎动物起源的关系已经成为进化生物学研究的热点。20世纪70年代由Ohno提出后经Holland等修正的原始脊索动物经两轮基因组复制产生脊椎动物的假设目前已被广泛接受。脊椎动物起源和进化过程中发生过两轮基因组复制的主要证据有三点:(1)据估计脊椎动物基因组内编码基因数目大约相当于果蝇、海鞘等无脊椎动物的4倍;原口动物如果蝇和后口动物如头索动物文昌鱼的基因组大都只有单拷贝的基因,而脊椎动物的基因组则通常有4个同属于一个家族的基因。(2)无脊椎动物如节肢动物、海胆和头索动物文昌鱼都只有一个Hox基因簇,而脊椎动物除鱼类外,有7个具有Hox基因簇,其余都具有4个Hox基因簇。(3)基因作图证明,不但在鱼类和哺乳动物染色体广大片段上基因顺序相似,而且有证据显示哺乳动物基因组不同染色体之间存在相似性。据认为第一次基因倍增发生在脊椎动物与头索动物分开之后,第二次基因倍增发生在有颌类脊椎动物和无颌类脊椎动物分开以后。但是,基因是逐个发生倍增,还是通过基因组内某些DNA片段抑或整个基因组的加倍而实现的,目前还颇有争议。 相似文献