首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
西藏高原是中国高寒生态系统类型和生物多样性均聚集的区域之一,其中以高寒典型草原和高寒草甸草原为主生态系统类型,但其系统活力、组织力和恢复力均较弱,容易受到全球气候变化的影响,表现出极强的脆弱性。目前青藏高原草地生态系统植物群落分布状况与其变化规律以及对各种环境因子的反应研究多集中于站点尺度或样带尺度,但研究结果尚有较大的不确定性。研究于西藏地区沿着不同的湿润度梯度选择14处高寒草原区样地,通过植物群落调查、土壤理化性质分析,探索草本植被群落空间格局对气候因子响应特征及其主要驱动因子,其结果为青藏高原天然草地保护和可持续利用提供基础科学数据支撑。结果表明: (1)研究区内依据湿润度分区可分为干旱区、微干区、微润区和湿润区4类;研究区1971-2021年的气候数据分析发现,北部的干旱程度在逐渐减轻,而南部在1991-2010阶段干旱化趋势逐渐加强,整个研究区的湿润度指数均在下降;(2)植物群落调查发现不同植物功能群的变化各有差异,莎草科地上生物量随湿润度增加而增加,杂类草地上生物量呈现单峰趋势,而其他植物功能群无明显规律;湿润度较高的微润区间植物群落的Shannon-Wiener指数、Simpson指数、丰富度指数、均匀度指数均高于其他湿润度区间;(3)土壤理化性质分析发现高湿润度区域的土壤含水量、全氮、硝态氮、铵态氮、速效磷含量均为最高;对各环境因子与植物群落特征指标进行相关性、主成分分析后构建结构方程模型,发现直接影响西藏高寒草原植物群落特征变化因子为湿润度,土壤含水量和土壤pH,且都表现为显著的负效应(P<0.05),同时湿润度对土壤含水量和土壤全量养分产生了显著的正向影响(P<0.05),进而影响着西藏高原高寒草原不同植物功能群的分布、多样性、地上生物量。  相似文献   

2.
乌鲁木齐河源区高寒冰缘植被的生态特征研究   总被引:16,自引:3,他引:13  
对乌鲁木齐河源区高寒冰缘植被进行了调查和生态环境分析。研究了高寒冰缘植物对寒区环境在形态结构和繁殖方式等方面的适应特征及其生态对策,在该区域垂直带谱中,植被包括了两个垂直带;高山草甸和高山垫状植被。主要植物群系有:苔草群系、蒿草群系、早熟禾群系、四蕊山莓草系、高山红景天群系、族生柔籽草群系、珠芽蓼群系等7个,共包括27类植物群(群丛)此外,在高山流石堆上具有有牌演替早期阶段的高山植物群聚。决定该区  相似文献   

3.
Background: High-elevation mountain systems may be particularly responsive to climate change.

Aims: Here we investigate how changes along elevation gradients in mountain systems can aid in predicting vegetation distributional changes in time, focusing on how changing climatic controls affect meso-scale transitions at the lower and upper boundaries of alpine vegetation (with forest and subnival zones, respectively) as well as micro-scale transitions among plant communities within the alpine belt. We focus on climate-related drivers, particularly in relation to climate change, but also consider how species interactions, dispersal and responses to disturbance may influence plant responses to these abiotic drivers.

Results: Empirical observations and experimental studies indicate that changing climatic controls influence both meso-scale transitions at the upper and lower boundaries of alpine vegetation and micro-scale transitions among plant communities within tundra. Micro-scale heterogeneity appears to buffer response in many cases, while interactions between climate and other changes may often accelerate change.

Conclusions: Interactions with microtopography and larger edaphic gradients have the capacity to both facilitate rapid changes and reinforce stability, and that these interactions will affect the responsiveness of vegetation to climate change at different spatial scales.  相似文献   

4.
The Irano-Turanian floristic region is a major center of endemism in the Holarctic of Eurasia. The Alborz Mountains of northern Iran are a complex and heterogeneous environmental system with rich water resources and great habitat diversity. We have investigated steppe plant communities along an altitudinal gradient ranging from approximately 1,000 m a.s.l. in the semi-desert steppes near Tehran to a height of 3,966 m a.s.l. at the summit of Mount Tochal. Our two-way indicator species analysis of 1,069 vegetation samples resulted in classification of five major vegetation zones: (1) a semi-desert Artemisia steppe near Tehran, (2) a Stipa grassland in the alluvial undulating hills north and west of Tehran, (3) a submontane and steppe zone, (4) a subalpine cushion formation zone and (5) an alpine meadow and subnival zone of Mount Tochal. Annuals and ephemerals in the semi-desert vegetation decline as altitude increases and almost disappear in the alpine zone. Past human impacts of ancient Persian civilization and a traditional pastoral economy have affected the physiognomy of plant communities; thorny dwarf shrubs now dominate the treeless vegetation of the region. Lower competition for space, different phenology and the presence of edaphic and hydrological layers associated with anthropogenic impacts are major reasons for entanglement of different plant communities in the arid- and semi-arid steppe. The phytogeography of the region changes from omni-Irano-Turanian and Saharo-Sindian transgressive species at lower altitudes to a more limited range of western Irano-Turanian species and local endemics at higher altitudes.  相似文献   

5.
High mountain ecosystems are defined by low temperatures and are therefore considered to react sensitively to climate warming. Responding to observed changes in plant species richness on high peaks of the European Alps, an extensive setup of 1 m × 1 m permanent plots was established at the alpine‐nival ecotone (between 2900 and 3450 m) on Mount Schrankogel, a GLORIA master site in the central Tyrolean Alps, Austria, in 1994. Recording was repeated in a representative selection of 362 quadrats in 2004. Ten years after the first recording, we observed an average change in vascular plant species richness from 11.4 to 12.7 species per plot, an increase of 11.8% (or of at least 10.6% at a 95% confidence level). The increase in species richness involved 23 species (about 43% of all taxa found at the ecotone), comprising both alpine and nival species and was pronouncedly higher in plots with subnival/nival vegetation than in plots with alpine grassland vegetation. Only three species showed a decrease in plot occupancy: one was an annual species, one was rare, and one a common nival plant that decreased in one part of the area but increased in the uppermost part. Species cover changed in relation to altitudinal preferences of species, showing significant declines of all subnival to nival plants, whereas alpine pioneer species increased in cover. Recent climate warming in the Alps, which has been twice as high as the global average, is considered to be the primary driver of the observed differential changes in species cover. Our results indicate an ongoing range contraction of subnival to nival species at their rear (i.e. lower) edge and a concurrent expansion of alpine pioneer species at their leading edge. Although this was expected from predictive distribution models and different temperature‐related habitat preferences of alpine and nival species, we provide first evidence on – most likely – warming‐induced species declines in the high European Alps. The projected acceleration of climate warming raises concerns that this phenomenon could become the major threat to biodiversity in high mountains.  相似文献   

6.
Short-term changes in plant species number, frequency and composition were studied along an altitudinal gradient crossing four summits from the treeline ecotone to the subnival zone in the South Alps (Dolomites, Italy). Large-scale (summit areas) and small-scale patterns (16 plots of 1 m2/summit) were monitored. After 5 years, a re-visitation of the summit areas revealed a considerable increase of species richness at the upper alpine and subnival zone (10% and 9%, respectively) and relatively modest increases at the lower alpine zone and the treeline ecotone (3% and 1%, respectively). At the small scale, the results were partly different, with species richness decreasing at the lower summits and increasing at the higher summits. The changes can most likely be attributed to climate warming effects and to competitive interactions. The main newcomers at the lower three summits were species from the treeline and the lower altitudinal zones. Only at the highest summit, the newcomers came from the alpine species pool. At the treeline ecotone, the abundance of Pinus cembra, of dwarf shrubs and clonal graminoid species increased. Here, displacements of alpine species may be predicted for the near future. At the higher summits, expansions of the established alpine species and further invasions of species from lower altitudes are forecasted.  相似文献   

7.
The type of snow cover considerably influences the sctructure of vegetation and production-related processes in alpine communities of diverse regions. The relation of snow cover thickness to the structure of apline plant communities in the eastern Tsinghai-Tibet Plateau (Sichuan, People's Republic of China) was studied by analyzing the vegetation in 251 sample areas grouped in five transects along the gradient of mesotopographic conditions and wintertime snow cover thickness. Considerable differentiation of plant communities related to snow cover thickness in revealed along the line from the northern to the southern slope. It is shown that the influence of snow cover on the distribution of particular plant species is significantly greater than the influence of soil properties (pH, content of humus, total phosphorus, potassium, and ammonia nitrogen in the upper strata of soil). Among the 56 herbaceous plant species and 7 shrub species studied, 52 herbaceous and all the 7 shrub species showed significant (P < 0.05) correlation (positive or negative) to snow cover thickness. Snow cover thickness appeared also significantly correlated to a number of soil properties: soil thickness, content of water, total phosphorus, and humus. But, in contrast to the alpine communities of the Caucasus and the Alps, no considerable acidification of the soil under snowflakes, due to perpetual removal of cations by melt water, was observed.  相似文献   

8.
《Plant Ecology & Diversity》2013,6(3-4):467-474
Background: Propagule production and dispersal largely determine the distribution and potential migration ability of alpine plant species. Variation in reproductive success caused by year-to-year variation in climate may critically influence these processes.

Aims: To obtain estimates for the propagule rain in high-alpine plant communities and detect potential dispersal events from lower elevations.

Methods: The magnitude and composition of the propagule rain was studied in different plant communities along an elevation gradient from the upper alpine to subnival zone. Propagules were trapped at eight elevations from 2760 to 3070 m a.s.l. for three years from July to September 2003–2005. Vascular plant species and their cover were recorded in an area with a radius of 10 m surrounding the traps.

Results: A five- to 10-fold higher propagule rain was observed in 2003, a year with an exceptionally hot summer, compared to 2004 and 2005. Propagule and species numbers varied highly among years and community types. Few propagules of non-local origin were recorded in any year.

Conclusions: Extremely hot summers are likely to greatly magnify the propagule rain size of species in alpine habitats. Such ‘mast years’ may contribute to enhanced and accelerated vegetation changes in alpine habitats in the absence of limiting factors.  相似文献   

9.
贺兰山植物群落类型多样性及其空间分异   总被引:21,自引:1,他引:21       下载免费PDF全文
 贺兰山是一座位于阿拉善高原与银川平原之间的高大山体,是我国西部温带草原与荒漠的分界线和连接青藏高原、蒙古高原及华北植物区系的枢纽。本文就贺兰山植物群落的类型多样性特征及其空间分布规律进行了分析,结果表明:贺兰山植物群落有11个植被型55个群系。垂直分异明显,可划分成山前荒漠与荒漠草原带(海拔1 600 m以下)、山麓与低山草原带(1 600~1 900 m)、中山和亚高山针叶林带(1 900~3 100 m)和高山与亚高山灌丛、草甸带(3 100 m以上)4个植被垂直带。阴阳坡差异很大,在低山带,草原群落多占据阳坡,而阴坡则被中生灌丛所取代;在中山带,阴坡以青海云杉(Picea crassifolia)林为主,阳坡以灰榆(Ulmus glaucescens)、杜松(Juniperus rigida)疏林和其它中生灌丛为主;3 000 m以上阴阳坡分异不明显。东、西坡及南、北、中段植物群落分异也很突出,各自均有一些特殊的群落类型。中段以森林和中生灌丛为主,南段和北段荒漠化程度较高,森林面积很小。北段有四合木(Tetraena mongolica)、沙冬青(Ammopiptanthus mongolicus)、松叶猪毛菜(Salsola laricifolia)等特征群系,南段以贺兰山丁香(Syringa pinnatifolia var. holanshanensis)、斑子麻黄(Ephedra rhytidosperma)等群系最具特色。贺兰山东坡比西坡温暖和干燥,森林面积远小于西坡,并分布一些酸枣(Zizyphus jujuba var. spinosa)、虎榛子(Ostryopsis davidiana)等喜暖中生灌丛。此外,贺兰山还具有贺兰山丁香、斑子麻黄、内蒙薄皮木(Leptodermis ordosica)、贺兰山女蒿(Hippolytia alashanensis)4个特有植物群落。  相似文献   

10.
徐波  陈光富 《广西植物》2020,40(12):1824-1832
高山冰缘带是陆地上海拔最高的植被带,自然条件恶劣,难以到达。滇西北高山冰缘带植物区系具有丰富的物种多样性,特有性高。该文对滇西北高山冰缘带进行植物多样性调查,通过采集标本、查阅植物志及模式标本等参考资料进行了形态特征研究。结果表明:发现云南新记录属1个,即囊种草属(Thylacospermum Fenzl); 新记录种5个,即囊种草 [Thylacospermum caespitosum(Camb.)Schischk]、红萼蝇子草 [Silene rubricalyx (Marq.)Bocquet]、狭叶丛菔(Solms-laubachia angustifolia J. P. Yue, Al-Shehbaz & H. Sun)、圆齿鸦跖花 [Oxygraphis endlicheri (Walp.)Bennet & S. Chandra]、密垫火绒草 [Leontopodium haastioides (Hand.-Mazz.)Hand.-Mazz.]。这些新发现一方面丰富了滇西北高山冰缘带的植物区系资料,另一方面说明了高山冰缘带的植物多样性调查仍然存在不足。针对青藏高原高山冰缘带特别是植物多样性调查薄弱及空白地区,细致和深入的调查工作亟待开展和完善。  相似文献   

11.
Background: Due to the dry continental climate, the mountains of eastern Ladakh are unglaciated up to 6200–6400 m, with relatively large areas of developed soils between 5600 and 6000 m covered by sparse subnival vegetation. However, there are no studies on the composition of plant assemblages from such extreme elevations, their microclimates, vertical distributions and adaptive strategies.

Aims: The subnival vegetation was described and the relationship between microclimate, species distribution and species functional traits was analysed.

Methods: In total, 481 vegetation samples from 91 permanent plots, a floristic database of Ladakh and extensive microclimate measurements were used. Measurements of 15 functional traits were made and their relationship with species distribution between 4600 and 6150 m was tested.

Results: The subnival zone was characterised by extreme diurnal temperature fluctuations, a short growing season (between 88 and 153 days) and low soil temperature during the growing season (between 2.9 °C and 5.9 °C). It hosted 67 species, mainly hemicryptophytes, and ranged from ca. 5600 m to the highest known occurrence of vascular plants in the region (6150 m). The most common plant families were Brassicaceae, Asteraceae, Poaceae, Fabaceae and Cyperaceae. Subnival specialists with narrow elevational ranges represented 42% of the flora; these species were shorter, had relatively higher water content and water-use efficiency and contained more nutrients and soluble carbohydrates than species with a wider elevational range.

Conclusions: The subnival vegetation of eastern Ladakh is dominated by generalist species with wide vertical ranges and not by high-elevation specialists. These findings, in view of the vast unglaciated areas available for range extension, suggest a relatively high resilience of the subnival flora to climate change in this region.  相似文献   

12.
The dry cold climate in the highland of the eastern Kunlun Mountains in Qinghai Province, north‐western part of China supports the establishment of alpine grassland, consisting of Poaceae and Cyperaceae species and dwarf shrub communities dominated by Potentilla and Krascheninnikovia shrubs. The phytosociological vegetation studies carried out around Lake Heihai (36°00′N/93°26′E, 4446 m a.s.l.) reveals a complex pattern of high mountainous vegetation, including three major vegetation communities. A Polygonum sibiricum community occupies wet and slightly saline sites close to the Heihai lake shoreline and Kobresia robusta and Poa pachyantha communities are characteristic for the drier slopes. These communities differ in ecological conditions, exposure and several characteristic species that form local subunits. Main ecological factors influencing plant growth are moisture coming from glacial melt water and the composition and texture of the surface sediments. The atmospheric circulation (i.e. monsoonal wind system) and the different amount of insolation of the southern and northern slopes are of minor importance for the establishment of the different communities. The reflection of the vegetation composition in the modern pollen rain is generally poor, since the pollen spectrum is highly influenced by the local appearance of taxa. Though the vegetation unit of a alpine steppe can be detected. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
This study provides a first country-wide overview of the vertical distribution patterns and the chorology of vascular plant species that occur in the uppermost elevation zones in Iran. The current distribution patterns are discussed with respect to potential warming-induced species losses. Iran’s subnival and nival vegetation zones are found at elevations above 3600–3900 m in a highly fragmented distribution across Alborz, Zagros, and NW-Iran. Based on literature research and on field observations, all vascular plant species living in the subnival–nival zone of Iranian mountains were identified (151 species) and classified into three altitudinal groups: Group A comprises species that occur mainly in subnival–nival habitats (51 species). Group B are species being common in subnival–nival areas but are equally present in the alpine zone (56 species). Group C are species that can reach to subnival areas but also grow in alpine, subalpine and sometimes lower altitudes (44 species). The chorological patterns differ among the three groups. The percentage of species being endemic to Iran decreases from group A, to B and C, with 68, 53 and 20%, respectively. A narrow altitudinal distribution at high elevations is clearly related to a small-scaled geographical distribution range. The outstanding rate of high-altitude endemism appears to result mainly from orographic isolation of the country’s highly scattered cold areas and by the absence of extensive Pleistocene glaciations. The narrow distribution of most of Iran’s cold-adapted mountain flora and the low potential of alternative cold habitats render it highly vulnerable to climate change.  相似文献   

14.
The paper presents the results of phytosociological research conducted on the vegetation of rock clefts and ledges in the Pamir-Alai Mountains (Tajikistan, Middle Asia). During the field studies, done in 2010–2012, 101 phytosociological relevés were taken. Plant species were recorded according to the Braun-Blanquet cover-abundance scale. Communities of calcareous rock clefts and ledges with small soil amounts from several ranges (Zeravshan Mts, Hissar Mts, Hazratishokh Mts, Darvaz Mts, Rushan Mts and Vanch Mts), inhabiting mainly the alpine and subnival zone, have been described. A synopsis of the rock communities of the Pamir-Alai is proposed. In the examined vegetation plots 77 vascular plant and 6 moss species were noted. The most frequent were: Achoriphragma pinnatifidum, Artemisia rutifolia, Asperula albiflora, Campanula incanescens, C. lehmanniana, Parietaria judaica, Pentanema albertoregelia, Poa relaxa and Stipa zeravshanica among vascular plants and Brachythecium albicans and Bryum caespiticum among mosses. Most of them are narrow endemics of Tajikistan or Middle Asia. The collected material presents most of the variability among the phytocoenoses of large crevices and rock ledges in limestone massifs in the alpine and subnival zones. As a result of field research and numerical analyses, 7 associations have been distinguished: Achoriphragmetum pinnatifidi, Asperulo albiflorae-Stipetum zeravshanicae, Inuletum glaucae, Paraquilegietum anemonoidis, Pentanemetum albertoregeliae, Rhinactinidietum popovii and Saussureaetum ovatae. The distinctiveness of habitat and species composition of Middle Asiatic rock communities makes it necessary to distinguish a new suballiance, Pentanemenion albertoregeliae, within the Asperulo albiflorae-Poion relaxae alliance. The main factors determining the species composition of classified associations seem to be the elevation above sea level and exposition. Alpine rock communities are one of the most unique and interesting plant formations in the moutainous areas of Pamir-Alai. Despite not being species-rich they often harbour many specialists adapted to harsh and extreme environments, especially in areas of Mediterranean-like climate.  相似文献   

15.
Natural plant communities are exposed to environmental changes such as global warming and increased human activities. It is thought that alpine and subalpine ecosystems with cool climatic conditions are sensitive to environmental changes. This virtual issue introduces multidisciplinary research at alpine and subalpine plant communities. The articles include research on (1) species diversity, vegetation and biomass, (2) species assembly, (3) climate and growth of alpine plants, (4) reproduction of alpine plants, (5) differences of growth traits among coexisting species, (6) vegetation changes by human activities and overgrazing of deer, and (7) differentiation of growth traits among ecotypes in relation to climatic conditions. These thirteen articles provide valuable information for future research on the effects of environmental changes on alpine and subalpine plant communities.  相似文献   

16.
青藏高原高山植被的初步研究   总被引:6,自引:0,他引:6       下载免费PDF全文
青藏高原是我国高山植被类型最丰富、独特和分布最广泛的区域,发育有大面积的高山灌丛、高寒草甸、高寒草原,高寒荒漠、高山流石坡稀疏植被及零散分布的高山垫状植被。它们占据着森林上线至永久雪线之间的高山带和广阔的高原面,从高原东南部至西北部有水平方向的地域分异。联系高山带以下各垂直带的植被特征及各地的气候条件分析,初步认为高原东南部的山地植被垂直带谱属于湿润型山地垂直带结构类型,高原腹地及西北部的山地植被垂直带谱属于干旱型山地垂直带结构类型。此外,还对青藏高原高山植被类型的丰富性及高山垫状植被的生态地理分布特点进行了初步探讨。  相似文献   

17.
Abstract. We examined spatial relationships among species in the subnival zone of the central Caucasus. The species composition of 300 vegetation patches was analysed. 144 of them contained only one species, whereas the other 156 contained 2.36 ± 1.31 species, with species numbers distributed as follows: 59 patches with two species, 41 with three, 39 with four and 17 with five species. In the multi-species patches, the 22 most frequent species were examined and 46 statistically significant species associations, 36 positive and 10 negative, were found. Ten of these 22 species were typical subnival plants very rarely occurring at lower altitudes. The other 12 species are ‘invaders’ as they have broader altitudinal ranges of occurrence and are common in alpine and even in subalpine belts. Contrary to the typical subnival species the invaders were found exclusively in the patches with more than one species. Invader species were significantly more associated with subnival species while they were significantly less associated with other species than expected by chance. Our interpretation is that typical subnival species nurse plants from lower altitudes and facilitate their invasion to more adverse subnival environments.  相似文献   

18.
青海湖地区植被演变趋势的研究   总被引:7,自引:0,他引:7       下载免费PDF全文
青海湖地区作为祁连山系中段南麓的一个大型山间盆地,是一个独具特色的地区。这里的以草原为基带及其周围山地的高寒灌丛和高寒草甸垂直系列,有其自身的特点和发展趋势。随着整个青藏高原的强烈隆升,本区植被也具有一系列的明显变化。大片森林趋于消退,仅残存有少数适应高寒生境的树种;温性植被类型局限于海拔较低处,而高寒植被类型相对分布较广。分析表明,青海湖地区的整体植被景观有向寒旱生境方向发展的演变趋势。本区植被出现上述演变趋势的主要原因在于该地区生境因抬升而趋于寒旱的过程中,植物种对其生境变化表现出不同的忍耐性和适应性所致。  相似文献   

19.
青海湖地区植被及其分布规律   总被引:8,自引:0,他引:8       下载免费PDF全文
青海湖地区位于青藏高原东北部。境内复杂的地貌类型及青海湖的存在对植被有重要影响。本区植物种类贫乏,现有种子植物52科、174属、445种。主要植被类型有寒温性针叶林、高原河谷灌丛、高寒灌丛、沙生灌丛、温性草原、高寒草原、高寒草甸、沼泽草甸、高寒流石坡植被等。植被分布表现出明显的规律性变化。草原分布于湖盆及河谷地带,由东而西植被类型有更加适应寒旱趋势。温性草原以青海湖为中心;呈环带状分布,而高寒草原的分布则与生境寒冷干旱相一致。山地垂直带谱表现为草原带、高寒灌丛与高寒草甸带以及高寒流石坡植被带。本区植被水平地带性分异受到青海湖的影响,其植被组合及特征表现出与青藏高原植被的明显相似性。作为祁连山南麓中部地区的一个大型山间盆地,其东西方向界于青海省东部地区和柴达木盆地之间,植被东西方向的水平地带性并未表现出明显的过渡特征。根据植被特点及分布规律分析,本区植被有其自身的特殊性,并与青藏高原隆升之后气候寒冷干旱相一致。因此,青海湖地区就整体而言应属祁连山地区植被一个相对独立的组成部分。  相似文献   

20.
The cushion plant is an ecotype adapted to the environment of the alpine cold climate. There are over 15 species in Northern Xizang plateau, among them Thylaco- spermum caespitosum, Arenaria musciformis and Androsace tapete being common. The general morphology of such plants is expressed as a cushion-like body resulted from the shoots piled up together closely. They may be divided into two types, the close cushion plant and the sparse one, based upon the different degree of compactness of the shoot. The cushion plant is distributed from 4500 to 5300 meters. Different species have different environmental requirement and form the specific community of the alpine cushion vegetation. It has formed in course of the natural selection of the surrounding factors such as plateaus' intense solar radiation, cold weather, strong wind, etc. For a long time, they have sufficiently used the favorabe factors and avoided the unfavorable factors under severe conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号