首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cherry (Prunus avium L.) saplings were grown under natural sunlight (controls) or moderate shading (up to 30%, depending on the incident light intensity and the hour of the day). Reduced light intensity increased the dry mass of each of the plant components studied. Consequently, the total dry mass of shaded plants was significantly greater than that of controls at the end of the growing season. However, the diurnal trend in the level of photosynthesis (per unit of leaf area) of shaded plants was similar to the controls in August, but lower in September. As the growing season proceeded, reduced photosynthetic rates, thinner mesophyll and larger specific leaf area in the shaded plants indicated that leaf development had adapted to shaded conditions throughout the growing season. It is suggested that increased growth of shaded plants was caused by a higher initial relative growth rate and a greater whole-plant photosynthesis. Shading consistently reduced transpiration over the season, therefore improving water use efficiency of shaded leaves. Our results suggest that a moderate reduction in light intensity can be a useful method for improving growth and saving water in hot and dry environments.  相似文献   

2.
The interrelationships between light intensity and the effectsof sodium 2:4-dichlorophenoxyacetate on the growth of Helianthusannuus in the early vegetative stage have been studied by subjectingtreated and control plants to a range of light intensities from,1.0 to 0.12 daylight. The growth regulator in varying amountswas applied either as droplets of aqueous solution to the firstor second pairs of leaves or as an overall spray. When the amountof the compound is such as to cause small but significant reductionsin the relative growth rate, the leaf-area ratio and the ratioof leaf area to leaf weight are likewise depressed but the netassimilation rate is relatively unaffected. Between 0.25 daylightand full daylight the proportionate changes in the relativegrowth rate, leaf-area ratio, and net assimilation rate inducedby sub-lethal amounts of the growth regulator are not greatlymodified by the level of light. If the intensity is reducedfurther to 0.12 daylight, then the reactions of the shaded plantsdiffer markedly from those of unshaded plants. For example,when the plants are shaded both before and after a spray application,the concentration required to cause a 50 per cent. mortalityis one-tenth of that demanded for plants receiving full daylight.For less phytotoxic amounts the percentage reductions, relativeto the controls, induced in the growth rate of the shoot aremore dependent on the intensity after than before the applicationof either a spray or measured droplets. These greater depressions in shoot growth at 0.12 daylight afterthe application are linked with comparable depressions in therate of growth of the leaves of which the first pair are moresensitive. Similarly, the growth rate of the first internodeis also depressed more under shade conditions, but that of thesecond internode at low doses may be greatly increased. Forboth the leaves and internodes shading before as against shadingafter the application may have different significant effectson the changes in growth caused by the growth regulator. Undersome conditions the interactions between the light intensitybefore and after the application and the quantity of the growthregulator are exceedingly complex. By using sodium 2:4-dichloro-5-iodophenoxyacetatelabelled with radioactive I131, it has also been establishedthat the rate of penetration into leaves is accelerated by ahigh light intensity after the application, but that the intensityreceived prior to the application causes no significant effect.Evidence was also obtained that transport to the shoot fromthe treated leaf is more dependent on the light intensity afterthe application—the transport being greater in full daylight.It is concluded that a number of factors must be involved inbringing about these differential effects and their relativeimportance is discussed.  相似文献   

3.
Excess solar radiation under hot climate can lead to decline in photosynthetic activity with detrimental effects on growth and yield. The aim of this study was to evaluate the use of a transparent plastic roof as shading for diurnal changes in photosynthetic gas exchange, chlorophyll fluorescence, fruit set and quality of mango (Mangifera indica L.) cv. ‘Nam Dok Mai’ growth in the field conditions. Fully expanded leaves were examined either shaded by the plastic roof or sunlit under natural conditions. Leaf temperature and leaf-to-air vapour pressure deficit of the shaded leaves measured on the clear day were lowered compared to those of the sunlit leaves. It resulted in increased stomatal conductance and photosynthetic rates of the shaded leaves compared to those of the sunlit leaves, especially from the morning to midday. Furthermore, the reversible decrease of the maximal quantum yield of PSII was more pronounced in the sunlit leaves than that in the shaded ones. Shading increased the total fruit number; the shaded fruits developed better external color than that of the sun-exposed fruits. Our results indicated that shading could maintain the high photosynthetic activity by reducing stomatal limitations for carbon supply and was effective in alleviating the photoinhibitory damage to PSII during bright and clear days with excessive radiation. Finally, shading could increase the number of fruits and improve mango peel color.  相似文献   

4.
在深度遮光(光照强度为高光条件的6.25%,约为自然光照的5.3%)或低养分条件下,金戴戴(Halerpestes ruthenica Ovcz.)生物量、初级分株叶面积、分株总数、匍匐茎总数和总长度均显著减小,而比节间长和比叶柄长显著增加.在低养分条件下,金戴戴匍匐茎平均节间长显著增加,而匍匐茎分枝强度和分株数显著减小.这些结果与克隆植物觅食模型相符合,表明当生长于异质性生境中,金戴戴可能通过以克隆生长和克隆形态的可塑性实现的觅养行为来增加对养分资源的摄取.在深度遮光条件下,金戴戴平均间隔子长度(即平均节间长和平均叶柄长)均显著减小.这一结果与以往实验中匍匐茎草本间隔子对中度和轻度遮光(光照强度为高光条件的13%~75%,>10%的自然光照)的反应不同.这表明,在深度遮光条件下匍匐茎克隆植物可能不发生通过间隔子可塑性实现的觅光行为.光照强度和基质养分条件的交互作用对许多性状如总生物量、匍匐茎总数和总长度、二级和三级分株数、分株总数、初级分株叶面积以及分枝强度均有十分显著的效应.在高光条件下,基质养分对这些性状有十分显著的影响;而在低光条件下,基质养分条件对这些性状不产生影响或影响较小.这表明,光照强度影响金戴戴对基质养分的可塑性反应.在深度遮光或低养分条件下,金戴戴可能通过减小匍匐茎节间粗度(增加比节间长)来增加或维持其相对长度,从而更有机会逃离资源丰度低的斑块.  相似文献   

5.
In a further analysis of the changing pattern of developmentinduced in Vicia faba by varying the density, it has been foundthat a reduction from a high to a low density has little influenceon the subsequent development unless such thinning is delayeduntil the flowering phase. By this time, save for widely spacedplants, the level of self shading within the population hasbecome marked. In fact, at high densities (55–65 plants/metre2)during the early-ripening phase the light intensity at groundlevel may fall to 0.03 daylight while a considerable proportionof the plant—up to 38 per cent.—may receive lessthan o-1 daylight. At low densities (11-I2 plants/metre2) theminimum intensity at ground level is 0.14 daylight and lessthan 3 per cent, of the shoot is subjected to o-1 daylight.In pot experiments, using a range of screens, it was establishedthat the compensation point is about o-I daylight. Thus, asthe density is increased the light gradient between the apexand the base becomes progressively steeper and the proportionof the leaves not actively assimilating correspondingly greater. To assess the ways in which such a light gradient operates,experiments were carried out in which either the apex or theinflorescences or leaves were removed over different sectionsof the stem or various parts of the shoot shaded and detailedrecords made of development, particularly of flower- and pod-production.Removal of the upper leaves or shading the apex primarily increasesthe rate of pod abscission after the flowers have set. Partialremoval of the inflorescences, especially at the lower nodes,has an opposite effect, while decapitation, though it augmentsthe percentage of flowers which produce immature pods, subsequentlycauses fewer pods to reach maturity. Shading of the lower nodesreduces at these nodes the number of mature pods but may resultin more pods maturing at the upper nodes. It is concluded that when the light gradient is such as to restrictthe internal supplies of substrates the growth of those organswith the least competitive ability, e.g. the newly formed pods,is arrested. It is at this phase that the factors controllingabscission come into play and that abscission is dependent upona balance between the levels of auxins and the production ofan abscission factor.  相似文献   

6.
Because light conditions in the forest understory are highly heterogeneous, photosynthetic acclimation to spatially variable irradiance within a crown is important for crown‐level carbon assimilation. The effect of variation in irradiance within the crown on leaf nitrogen content and photosynthetic rate was examined for pinnate compound leaves in saplings of Cedrela sinensis, a pioneer deciduous tree. Five shading treatments, in which 0, 25, 50, 75 and 100% of leaves were shaded, were established by artificial heavy shading using shade screen umbrellas with 25% transmittance. Although the nitrogen content of leaves was constant regardless of shading treatment, ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco) content and light‐saturated photosynthetic capacity were lower in shade leaves within partially shaded crowns than within fully shaded crowns. Shade leaves within partially shaded crowns contained higher amount of amino acids. Most shade leaves died in partially shaded crowns, whereas more than half of shade leaves survived in totally shaded crowns. Assumptions on photosynthetic acclimation to local light conditions cannot explain why shade leaves have different photosynthetic capacities and survival rates in between partially and totally shaded crowns. Irradiance heterogeneity within the crown causes a distinct variation in photosynthetic activity between sun and shaded leaves within the crown.  相似文献   

7.
Sugar maple (Acer saccharum Marsh.) seedlings were grown in a nursery for three years in 13, 25, 45 and 100 per cent of full daylight. During the third year of growth, the rates of their apparent photosynthesis and respiration were measured periodically with an infra-red gas analyzer at various light intensities and normal CO2 concentration. In addition, the rates of apparent photosynthesis of a single attached leaf of the same seedlings were measured at saturating light intensity, hut varying CO2 concentrations. An increase in the light intensity in which seedlings were grown had no effect on their height or mean leaf area, hut resulted in thicker leaves, an increase in the total leaf area per seedling due to an increase in the number of leaves, an increase in the dry weight especially of roots and a decrease in the chlorophyll content of leaves. Throughout the growing season seedlings grown in full daylight, as compared with those grown in lower light intensities, had the lowest rates of apparent photosynthesis measured at standard conditions (21,600 lux light intensity and 300 ul/l of CO2), when this was expressed per unit leaf area, hut the highest rates on a per seedling basis. Thus dry matter production attained at the end of the growing season correlated positively with the photosynthetic rate per seedling, but not per unit leaf area. The rates of apparent photosynthesis of seedlings grown at lower light intensities were more responsive to changes in light intensity or CO2 concentration than those of seedlings grown in full daylight intensity.  相似文献   

8.
从形态、生理角度研究了杭州园林中应用最广泛的杜鹃‘紫萼’(Rhododendron mucronatum cv Plenum)的光适应性和最适光强生境。结果表明:随着叶片遮荫程度的增加,杜鹃的叶面积和叶绿素含量增加;光补偿点、光饱和点及暗呼吸强度下降,说明杜鹃对弱光生境有一定的适应性。另一方面,随着相对光强的增加,叶片厚度,比叶重以及栅栏组织、海绵组织厚度及其比值,可溶性蛋白质及净光合速率增加,表现出对阳生生境更好的适应性。在生境65%全光照时,植株在形态,解剖及生理上均处于最佳状态。因此,65%全光照的生境是毛鹃‘紫萼’的最佳光生境。  相似文献   

9.
When leaves of sugar-beet plants infected with beet yellows virus were sprayed daily with 10% sucrose solution, yellowing symptoms were intensified. When glasshouse plants were shaded so that the light intensity was reduced to less than half of full daylight, yellowing symptoms were suppressed more completely on un-sprayed than on sprayed plants. Spraying with 2–5 % sucrose solution had similar, but slightly smaller effects.
Spraying with sucrose solution increased the carbohydrate content of the leaves, and the effects on symptom intensity and carbohydrate content were closely correlated. The regression coefficients of symptom score on total sugar content were nearly the same for shaded and unshaded plants. As the severity of symptoms was increased by supplying carbohydrate without change in the light conditions, it is concluded that light intensity affects symptom expression by varying the carbohydrate content of the leaves through its influence on photosynthesis.
Sucrose spraying increased the yield of roots of healthy and infected plants, and most of the increase was sucrose. This shows that sprayed sugar was translocated to the roots from the leaves of both healthy and infected plants.
Measurements of changes in carbohydrate content between evening and morning samplings confirmed that movement of carbohydrate out of infected leaves is not stopped by infection.  相似文献   

10.
弱光胁迫对不同基因型玉米生长发育和产量的影响   总被引:54,自引:5,他引:54  
以不同基因型玉米为材料,在玉米生长发育的3个主要阶段(苗期、穗期、粒期)进行分期遮光试验,研究不同时期弱光胁迫对不同基因型玉米生长发育和产量的影响。结果表明,遮光延缓了玉米叶片的出生速度,使叶片变薄;遮光可以延缓叶片的衰老,但遮光解除后则加速叶片的衰老;遮光造成植株高度增加,但恢复正常光照后,其株高却逐渐低于对照;遮光使干物质积累下降,抽雄吐丝日期推迟,尤其是吐丝日期推迟更多,并使产量降低,但不同基因型玉米不同遮光处理下降程度不同。试验的4个品种中,掖单2 2和豫玉2号受遮光影响较小,而掖单36 38和丹玉13受影响较大,即不同基因型玉米对弱光胁迫的敏感性不同  相似文献   

11.
在深度遮光 (光照强度为高光条件的 6 .2 5% ,约为自然光照的 5.3% )或低养分条件下 ,金戴戴 (HalerpestesruthenicaOvcz.)生物量、初级分株叶面积、分株总数、匍匐茎总数和总长度均显著减小 ,而比节间长和比叶柄长显著增加。在低养分条件下 ,金戴戴匍匐茎平均节间长显著增加 ,而匍匐茎分枝强度和分株数显著减小。这些结果与克隆植物觅食模型相符合 ,表明当生长于异质性生境中 ,金戴戴可能通过以克隆生长和克隆形态的可塑性实现的觅养行为来增加对养分资源的摄取。在深度遮光条件下 ,金戴戴平均间隔子长度 (即平均节间长和平均叶柄长 )均显著减小。这一结果与以往实验中匍匐茎草本间隔子对中度和轻度遮光 (光照强度为高光条件的 1 3%~ 75% ,>1 0 %的自然光照 )的反应不同。这表明 ,在深度遮光条件下匍匐茎克隆植物可能不发生通过间隔子可塑性实现的觅光行为。光照强度和基质养分条件的交互作用对许多性状如总生物量、匍匐茎总数和总长度、二级和三级分株数、分株总数、初级分株叶面积以及分枝强度均有十分显著的效应。在高光条件下 ,基质养分对这些性状有十分显著的影响 ;而在低光条件下 ,基质养分条件对这些性状不产生影响或影响较小。这表明 ,光照强度影响金戴戴对基质养分的可塑性反应。在深度遮光  相似文献   

12.
分株数量或生物量比例差异会明显影响克隆系统对资源异质性环境的生态适应性, 地下茎木质化、连接稳固的竹类植物在生长过程中相连克隆分株通常会生活在异质光环境中, 但其叶片光合生理特性对异质光环境的响应及其分株比例效应则未见报道。该研究以地下茎相连的美丽箬竹(Indocalamus decorus)克隆系统为实验材料, 设置2个遮光率(分别为50% ± 5%和75% ± 5%)和3个分株比例(遮光与未遮光分株比例分别为1:3、2:2、3:1)处理, 分株数量为4株。分别测定了遮光处理后30、90、150天遮光和未遮光分株叶片光响应特征、气体交换参数、光合色素含量, 分析了异质光环境下美丽箬竹光合生理的变化规律。结果显示: 分株比例对美丽箬竹光合生理有显著影响, 且其与遮光、处理时间交互作用显著。美丽箬竹克隆系统遮光分株比例越大, 即遮光相对分株数量越多, 其表观量子效率(AQE)、光饱和点、最大净光合速率(Pn max)、净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、水分利用效率越大, 光补偿点暗呼吸速率越小, 其光合效率越高, 光能利用能力越强, 而与之相连的未遮光分株则相反; 随遮光分株比例的增大, 遮光分株叶片叶绿素a、叶绿素b含量呈先升高而后下降的变化趋势, 类胡萝卜素(Car)含量则持续下降, 而与之相连的未遮光分株叶片光合色素含量则呈下降趋势; 遮光率提高, 相同分株比例美丽箬竹克隆系统遮光分株叶片AQE、Pn maxPnGs、胞间CO2浓度(Ci)和光合色素含量总体升高, 而与之相连的未遮光分株叶片Pn maxCi以及Car含量则总体下降。研究结果表明异质光环境下, 遮光分株光合效率和弱光利用能力明显增强, 而未遮光分株则相反, 克隆系统内分株间发生了明显的克隆分工, 且2:2、3:1分株比例克隆系统较1:3分株比例对异质光环境具有更好的适应能力。美丽箬竹克隆系统可通过差异性调节分株光合生理特性和光合色素含量, 提高遮光分株光能利用和光合效率来适应异质光环境, 以提高克隆系统的适合度。  相似文献   

13.
Stomatal frequency in leaves of plants of Iris hollandica, cultivated under four light intensities, about 12%, 37%, 75% and 100% of natural daylight, was studied. The stomatal frequency decreases with lower light intensities. The gradients of stomatal frequency of successive leaves show an increase up to the third or fourth leaf with a subsequent decrease of values up to the highest leaf. The total number of stomata per leaf is not constant; differences exist in successive leaves of a shoot as well as among the leaves of plants growing under various light intensities. The character of gradients was changed at lower light intensities. The largest reaction to the light intensity appeared in leaves with higher stomatal frequency. The gradients in individual leaves depend on the insertion of the leaf. Both the shape and the slope of these gradients are influenced by the light intensity.  相似文献   

14.
遮荫对库拉索芦荟细胞超微结构和芦荟素含量的影响   总被引:6,自引:0,他引:6  
分别用透射电子显微镜技术、高效液相色谱法研究了生长在遮荫和自然光照条件下库拉索芦荟叶片的超微结构和芦荟素含量.电镜观察结果表明,遮荫处理6个月后,库拉索芦荟叶片细胞中叶绿体基粒数量减少,类囊体片层数目减少且排列疏松,质体中原来积累的淀粉粒逐渐减少直至消失;内质网、高尔基体等内膜系统不发达.高效液相色谱分析结果显示,生长在遮荫条件下的库拉索芦荟叶片,芦荟素含量明显低于生长在自然光照下的含量.其中,遮荫下幼叶芦荟素的含量是自然光照下的63.33%,而成熟叶芦荟素含量仅有自然光照下的23.77%.无论自然光下还是遮荫条件下生长的芦荟,芦荟素的含量与叶龄有显著的负相关性,遮荫对成熟叶的影响更大.综合两方面的实验结果认为,遮荫首先影响芦荟叶片细胞内膜系统的发育,进而限制了芦荟素的合成和运输,使芦荟叶片中芦荟素含量降低.  相似文献   

15.
Plants of barley were grown under controlled conditions andthe first or second leaves covered with tubular shades thusreducing the light intensity at the leaf surface to low levels.Expansion of the shaded leaves was not prevented, but appearanceof the next leaf but one and all subsequent leaves on the mainstemwas delayed by up to 3 days. Primordia of the first four leaveswere present in the dry grain. Shade treatment delayed slightlythe initiation of the eighth and subsequent leaves and transitionto the double ridge stage at the mainstem apex. Shading the first leaf caused a temporary reduction in the rateof dry-matter increase of plants, but after 14 days the ratewas similar to that of control plants. Smaller effects werefound when the second leaf was shaded. Dry-matter productionfollowed two logarithmic phases in the period prior to awn emergence,and rates for the whole plant and for plant parts were similarfor control and shaded plants. Thus, apart from the initialperturbation, shading had no effect on growth in terms of rateof dry-weight gain. Shade treatment did not affect weight per grain or numbers ofgrain per ear, but over-all yield of grain was significantlyreduced since shading delayed the appearance of tillers andalso reduced the number of tillers bearing grain. The effectof shade was especially marked on tillers originating on primarytillers. Similar qualitative effects on tiller development werefound in an experiment on wheat.  相似文献   

16.
不同光照对望天树种子萌发和幼苗早期生长的影响   总被引:14,自引:2,他引:14  
在不同光照梯度的人工遮荫和森林生境中,研究了西双版纳季节雨林标志树种望天树的种子萌发和幼苗早期生长特征.结果表明,裸地上的强光照和深度遮荫均不利于望天树种子的萌发,中等程度的遮荫有利于种子萌发.望天树种子萌发率在林窗中央最大,而且萌发迅速,林窗边缘和林下生境不利于种子萌发.幼苗株高、基径和单株叶面积等生长指标均在部分遮荫处理条件下最大;幼苗根冠比在裸地上最高,且随遮荫程度的增加而降低;幼苗比叶面积在一定光照强度范围内随遮荫程度的增加而增大,在3层遮荫最大.除幼苗根冠比以外的其它生长参数均在林窗中央最大.讨论了环境因子(主要是光照强度和光质)对望天树种子萌发和幼苗生长的影响.  相似文献   

17.
The reduction of the biomass of three main problem species of submerged aquatic macrophytes was proportional to the light at the stream surface both under artificially shaded sections of stream and in naturally shaded areas when compared to the biomass in adjacent open and unshaded sections of stream. The effect of marginal vegetation in varying the shading effect given to streams of differing width and orientation are described. It is recommended that light should be reduced to about half that presently available in the open, by shading from marginal vegetation but it is warned that too much shade is detrimental to the fish populations of the stream and leads to accentuated local accumulations of leaves. The long term effects are considered but it is expected that partial shading will increase the diversity of submerged plant species. It is suggested that the practice of stream realignment is discontinued and that the natural tendency of streams to create their own meandering channels is allowed but within some defined and generally acceptable framework.  相似文献   

18.
光照长度对茴香植株生长及精油含量和组分的影响   总被引:1,自引:0,他引:1  
采用人工遮光的方法,设计3个光照长度:从15:00遮光、17:00遮光和不遮光,研究不同光照长度对茴香生长和精油含量及组分的影响。结果表明:茴香株高、植株节数、鲜重均以17:00遮光较高,不遮光次之,15:00遮光较低;茴香植株干重、全碳含量、可溶性糖含量、叶绿素a含量、叶绿素b含量、类胡萝卜素含量和叶绿素a/叶绿素b均随光照长度的增加而增加;全氮含量、蛋白氮含量随光照长度的增加而减小;精油含量(0.61-1.20mL.(100g)-1DM)、单株精油产量(0.007-0.021mL)随光照长度的增加而增加,且处理间差异显著。精油共鉴定出22种成分,不同光照长度处理的茴香精油成分种类没有差别,且大多数成分的相对含量差异不显著。精油第一主要成分反式-茴香脑含量为47.40%-48.51%,第二主要成分柠檬烯含量为31.69%-33.26%,处理之间差异均不显著。  相似文献   

19.
To copy with highly heterogeneous light environment, plants can regulate photosynthesis locally and systemically, thus, maximizing the photosynthesis of individual plants. Therefore, we speculated that local weak light may induce the improvement of photosynthesis in adjacent illuminated leaves in plants. In order to test this hypothesis, maize seedlings were partially shaded, and gas exchange, chlorophyll a fluorescence and biochemical analysis were carefully assessed. It was shown that local shading exacerbated the declines in the photosynthetic rates, chlorophyll contents, electron transport and carbon assimilation‐related enzyme activities in shaded leaves as plants growth progressed. While, the decreases of these parameters in adjacent illuminated leaves of shaded plants were considerably alleviated compared to the corresponding leaves of control plants. Obviously, the photosynthesis in adjacent illuminated leaves in shaded plants was improved by local shading, and the improvement in adjacent lower leaves was larger than that in adjacent upper ones. As growth progressed, local shading induced higher abscisic acid contents in shaded leaves, but it alleviated the increase in the abscisic acid contents in adjacent leaves in shaded plants. Moreover, the difference in sugar content between shaded leaves and adjacent illuminated ones was gradually increased. Consequently, local weak light suppressed the photosynthesis in shaded leaves, while it markedly improved the photosynthesis of adjacent illuminated ones. Sugar gradient between shaded leaves and adjacent illuminated ones might play a key role in photosynthetic regulation of adjacent illuminated leaves.  相似文献   

20.
The effect of natural shading on photosynthetic capacity and chloroplast thylakoid membrane function was examined in soybean (Glycine max. cv Young) under field conditions using a randomized complete block design. Seedlings were thinned to 15 plants per square meter at 20 days after planting. Leaves destined to function in the shaded regions of the canopy were tagged during early expansion at 40 days after planting. To investigate the response of shaded leaves to an increase in available light, plants were removed from certain plots at 29 or 37 days after tagging to reduce the population from 15 to three plants per square meter and alter the irradiance and spectral quality of light. During the transition from a sun to a shade environment, maximum photosynthesis and chloroplast electron transport of control leaves decreased by two- to threefold over a period of 40 days followed by rapid senescence and abscission. Senescence and abscission of tagged leaves were delayed by more than 4 weeks in plots where plant populations were reduced to three plants per square meter. Maximum photosynthesis and chloroplast electron transport activity were stabilized or elevated in response to increased light when plant populations were reduced from 15 to three plants per square meter. Several chloroplast thylakoid membrane components were affected by light environment. Cytochrome f and coupling factor protein decreased by 40% and 80%, respectively, as control leaves became shaded and then increased when shaded leaves acclimated to high light. The concentrations of photosystem I (PSI) and photosystem II (PSII) reaction centers were not affected by light environment or leaf age in field grown plants, resulting in a constant PSII/PSI ratio of 1.6 ± 0.3. Analysis of the chlorophyll-protein composition revealed a shift in chlorophyll from PSI to PSII as leaves became shaded and a reversal of this process when shaded leaves were provided with increased light. These results were in contrast to those of soybeans grown in a growth chamber where the PSII/PSI ratio as well as cytochrome f and coupling factor protein levels were dependent on growth irradiance. To summarize, light environment regulated both the photosynthetic characteristics and the timing of senescence in soybean leaves grown under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号