首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural basis of replication origin recognition by the DnaA protein   总被引:7,自引:0,他引:7  
Escherichia coli DnaA binds to 9 bp sequences (DnaA boxes) in the replication origin, oriC, to form a complex initiating chromosomal DNA replication. In the present study, we determined the crystal structure of its DNA-binding domain (domain IV) complexed with a DnaA box at 2.1 Å resolution. DnaA domain IV contains a helix–turn–helix motif for DNA binding. One helix and a loop of the helix– turn–helix motif are inserted into the major groove and 5 bp (3′ two-thirds of the DnaA box sequence) are recognized through base-specific hydrogen bonds and van der Waals contacts with the C5-methyl groups of thymines. In the minor groove, Arg399, located in the loop adjacent to the motif, recognizes three more base pairs (5′ one-third of the DnaA box sequence) by base-specific hydrogen bonds. DNA bending by ~28° was also observed in the complex. These base-specific interactions explain how DnaA exhibits higher affinity for the strong DnaA boxes (R1, R2 and R4) than the weak DnaA boxes (R3 and M) in the replication origin.  相似文献   

2.
Aminoacyl-tRNA synthetases (aaRSs) attach amino acids to their cognate transfer RNAs. In eukaryotes, a subset of cytosolic aaRSs is organized into a multisynthetase complex (MSC), along with specialized scaffolding proteins referred to as aaRS-interacting multifunctional proteins (AIMPs). In Plasmodium, the causative agent of malaria, the tRNA import protein (tRip), is a membrane protein that participates in tRNA trafficking; we show that tRip also functions as an AIMP. We identified three aaRSs, the glutamyl-tRNA synthetase (ERS), glutaminyl-tRNA synthetase (QRS), and methionyl-tRNA synthetase (MRS), which were specifically coimmunoprecipitated with tRip in Plasmodium berghei blood stage parasites. All four proteins contain an N-terminal glutathione-S-transferase (GST)–like domain that was demonstrated to be involved in MSC assembly. In contrast to previous studies, further dissection of GST-like interactions identified two exclusive heterotrimeric complexes: the Q-complex (tRip–ERS–QRS) and the M-complex (tRip–ERS–MRS). Gel filtration and light scattering suggest a 2:2:2 stoichiometry for both complexes but with distinct biophysical properties and mutational analysis further revealed that the GST-like domains of QRS and MRS use different strategies to bind ERS. Taken together, our results demonstrate that neither the singular homodimerization of tRip nor its localization in the parasite plasma membrane prevents the formation of MSCs in Plasmodium. Besides, the extracellular localization of the tRNA-binding module of tRip is compensated by the presence of additional tRNA-binding modules fused to MRS and QRS, providing each MSC with two spatially distinct functions: aminoacylation of intraparasitic tRNAs and binding of extracellular tRNAs. This unique host–pathogen interaction is discussed.  相似文献   

3.
DNA-binding properties of ARID family proteins   总被引:7,自引:0,他引:7  
The ARID (A–T Rich Interaction Domain) is a helix–turn–helix motif-based DNA-binding domain, conserved in all eukaryotes and diagnostic of a family that includes 15 distinct human proteins with important roles in development, tissue-specific gene expression and proliferation control. The 15 human ARID family proteins can be divided into seven subfamilies based on the degree of sequence identity between individual members. Most ARID family members have not been characterized with respect to their DNA-binding behavior, but it is already apparent that not all ARIDs conform to the pattern of binding AT-rich sequences. To understand better the divergent characteristics of the ARID proteins, we undertook a survey of DNA-binding properties across the entire ARID family. The results indicate that the majority of ARID subfamilies (i.e. five out of seven) bind DNA without obvious sequence preference. DNA-binding affinity also varies somewhat between subfamilies. Site-specific mutagenesis does not support suggestions made from structure analysis that specific amino acids in Loop 2 or Helix 5 are the main determinants of sequence specificity. Most probably, this is determined by multiple interacting differences across the entire ARID structure.  相似文献   

4.
5.
CmABCB1 is a homologue of human P‐glycoprotein, which extrudes various substrates by iterative cycles of conformational changes between the inward‐ and outward‐facing states. Comparison of the inward‐ and outward‐facing structures of CmABCB1 suggested that pivotal joints in the transmembrane domain regulate the tilt of transmembrane helices. Transmembrane helix 1 (TM1) forms a tight helix–helix contact with TM3 at the TM1–3 joint. Mutation of Gly132 to valine at the TM1–3 joint, G132V, caused a 10‐fold increase in ATPase activity, but the mechanism underlying this change remains unclear. Here, we report a crystal structure of the outward‐facing state of the CmABCB1 G132V mutant at a 2.15 Å resolution. We observed structural displacements between the outward‐facing states of G132V and the previous one at the region around the TM1–3 joint, and a significant expansion at the extracellular gate. We hypothesize that steric hindrance caused by the Val substitution shifted the conformational equilibrium toward the outward‐facing state, favoring the dimeric state of the nucleotide‐binding domains and thereby increasing the ATPase activity of the G132V mutant.  相似文献   

6.
Assembly of bacterial 30S ribosomal subunits requires structural rearrangements to both its 16S rRNA and ribosomal protein components. Ribosomal protein S4 nucleates 30S assembly and associates rapidly with the 5′ domain of the 16S rRNA. In vitro, transformation of initial S4–rRNA complexes to long-lived, mature complexes involves refolding of 16S helix 18, which forms part of the decoding center. Here we use targeted mutagenesis of Geobacillus stearothermophilus S4 to show that remodeling of S4–rRNA complexes is perturbed by ram alleles associated with reduced translational accuracy. Gel mobility shift assays, SHAPE chemical probing, and in vivo complementation show that the S4 N-terminal extension is required for RNA binding and viability. Alanine substitutions in Y47 and L51 that interact with 16S helix 18 decrease S4 affinity and destabilize the helix 18 pseudoknot. These changes to the protein–RNA interface correlate with no growth (L51A) or cold-sensitive growth, 30S assembly defects, and accumulation of 17S pre-rRNA (Y47A). A third mutation, R200A, over-stabilizes the helix 18 pseudoknot yet results in temperature-sensitive growth, indicating that complex stability is finely tuned by natural selection. Our results show that early S4–RNA interactions guide rRNA folding and impact late steps of 30S assembly.  相似文献   

7.
Developmentally Regulated GTP-binding (DRG) proteins are highly conserved GTPases that associate with DRG Family Regulatory Proteins (DFRP). The resulting complexes have recently been shown to participate in eukaryotic translation. The structure of the Rbg1 GTPase, a yeast DRG protein, in complex with the C-terminal region of its DFRP partner, Tma46, was solved by X-ray diffraction. These data reveal that DRG proteins are multimodular factors with three additional domains, helix–turn–helix (HTH), S5D2L and TGS, packing against the GTPase platform. Surprisingly, the S5D2L domain is inserted in the middle of the GTPase sequence. In contrast, the region of Tma46 interacting with Rbg1 adopts an extended conformation typical of intrinsically unstructured proteins and contacts the GTPase and TGS domains. Functional analyses demonstrate that the various domains of Rbg1, as well as Tma46, modulate the GTPase activity of Rbg1 and contribute to the function of these proteins in vivo. Dissecting the role of the different domains revealed that the Rbg1 TGS domain is essential for the recruitment of this factor in polysomes, supporting further the implication of these conserved factors in translation.  相似文献   

8.
Caenorhabditis elegans GLD-3 is a five K homology (KH) domain-containing protein involved in the translational control of germline-specific mRNAs during embryogenesis. GLD-3 interacts with the cytoplasmic poly(A)-polymerase GLD-2. The two proteins cooperate to recognize target mRNAs and convert them into a polyadenylated, translationally active state. We report the 2.8-Å-resolution crystal structure of a proteolytically stable fragment encompassing the KH2, KH3, KH4, and KH5 domains of C. elegans GLD-3. The structure reveals that the four tandem KH domains are organized into a globular structural unit. The domains are involved in extensive side-by-side interactions, similar to those observed in previous structures of dimeric KH domains, as well as head-to-toe interactions. Small-angle X-ray scattering reconstructions show that the N-terminal KH domain (KH1) forms a thumb-like protrusion on the KH2–KH5 unit. Although KH domains are putative RNA-binding modules, the KH region of GLD-3 is unable in isolation to cross-link RNA. Instead, the KH1 domain mediates the direct interaction with the poly(A)-polymerase GLD-2, pointing to a function of the KH region as a protein–protein interaction platform.  相似文献   

9.
10.
A new insertion variant belonging to the family IS231, designated IS231I, was isolated from a mosquito larvicidal strain of the Bacillus thuringiensis serovar sotto (H4ab). IS231I was 1653 bp long and delimited by two 20 bp inverted repeats with one mismatch, flanked by two perfect 11 bp direct repeats. The element contained a single open reading frame (ORF) encoding 478 amino acids and five conserved domains: N1, N2, N3, C1, and C2. The 5′ noncoding region upstream of the ORF, presumed to form a stable stem-and-loop structure, was highly conserved in IS231I. The secondary structure conformation had a deduced free energy (ΔG = 25°C) of −17.2 kcal/mol. Comparison of the IS231I amino acid sequence with those of the 10 existing IS variants revealed that the new variant shares 89% identity with IS231A and IS231B, 65–66% with IS231M and IS231N, and 38% with IS231W.  相似文献   

11.
Proteins that participate in the import of cytosolic tRNAs into mitochondria have been identified in several eukaryotic species, but the details of their interactions with tRNA and other proteins are unknown. In the kinetoplastid protozoon Leishmania tropica, multiple proteins are organized into a functional import complex. RIC8A, a tRNA-binding subunit of this complex, has a C-terminal domain that functions as subunit 6b of ubiquinol cytochrome c reductase (complex III). We show that the N-terminal domain, unique to kinetoplastid protozoa, is structurally similar to the appended S15/NS1 RNA-binding domain of aminoacyl tRNA synthetases, with a helix–turn–helix motif. Structure-guided mutagenesis coupled with in vitro assays showed that helix α1 contacts tRNA whereas helix α2 targets the protein for assembly into the import complex. Inducible expression of a helix 1-deleted variant in L. tropica resulted in formation of an inactive import complex, while the helix 2-deleted variant was unable to assemble in vivo. Moreover, a protein-interaction assay showed that the C-terminal domain makes allosteric contacts with import receptor RIC1 complexed with tRNA. These results help explain the origin of the bifunctionality of RIC8A, and the allosteric changes accompanying docking and release of tRNA during import.  相似文献   

12.
We recently proposed a model for targeted, conservative cointegrate formation between DNA molecules each containing a copy of IS26, that involves Tnp26‐catalyzed strand exchange occurring at either the two left ends or the two right ends of the IS. Here, this model was validated by altering the bases at the outer left terminus, right terminus or both termini of one IS26. The correct bases at both ends were required in the untargeted replicative mode. However, when only one end was altered in one participating IS the frequency of targeted, conservative cointegrate formation was not reduced. The distribution of the altered bases in the cointegrates confirmed that the reaction occurred at the end where the terminal bases of both IS were correct, and cointegrates were not formed when both ends of the same IS were altered. The terminal bases of the active IS26 were also required to support deletion of the aphA1a translocatable unit (TU) from Tn4352B. The choices made by an incoming TU with a wild‐type IS26 when the target plasmid included one wild‐type IS26 and one with a frameshift in tnp26 demonstrated that Tnp26 exhibits a strong preference for cis action.  相似文献   

13.
Members of the 14-3-3 superfamily regulate numerous cellular functions by binding phosphoproteins. The seven human isoforms (and the myriad of other eukaryotic 14-3-3 proteins) are highly conserved in amino acid sequence and secondary structure, yet there is abundant evidence that the various isoforms manifest disparate as well as common functions. Several of the human 14-3-3 isoforms are dysregulated in certain cancers and thus have been implicated in oncogenesis; experimentally, 14-3-3γ behaves as an oncogene, whereas 14-3-3σ acts as a tumor suppressor. In this study, we sought to localize these opposing phenotypes to specific regions of the two isoforms and then to individual amino acids therein. Using a bioinformatics approach, six variable regions (VRI–VRVI) were identified. Using this information, two sets of constructs were created in which N-terminal portions (including either VRI–IV or only VRI and VRII) of 14-3-3γ and 14-3-3σ were swapped; NIH3T3 cells overexpressing the four chimeric proteins were tested for transformation activity (focus formation, growth in soft agar) and activation of PI3K and MAPK signaling. We found that the specific phenotypes of 14-3-3γ are associated with the N-terminal 40 amino acids (VRI and VRII); in like fashion, VRI and VRII of 14-3-3σ dictated its tumor suppressor function. Using individual amino acid substitutions within the 14-3-3γ VRII, we identified two residues required for and two contributing to the γ-specific phenotypes. Our observations suggest that isoform-specific phenotypes are dictated by a relatively few amino acids within variable regions.  相似文献   

14.
15.
16.
Histones are among the most conserved proteins known, but organismal differences do exist. In this study, we examined the contribution that divergent amino acids within histone H3 make to cell growth and chromatin structure in Saccharomyces cerevisiae. We show that, while amino acids that define histone H3.3 are dispensable for yeast growth, substitution of residues within the histone H3 α3 helix with human counterparts results in a severe growth defect. Mutations within this domain also result in altered nucleosome positioning, both in vivo and in vitro, which is accompanied by increased preference for nucleosome-favoring sequences. These results suggest that divergent amino acids within the histone H3 α3 helix play organismal roles in defining chromatin structure.  相似文献   

17.
Protein–protein interactions are crucial in biology and play roles in for example, the immune system, signaling pathways, and enzyme regulation. Ultra‐high affinity interactions (K d <0.1 nM) occur in these systems, however, structures and energetics behind stability of ultra‐high affinity protein–protein complexes are not well understood. Regulation of the starch debranching barley limit dextrinase (LD) and its endogenous cereal type inhibitor (LDI) exemplifies an ultra‐high affinity complex (K d of 42 pM). In this study the LD–LDI complex is investigated to unveil how robust the ultra‐high affinity is to LDI sequence variation at the protein–protein interface and whether alternative sequences can retain the ultra‐high binding affinity. The interface of LD–LDI was engineered using computational protein redesign aiming at identifying LDI variants predicted to retain ultra‐high binding affinity. These variants present a very diverse set of mutations going beyond conservative and alanine substitutions typically used to probe interfaces. Surface plasmon resonance analysis of the LDI variants revealed that high affinity of LD–LDI requires interactions of several residues at the rim of the protein interface, unlike the classical hotspot arrangement where key residues are found at the center of the interface. Notably, substitution of interface residues in LDI, including amino acids with functional groups different from the wild‐type, could occur without loss of affinity. This demonstrates that ultra‐high binding affinity can be conferred without hotspot residues, thus making complexes more robust to mutational drift in evolution. The present mutational analysis also demonstrates how energetic coupling can emerge between residues at large distances at the interface.  相似文献   

18.
19.
20.
Hho1p is assumed to serve as a linker histone in Saccharomyces cerevisiae and, notably, it possesses two putative globular domains, designated HD1 (residues 41–118) and HD2 (residues 171–252), that are homologous to histone H5 from chicken erythrocytes. We have determined the three-dimensional structure of globular domain HD1 with high precision by heteronuclear magnetic resonance spectroscopy. The structure had a winged helix–turn–helix motif composed of an αβααββ fold and closely resembled the structure of the globular domain of histone H5. Interestingly, the second globular domain, HD2, in Hho1p was unstructured under physiological conditions. Gel mobility assay demonstrated that Hho1p preferentially binds to supercoiled DNA over linearized DNA. Furthermore, NMR analysis of the complex of a deletion mutant protein (residues 1–118) of Hho1p with a linear DNA duplex revealed that four regions within the globular domain HD1 are involved in the DNA binding. The above results suggested that Hho1p possesses properties similar to those of linker histones in higher eukaryotes in terms of the structure and binding preference towards supercoiled DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号