首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The changes of adenine nucleotide and adenylate energy charge (AEC) during the development of mitochondria in imbibed mung bean cotyledons and the relationship between these changes and cellular energy status are studied. After cotyledons were imbibed in water for two hours, mitochondrial cristae were not observed, but for 12 hours, they appeared obviously on the inner membrane. With the structural integrity of the mitochondria, the functional mitochondria were graduately shown. For instance, the activity of H+-ATPase of cotyledons imbibed for 24 hours was about twice higher than that of 2 hours. The ATP content and the AEC value in the cotyledons imbibed for 24 hours increased sharply and the AMP decreased, but these were not observed in the mitochondria of the cotyledons imbibed either for 24 hours or 2 hours. When the cotyledons were imbibed in 1 × 10-4 mol/l or 5 × 10-4 mol/l DNP solution for 24 hours, the ATP and the AEC in the Cells exhibited a rapid decrease, but in the mitochondria they remained canstant. In the same DNP solution with cotyledons for 24 hours, the activity of mitochondrial adenylate kinase (AK) not only was not decreased but also increased by about 50% over the control. This result shows that the energy equilibration in the mitochondria seems likely to be regulated by adenylate kinase locating between inner and out membranes of the mitochondria.  相似文献   

2.
SUCCINATE DEHYDROGENASE (SUCCINATE: phenazine methosulfate oxidoreductase, EC 1.3.99.1) activity in crude mitochondrial fraction from pea (var. Alaska) cotyledons increased during seed imbibition to reach a maximum after about 12 hours. The increase was not inhibited by either cycloheximide or d(-)threo-chloramphenicol. The postmicrosomal fraction from dry cotyledons, but not that from fully imbibed ones, contained a soluble form of succinate dehydrogenase. The soluble enzyme was partially purified by ammonium sulfate fractionation and diethylaminoethyl-cellulose and Sepharose 6B column chromatography. The enzyme showed no succinate-coenzyme Q oxidoreductase activity and had a molecular mass of about 100,000 daltons. The soluble enzyme seemed to differ only slightly from succinate dehydrogenase solubilized from the mitochondrial inner membrane from fully imbibed cotyledons by a detergent. It is proposed that the soluble succinate dehydrogenase is associated with an inert mitochondrial inner membrane in dry cotyledons to form an active one during seed imbibition.  相似文献   

3.
Development of mitochondrial activities (state 3 respiration,respiratory control ratio, ADP/O ratio) in peanut cotyledonsoccurs over the first 5 d from the start of imbibition. Mitochondriain cotyledons with the axis attached develop better than inthose from which the axis has been removed. Initially, mitochondriaare deficient in cytochrome c, but after 2 d from the startof imbibition this deficiency is overcome. Mitochondrial developmentin attached cotyledons, as measured by state 3 respiration,respiratory control ratio, ADP/O ratio, and succinate dehydrogenaseand cytochrome oxidase activities, is severely impaired by cycloheximide.This indicates that de novo synthesis of proteins is necessaryfor mitochondria and their enzymes to develop, a situation whichis in sharp contrast to the situation in pea cotyledons. Electronmicroscope studies also show that there is an increase in thenumbers of mitochondria in peanut cotyledons with time afterthe start of imbibition. Two patterns of mitochondrial developmentexist in legumes: in imbibed peanut cotyledons respiratory activitiesincrease due to biogenesis of mitochondria, whereas in pea cotyledonsthe increases are due to improvement of pre-existing organelles  相似文献   

4.
Mitochondrial biogenesis and metabolism were investigated during maize (Zea mays) seed germination. Mitochondria from dry and imbibed seed exhibited NADH-dependent O(2) uptake that was completely inhibited by KCN and antimycin A. Mitochondria in the dry seed had a lower rate of succinate-dependent O(2) uptake relative to that measured in imbibed and germinated seed. The activities of the tricarboxylic acid (TCA) cycle enzymes, pyruvate dehydrogenase complex, 2-oxoglutarate dehydrogenase complex, NAD-malic enzyme, and citrate synthase, are similarly low in mitochondria from dry seed and this correlates with a lower relative abundance of the mitochondrial matrix-located citrate synthase and pyruvate dehydrogenase complex E1alpha-subunit polypeptides. Electron microscopy revealed that mitochondria in the dry seed have a poorly developed internal membrane structure with few cristae; following 24 h of germination the mitochondria developed a more normal structure with more developed cristae. The mitochondria from maize embryos could be fractionated into two subpopulations by Suc density gradient centrifugation: one subpopulation of buoyant density equivalent to 22% to 28% (w/w) Suc; the other equivalent to 37% to 42% (w/w) Suc. These two subpopulations had different activities of specific mitochondrial enzymes and contained different amounts of specific mitochondrial proteins as revealed by western-blot analysis. Both subpopulations from the dry embryo were comprised of poorly developed mitochondria. However, during imbibition mitochondria in the heavy fraction (37%-42% [w/w] Suc) progressively acquired characteristics of fully functional mitochondria found in the germinated seedling in terms of structure, enzymic activity, and protein complement. In contrast, mitochondria in the light fraction (22% to 28% [w/w] Suc) show no significant structural change during imbibition and the amounts of specific mitochondrial proteins decreased significantly during germination.  相似文献   

5.
Sato S  Asahi T 《Plant physiology》1975,56(6):816-820
An attempt to isolate intact mitochondria from dry pea seeds (Pisum sativum var. Alaska) ended in failure. Cytochrome oxidase in crude mitochondrial fraction from dry seeds was separated into three fractions by sucrose density gradient centrifugation. Two of the fractions contained malate dehydrogenase, whereas the other did not. Equilibrium centrifugation of mitochondrial membrane on sucrose gradients revealed that the membrane from the fraction without malate dehydrogenase was lighter than that from the others. Differences were observed in relative content of phospholipid to protein and in polypeptide composition analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis among the membranes from three fractions and imbibed cotyledons. Membrane from the fraction without malate dehydrogenase was rich in phospholipid and lacking in polypeptides with relatively high molecular weights as compared with that from others. During imbibition, the fraction without malate dehydrogenase and one of the other two disappeared rapidly after a lag phase lasting for at least 1 hour. Concomitantly, active and stable mitochondria increased in the cotyledons. The results were interpreted to indicate that there were at least three types of mitochondria in dry seeds, the membranes of which differed in their biochemical properties, and that the mitochondria became active and stable through assembly of protein into the membranes during imbibition.  相似文献   

6.
1. Respiration of mitochondria, membrane potential and mitochondrial ATPase under energized conditions were studied in rat myocardium during cell injury induced by treatment with isoproterenol. 2. Increase in the state 4 rate of respiration and ADP:O ratio, as well as decrease in the state 3 rate and Respiratory Control Ratio (RCR) were found. 3. The optimum pH for RCR and for maximum ATPase activity was shifted to lower values. 4. The state 3 respiration was more sensitive to oligomycin inhibition. 5. The mitochondria showed lower ability to generate membrane potential. 6. An increase in the K0.5 values for catalytic sites II and III of mitochondrial ATPase at pH 7.4 and 5.5 was found. 7. These results are consistent with alterations on the integrity of mitochondrial membrane, and corroborate with the hypothesis of changes on the mitochondrial ATPase during isoproterenol-induced cell injury of myocardium.  相似文献   

7.
Electron microscopic observation indicated that the mitochondrial membrane of pea cotyledon gradually developed into integral structure during seeds imbibition. ATP-synthesizing activity of H+-ATPase increased in company with mitochondrial development, but the content of F1-ATPase subunits was not different on the mitochondria of cotyledon imbibed for 6 hours and for 24 hours in water. After cotyledon was imbibed at low temperature, the content of γ and β subunits of F1-ATPase was distinctly reduced with the inhibition of H+-ATPase activity.  相似文献   

8.
The effects of salicylic acid (SA) on mitochondrial respiration and generation of membrane potential across the inner membrane of mitochondria isolated from stored taproots of sugar beet (Beta vulgaris L.) and etiolated seedling cotyledons of yellow lupine (Lupinus luteus L.) were studied. When malate was oxidized in the presence of glutamate, low SA concentrations (lower than 1.0 mM) exerted predominantly uncoupling action on the respiration of taproot mitochondria: they activated the rate of oxygen uptake in State 4 (in the absence of ADP) and did not affect oxidation in State 3 (in the presence of ADP). In contrast, in lupine cotyledon mitochondria these SA concentrations inhibited oxygen uptake in the presence of ADP and much weaker activated substrate oxidation in State 4. Thus, SA (0.5 mM) reduced the respiratory control ratio according to Chance (RCR) by 25% in the taproots and 35% in cotyledons. When the concentration of phytohormone was increased (above 1.0 mM), malate oxidation in State 3 was inhibited and in State 4 — activated independently of the plant material used. In this case, the values of RCR and ADP/O were reduced by 50–60%. The effect of high SA concentrations (2 mM and higher) on malate oxidation depended on the duration of incubation and had a biphasic pattern: the initial activation of oxygen uptake was later replaced by its inhibition. The parallel studying the SA effect on the generation of membrane potential (ΔΨ) at malate oxidation in the mitochondria of beet taproots and lupine cotyledons showed that ΔΨ dissipation was observed because of SA uncoupling and inhibiting action on respiration. The degree of ΔΨ dissipation depended on the phytohormone concentration and duration on mitochondria treatment, especially at its high concentrations. In general, a correlation was found between the effects of SA on mitochondrial respiration and ΔΨ values in the coupling membranes. Furthermore, these results show that the responses of mitochondria to SA were determined not only by its concentration but also by treatment duration and evidently by the sensitivity to the phytohormone of mitochondria isolated from different plant tissues.  相似文献   

9.
Mitochondria isolated from 5-day-old pea cotyledons had lowrespiration activity and did not respond to exogenous ADP, whilethose from 1-day-old cotyledons respired actively and respondedto ADP. The former mitochondria, but not the latter, were verysusceptible to destruction during extraction and purification.The mitochondrial inner membrane isolated from 5-day-old cotyledonswas less dense than that from 1-day-old cotyledons. The specificactivity of SDH in the former membrane was lower than that inthe latter, while both membranes were similar to each otherwith respect to the specific activity of Cyt ox. Disc electrophoresisof solubilized membrane on polyacrylamide gel containing SDSshowed that the mitochondrial inner membrane from 5-day-oldcotyledons contained lesser amounts of several polypeptidescompared with that from 1-day-old cotyledons. Such alterationsin the mitochondrial inner membrane were not observed with theexcised cotyledons cultivated for 5 days. (Received June 17, 1977; )  相似文献   

10.
Mitochondria in 4-hour imbibed and desiccated pea cotyledons develop in a similar manner upon rehydration to those in cotyledons hydrated only once. As a consequence of desiccation during imbibition, mitochondria revert to their original state as in the mature dry cotyledon, although limited damage occurs. This damage is more evident when the initial imbibition time before desiccation is longer. The presence of the axis does not protect cotyledonary mitochondria from damage, nor does it influence mitochondrial development upon rehydration of desiccated cotyledons. During the early hours after the start of imbibition mitochondrial development is dependent both upon hydration levels of the cotyledon and upon other metabolic processes, as shown by sensitivity to conditions that prevent ATP synthesis.  相似文献   

11.
暗中培养的绿豆幼苗子叶在萌发后3—4天时,外观出现衰老征状,6天后子叶凋落。随子叶日龄的增加,子叶的呼吸强度一直下降,呼吸商始终小于1。当外加L—苹果酸、a—酮戊二酸、琥珀酸和NADH为底物测定离体线粒体氧化活性时,衰老子叶的线粒体对上述四种底物的氧化活性有不同程度的增加;抗氰呼吸也有所升高。子叶衰老时,线粒体的ADP/O和呼吸控制(RC值均降低);线粒体ATPase水解ATP的活性升高。衰老绿豆子叶线粒体氧化磷酸化偶联效率的降低和ATPase水解活性的增强是与线粒体结构改变相联系的一种功能变化,它导致能量亏缺,并进一步加速了衰老的恶化进程。  相似文献   

12.
There are two types of mitochondria present in imbibed peanut cotyledons: a light type (density 1.182 grams per cubic centimeter) and a heavy type (density 1.205 grams per cubic centimeter). The membrane fractions from these two types can be distinguished using sucrose density gradient analysis, and differences in membrane density between the light and heavy types are reflected in differences in their protein N and phospholipid P composition. With increasing time after imbibition, there is a substantial increase in the amount and activity of the light type of mitochondria due to their de novo synthesis. The membrane density of the light mitochondrial fraction declines over 5 days after the start of imbibition as the phospholipid P to protein N ratio increases. The heavy mitochondrial fraction declines during the first 3 days after the start of imbibition, and then it remains at a low, but constant, level thereafter. Even during the decline, however, there is synthesis of proteins comparable to that into light mitochondria. The mitochondrial biogenesis that has been observed in peanut cotyledons is of the light type, the function and physiological importance of the minor heavy type is not known.  相似文献   

13.
Respiratory control ratio (RCR), ADP: O and oxygen uptake by isolated mitochondria from cotyledons of the genus Pisum were studied. It is shown that in P. sativum the embryonic axis has a slight effect on the behaviour of the mitochondria in the cotyledons, accelerating their degeneration. The inducing factor is transferred within 1 hr from the onset of imbibition from the axis to the cotyledon. In P. elatius the embryonic axis completely lacked an effect on the mitochondria in the cotyledons. Mitochondria in P. elatius seemed to be highly organized and not leaky.  相似文献   

14.
A partially purified fraction SVc and a purified homogeneous polypeptide SVIII were isolated from the scorpion (Buthus martensii Kashi) venom, collected in Shan Dong Province of China. SVc decreased the RCR, ADP/O and Qo2 of the rat brain mitochondria. It also decreased the cytochrome oxidase activity and increased the membrane lipid fluidity of the mitochondria. Effect of scorpion venom on the rat heart mitochondria was somewhat different from that of rat brain mitochondria. SVc also decreased RCR, ADP/O and increased the membrane lipid fluidity of heart mitochondria. However, the Qo2 and cytochrome oxidase activity were increased. SVIII has a similar effect on the rat brain and heart mitochondria, but its concentration used is only 1/10 of the effective concentration of SVc.  相似文献   

15.
The frequency of contacts between the mitochondrial envelope membranes was determined in freeze-fractured samples of isolated mitochondria by means of quantifying the frequency of fracture plane deflections between the two membranes. It was observed that the formation of contacts correlated with the concentration of free ADP despite of inhibition of electron transport by antimycin A. The activity of ATPase partially inhibited by oligomycin or depletion of membrane potential by K+ and valinomycin had no effect on the induction of the contacts by ADP. ATP was ineffective in creating contacts irrespective of the presence or absence of a membrane potential, whereas carboxyatractyloside induced the contacts under all conditions in a manner similar to ADP. These results suggest the involvement of the ATP/ADP translocator in regulation of contact sites. As a consequence, we analyzed its distribution in the inner membrane of kidney and liver mitochondria by binding of [3H]atractyloside to subfractions of this membrane. The experiments demonstrated that the translocator was located in the peripheral part of the inner membrane as well as in the portion which formed the cristae.  相似文献   

16.
The effect of removal of the embryo on the properties of mitochondriain pea cotyledons was investigated. During imbibition of theseeds, mitochondrial activity was enhanced in the cotyledons.In later stages of germination, respiratory activity of themitochondria decreased gradually, and no response of the mitochondriato exogenous ADP was observed. Moreover, considerable activityof cytochrome oxidase wasrecovered in the post-mitochondrialfraction. Mitochondrial fractions isolated from senescent cotyledonscontained only fragmented particles of mitochondria. On theother hand, in cotyledons excised from the seeds and cultivatedunder wet condition, the initial development of mitochondriademonstrated in the attached cotyledons was suppressed. However,respiratory activity of the mitochondria increased in the laterstages of cultivation. The mitochondria remained unfragmentedand responded to exogenous ADP during all stages of cultivation.Also, a change in the density of mitochondria which occurredin the germinating attached cotyledons was delayed in the cultivatedexcised cotyledons. (Received February 27, 1973; )  相似文献   

17.
The mechanism of Cr(VI)-induced toxicity in plants and animals has been assessed for mitochondrial bioenergetics and membrane damage in turnip root and rat liver mitochondria. By using succinate as the respiratory substrate, ADP/O and respiratory control ratio (RCR) were depressed as a function of Cr(VI) concentration. State 3 and uncoupled respiration were also depressed by Cr(VI). Rat mitochondria revealed a higher sensitivity to Cr(VI), as compared to turnip mitochondria. Rat mitochondrial state 4 respiration rate triplicated in contrast to negligible stimulation of turnip state 4 respiration. Chromium(VI) inhibited the activity of the NADH-ubiquinone oxidoreductase (complex I) from rat liver mitochondria and succinate-dehydrogenases (complex II) from plant and animal mitochondria. In rat liver mitochondria, complex I was more sensitive to Cr(VI) than complex II. The activity of cytochrome c oxidase (complex IV) was not sensitive to Cr(VI). Unique for plant mitochondria, exogenous NADH uncoupled respiration was unaffected by Cr(VI), indicating that the NADH dehydrogenase of the outer leaflet of the plant inner membrane, in addition to complexes III and IV, were insensitive to Cr(VI). The ATPase activity (complex V) was stimulated in rat liver mitochondria, but inhibited in turnip root mitochondria. In both, turnip and rat mitochondria, Cr(VI) depressed mitochondrial succinate-dependent transmembrane potential (Deltapsi) and phosphorylation efficiency, but it neither affected mitochondrial membrane permeabilization to protons (H+) nor induced membrane lipid peroxidation. However, Cr(VI) induced mitochondrial membrane permeabilization to K+, an effect that was more pronounced in turnip root than in rat liver mitochondria. In conclusion, Cr(VI)-induced perturbations of mitochondrial bioenergetics compromises energy-dependent biochemical processes and, therefore, may contribute to the basal mechanism underlying its toxic effects in plant and animal cells.  相似文献   

18.
The potential protective action of 1,4-dihydropyridine derivatives (cerebrocrast, gammapyrone, glutapyrone, and diethone) against oxidative stress was assessed on mitochondrial bioenergetics, inner membrane anion channel (IMAC), Ca2+-induced opening of the permeability transition pore (PTP), and oxidative damage induced by the oxidant pair adenosine diphosphate (ADP)/Fe2+ (lipid peroxidation) of mitochondria isolated from rat liver. By using succinate as the respiratory substrate, respiratory control ratio (RCR), ADP to oxygen ratio (ADP/O), state 3, state 4, and uncoupled respiration rates were not significantly affected by gammapyrone, glutapyrone, and diethone concentrations up to 100 microM. Cerebrocrast at concentrations higher than 25 microM depressed RCR, ADP/O, state 3, and uncoupled respiration rates, but increased three times state 4 respiration rate. The transmembrane potential (deltapsi) and the phosphate carrier rate were also decreased. At concentrations lower than 25 microM, cerebrocrast inhibited the mitochondrial IMAC and partially prevented Ca2+-induced opening of the mitochondrial PTP, whereas gammapyrone, glutapyrone, and diethone were without effect. Cerebrocrast, gammapyrone, and glutapyrone concentrations up to 100 microM did not affect ADP/Fe2+-induced lipid peroxidation of rat liver mitochondria, while very low diethone concentrations (up to 5 microM) inhibited it in a dose-dependent manner, as measured by oxygen consumption and thiobarbituric acid reactive substances formation. Diethone also prevented deltapsi dissipation due to lipid peroxidation initiated by ADP/Fe2+. It can be concluded that: none of the compounds interfere with mitochondrial bioenergetics at concentrations lower than 25 microM; cerebrocrast was the only compound that affected mitochondrial bioenergetics, but only for concentrations higher than 25 microM; at concentrations that did not affect mitochondrial bioenergetics (< or = 25 microM), only cerebrocrast inhibited the IMAC and partially prevented Ca2+-induced opening of the PTP; diethone was the only compound that expressed antioxidant activity at very low concentrations (< or = 5 microM). Cerebrocrast acting as an inhibitor of the IMAC and diethone acting as an antioxidant could provide effective protective roles in preventing mitochondria from oxidative damage, favoring their therapeutic interest in the treatment of several pathological situations known to be associated with cellular oxidative stress.  相似文献   

19.
Development of mitochondrial activities in pea cotyledons during early times after the start of imbibition occurred in two phases. In the first phase (0 to 8 hours after the start of imbibition), succinate or NADH oxidation increased rapidly, while malate or α-ketoglutarate oxidation remained low. The latter activities developed only 8 to 12 hours after the start of imbibition (the second phase). Development in the first phase was induced by water uptake, but some development occurred even when the cotyledons were fully imbibed. The presence of the axis was required for the second phase of the development. It is suggested that mitochondrial development in the second phase is brought about by activation of the electron transfer path at a site between the oxidation of endogenous NADH and the reduction of ubiquinone.  相似文献   

20.
Nawa Y  Asahi T 《Plant physiology》1973,51(5):833-838
l-Leucine-U-14C was incorporated into mitochondrial protein in pea (Pisum sativum var. Alaska) cotyledons during the imbibing stages. Incorporation was almost completely inhibited by cycloheximide but not by chloramphenicol. Both antibiotics did not affect increases in mitochondrial activities and components of the cotyledons during imbibition. Therefore, mitochondrial development seems to be achieved by a transfer of protein pre-existing in the cytoplasm into the mitochondria rather than by de novo synthesis of mitochondrial protein. Cycloheximide stimulated an increase in bile saltsoluble protein of mitochondria in imbibing pea cotyledons. The recovery of cytochrome oxidase activity after sucrose density gradient centrifugation was enhanced, and the morphological properties of mitochondria were altered by cycloheximide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号