首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphologcal and cytological studies of hybrids between hexaploid Aegilops crassa Boiss. (2n = 6x = 42, DDD2 D2Mcr Mcr), Ae. vavilovii (Zhuk.) Chen. (2n = 6x = 42, DDMcr McrSp Sp) and Triticum aestivum L. (2n= 6x = 42, AABBDD) were carried out. The results showed that most of the F1 hybrids morphologically resembled their Aegilops parental species. Four Fl hybrids of Ae. vavilovii × T. aestivum and one of Ae. crassa × T. aestivum produced seeds containing few endosperms. The percentage of seed obtained ranged from 0.1% to 6.5 %. These seeds were not vigorous and only a few of them germinated. A large number of univalents appeared at meiosis MI. The frequencies of bivalents were lower than those being theoriticaly estimated. These results indicated that the D genomes in Ae. Crassa and Ae. vavilovii may have been substantially modified. Trivalents were observed in all Fl hybrids. Quadrivalents and pentavalents were also observed in some PMCs during meiosis. The chiasmata frequencies in hybrids using Aegilops species as maternal parents were higher than those in their reciprocal ones. Chromosome segrigations were abnormal at A Ⅰ and A Ⅱ . Polyads and micronuclei appeared frequently at telophase tetrad stage. A plant with 21 chromosomes was obtained in Ae. vavilovii × Jimai 30, although the reason was not yet clear.  相似文献   

2.
Barley yellow dwarf is the most damaging virus-caused disease in bread wheat (Triticum aestivum L.). A resistant line, SW335.1.2-13-11-1-5 (2n = 47), derived from a cross of T. aestivum x Lophopyrum ponticum was characterized by meiotic chromosome pairing, by in situ DNA hybridization and by expression of molecular markers to determine its chromosome constitution. All progeny of this line had three pairs of L. ponticum chromosomes from homoeologous chromosome groups 3, 5, and 6 and the 2n = 47 progeny had an additional L. ponticum monosome. The pairs from groups 3 and 6 were in the added state, while the group 5 pair was substituted for wheat chromosome 5D. Several wheat-wheat translocations with respect to the parental wheat genotype occurred in this line, presumably owing to the promotion of homoeologous chromosome pairing by L. ponticum chromosomes. It was hypothesized that homoeologous recombination results in homoeologous duplication-deletions in wheat chromosomes. An aberrant 3:1 disjunction creates the potential at each meiosis for replacement of these wheat chromosomes by homoeologous L. ponticum chromosomes. Wheat chromosomes 3A and 6A appeared to be in intermediate stages of this substitution process.  相似文献   

3.
Conjugating Tetrahymena can abort the sexual cycle before the production of progeny somatic (macro-) nuclei and return to vegetative growth. We have analyzed the germinal (micronuclear) genotypes of these cells in order to determine the stage at which they aborted conjugation. Our data demonstrate that nearly all of these cells attempt meiosis, but that very few reach the successful completion of cross-fertilization. The resulting micronuclear genotypes suggest that either germinal chromosomes or entire nuclei are lost during an unsuccessful attempt at meiosis or cross-fertilization. We conclude that the decision to develop progeny macronuclei is made during meiosis and is dependent on the completion of some step necessary for successful cross-fertilization.  相似文献   

4.
This article deals with the morphological aspects of the process of megasporogenesis and microsporogenesis in soybean. The tempos of microsporogenesis in different anthers of the same flowers were compared, and it has been found that at the leptone- ma, zygonema, pachynema and diplonema of the first meiotic division there appeared a certain degree of synchrony, while at the uninuclear stage of the microspore a perfect synchrony was observed. The development of different pollen mother cells within the same anther was in most cases highly synchronized. The anther in which the PMCs were found to be in the'near stages of the meiotic divisions accounts for 7% only. The megasporocyte develops later than the mierosporoeyte. It enters into the leptotene stage or diplotene stage of the first meiotic division while the mierosporocyte has already finished the process of the meiotic division. Explantation of plates 1. A section of a partieal mierosporangium, mierospore mother cells and the cells of the anther wall. × 600 2. Mierospore mother cells in zygotene stage (bouquet stage). × 600 3. Pa- chytene stage of first meiotic division. ×530 4. Diakinesis of meiosis Ⅰ, the tapetal cells begin- ning to degenerate. ×900 5. Metaphase Ⅰ. ×630 6. Anaphase Ⅰ. ×630 7. Anaphase Ⅰ. ×370 8 Interphase, two-nucleated dyad condition with no intervening cell walls formed. ×630 9. Me- taphase Ⅱ. ×630 10. Beginning of telophase Ⅱ×370 11, Telophase Ⅱ, four microspore nuclei contained within the original microspore mother cell wall. ×630 12. Uninuclear microspore, ×630  相似文献   

5.
Studies on meiosis in pollen mother cells (PMCs) of a triploid interspecific hybrid (3x = 39 chromosomes, AAD) between tetraploid Gossypium hirsutum (4n = 2x = 52,AADD) and diploid G. arboreum (2n = 2x = 26,AA) are reported. During meiotic metaphase I, 13 AA bivalents and 13 D univalents are expected in the hybrid. However, only 28% of the PMCs had this expected configuration. The rest of the PMCs had between 8 and 12 bivalents and between 12 and 17 univalents. Univalents lagged at anaphase I, and at metaphase II one or a group of univalents remained scattered in the cytoplasm and failed to assemble at a single metaphase plate. Primary bipolar spindles organized around the bivalents and multivalents. In addition to the primary spindle, several secondary and smaller bipolar spindles organized themselves around individual univalents and groups of univalents. Almost all (97%) of the PMCs showed secondary spindles. Each spindle functioned independently and despite their multiple numbers in a cell, meiosis I proceeded normally, with polyad formation. These observations strongly support the view that in plant meiocytes bilateral kinetochore symmetry is not required for establishing a bipolar spindle and that single unpaired chromosomes can initiate and stabilize the formation of a functional bipolar spindle.  相似文献   

6.
With improved staining and chromosome preparation techniques, meiosis of pollen mother cells (PMCs) and male gametophyte development in autotetraploid cucumber (Cucumis sativus L.) was studied to understand the correlation between chromosomes behaviour and fertility. Various chromosome configurations, e.g. multivalent, quadrivalents, trivalents, bivalents and univalents were observed in most PMCs at metaphase I. Lagging chromosomes were frequently observed at anaphase in both meiotic divisions. In addition, chromosomes segregations were not synchronous and equal in some PMCs during anaphase II and telophase II. Dyads, triads, tetrads with micronuclei and polyads were observed at tetrad stage, and the frequencies of normal tetrad with four microcytes were only 55.4 %. The frequency of abnormal behaviour in each stage of meiosis was counted, and the average value was 37.2 %. The normal meiotic process could be accomplished to form the microspore tetrads via simultaneous cytokinesis. Most microspores could develop into fertile gametophytes with 2 cells and 3 germ pores through the following stages: single-nucleus early stage, single-nucleus late stage and 2-celled stage. The frequency of abnormalities was low during the process of male gametophyte development. The germination rate of pollen grains was 46.9 %. These results suggested that abnormal meiosis in PMCs was the reason for low pollen fertility in the autotetraploid cucumber.  相似文献   

7.
Meiotic restitution in wheat-barley hybrids   总被引:6,自引:0,他引:6  
Meiotic restitution occurs in pollen mother cells (PMCs) of reciprocal F1 hybrids between wheat and barley. In occasional PMCs, all or most of the 28 chromosomes assemble at the equatorial plate at metaphase I, but instead of undergoing anaphase I separation they reform into a mass of chromatin to form a restitution nucleus. Some of these restituted nuclei undergo a regular second division and dyads are produced among other non-restituted cells which have reached the tetrad stage of division. Other restituted nuclei fail to undergo a second division and then the PMCs appear as monads among neighbouring tetrads. Both the monads and dyads are expected to produce microsporocytes with the diploid complement of chromosomes. Chromosomes which fail to become included in the restituted nucleus form separate micronuclei and, depending on whether they undergo a regular second division or not, the PMCs containing them eventually appear as tetrads, triads or dyads. These partially restituted nuclei are expected to produce unreduced gametes, deficient for one or more chromosomes. It is postulated from these observations that restitution in wheatbarley F1 hybrids depends on a high frequency of univalent accumulation at the equatorial plate at metaphase I and the subsequent failure of the chromosomes to undergo anaphase I separation.  相似文献   

8.
对木兰科5个二倍体人工杂交后代的减数分裂行为进行观察。结果表明,各杂交F1代的减数分裂行为基本正常,在减数分裂中期I有个别二价体提前分开形成单体;中期I还存在异型二价体,说明杂交亲本间(种间)都有一定的遗传分化,但这种变异仅停留在基因水平上;后期I偶有染色体桥出现。杂种F1代的减数分裂过程基本正常,能形成生活力正常的生殖孢子。可预期的是自然界中木兰科属内种间的自然二倍体杂种可自行繁衍,经过一定繁衍周期后,即可形成具有相对稳定种群的新种。  相似文献   

9.
Inplantbreedingandgeneticresearch,karyotypicallystablecrosseswhichproducehybridplantshavebeenextensivelyusedtointroduceintocropsthetargettraitsandgenesfromrelatedwildorcultivatedspeciesortoconstructstocksforgeneticanalysis(alienchromosomeadditions,substitutionsandtranslocations)[1—3].Uniparentalgenomeeliminationinkaryotypicallyunstablehybridshasbeenutilizedforhaploidproduction[2,4].Becausetheartificiallysynthesizedallopoly-ploidscannotbeusedascropsformanyreasons,onepurposeofwidehybridizations…  相似文献   

10.
Interspecific and intergeneric hybridizations have been widely used in plant genetics and breeding to construct stocks for genetic analysis and to introduce into crops the desirable traits and genes from their relatives. The intergeneric crosses between Brassica juncea (L.) Czern. & Coss., B. carinata A. Braun and Orychophragmus violaceus (L.) O. E. Schulz were made and the plants produced were subjected to genomic in situ hybridization analysis. The mixoploids from the cross with B. juncea were divided into three groups. The partially fertile mixoploids in the first group (2n = 36-42) mainly contained the somatic cells and pollen mother cells (PMCs) with the 36 chromosomes of B. juncea and additional chromosomes of O. violaceus. The mixoploids (2n = 30-36) in the second and third groups were morphologically quite similar to the mother plants B. juncea and showed nearly normal fertility. The plants in the second group produced the majority of PMCs (2n = 36) with their chromosomes paired and segregated normally, but 1-4 pairs of the O. violaceus chromosomes were included in some PMCs. The plants in the third group produced only PMCs with the 36 B. juncea chromosomes, which were paired and segregated normally. The mixoploids (2n = 29-34) from the cross with B. carinata produced the majority of PMCs (2n = 34) with normal chromosome pairing and segregation, but some plants had some PMCs with 1-3 pairs of chromosomes from O. violaceus and other plants had only PMCs with the B. carinata chromosomes. The Brassica homozygous plants and aneuploids with complete or partial chromosome complements of Brassica parents and various numbers of O. violaceus chromosomes were derived from these progeny plants. The results in this study provided the molecular cytogenetic evidence for the separation of parental genomes which was previously proposed to occur in the hybridizations of these two genera.  相似文献   

11.
Using DGD embedment-free electron microscopy, ultrastructural observation on the intra- and intercellular microtrabecular network (MN) of the pollen mother cells (PMC) of the whole meiotic prophase Ⅰ in onion ( Allium cepa L.) was performed. Complex nuclear MN was observed in the nucleus of PMCs, spreading throughout the nuclear region. The nucleolus and chromosomes were connected with the MN filament network. The uniformity of nuclear MN changed with the development of the PMCs. A lamina-like structure surrounded the nucleus and joined the MN in nucleus and in cytoplasm, but it disassembled at the end of prophase Ⅰ. There was also a complex cytoplasmic MN in PMCs, without obvious variation during the prophase Ⅰ. Furthermore, MN in cytoplasmic connections (plasmodesmata and cytoplasmic channels) was noticed to link the frameworks in two neighboring PMCs into one entity. Cytomixis was observed at synizesis of prophase Ⅰ in this experiment, and MN in cytoplasm and in nucleus was noticed to distribute in these granules which migrated from one PMC into its neighboring cell. At this time the nucleus moved aside from center of the PMC, but the rest of the cell was still fulfilled with MN filaments. The relationships of nuclear MN with nucleolus and chromosomes, lamina with nucleus, as well as intra- and intercellular MN with cytomixis are discussed in this paper.  相似文献   

12.
用中国春双端二体分析西藏小麦的染色体构成   总被引:5,自引:0,他引:5  
陈佩度  黄璃 《遗传学报》1991,18(1):39-43
用普通小麦“中国春”双端二体系列(double ditelosomics)作母本分别与西藏小麦杂交,对全套21个F_1的PMC在MI进行端体配对分析。在(“中国春”双端二体7B×西藏小麦)F_1中,含有(t′,t1″)构型的PMC占观察总数的87.3%,7BS常不参与配对,显示出有较大差异。“中国春”3A、7A、2D—7D等8条染色体的两臂可以分别同时与西藏小麦对应染色体配成异型三价体(tt1′′′)的PMC频率达80.0—95.5%,表明西藏小麦与“中国春”之间这8条染色体差异很小。在涉及其余12条染色体的组合中,出现(tt1′′′)、(t′t1″)和(t′,t′)构型的PMC分别占观察细胞总数的42.3—77.6%、21.9—55.5%和0—8.0%,表明它们之间仅某个染色体臂间有轻度变异或分化。从总体来看,西藏小麦与“中国春”之间除7BS有较大差异外在染色体构成上基本相似。  相似文献   

13.
  In the male sterile32(ms32)mutant in Arabidopsis thaliana, pollen development is affected during meiosis of pollen mother cells (PMCs). In normal wild-type (WT) anthers, callose is deposited around PMCs before and during meiosis, and after meiosis the tetrads have a complete callose wall. In ms32, PMCs showed initial signs of some callose deposition before meiosis, but it was degraded soon after, as was part of the cellulosic wall around the PMCs. The early dissolution of callose in ms32 was associated with the occurrence of extensive stacks of rough ER (RER) in tapetal cells. The stacks of RER were also observed in the WT tapetum, but at a later stage, i.e., after the tetrads were formed and when callose is normally broken down for release of microspores. Based on these observations it is suggested that: (1) callose degradation around developing microspores is linked to the formation of RER in tapetal cells, which presumably synthesize and/or secrete callase into the anther locule, and (2) mutation in MS32 disrupts the timing of these events. Received: 27 April 1999 / Revision accepted: 21 June 1999  相似文献   

14.
 Intergeneric hybrids between Brassica juncea (2n=36), B. carinata (2n=34) and Orychophragmus violaceus (2n=24) were produced when B. juncea and B. carinata cultivars were used as female parents. The hybrids between B. juncea and O. violaceus had an intermediate morphology except for petal colour and were partially fertile. The hybrids between B. carinata and O. violaceus had a matroclinous morphology and were nearly fertile. Cytological analysis of the hybrids and their progenies gave the following results. (1) In the hybrids between B. juncea and O. violaceus, the somatic tissues of the roots, leaves and styles were mixoploid (2n=12–42), and cells with 24, 30 or 36 chromosomes were the most frequent. Based on the recorded numbers and behaviour of the mitotic and meiotic chromosomes, complete and partial separation of the parental genomes was proposed to have occurred during mitosis. This resulted in the occurrence of cells with possibly complete and incomplete complements of the parental species and cells with parental complements and some additional chromosomes from the other parent. (2)  Pollen mother cells (PMCs) possibly with both parental chromosome complements, only B. juncea chromosomes or a complete B. juncea complement with additional O. violaceus chromosomes were more competitive in entering meiosis. The majority of fertile gametes were deduced to have been produced by PMCs with a B. juncea complement with or without additional O. violaceus chromosomes. (3) The progeny plants from selfed hybrids between B. juncea and O. violaceus were morphologically either of a B. juncea, hybrid or variable type. Cytologically they were grouped into six types according to the frequencies of cells with various chromosome numbers. All of the plants except 2 which constituted two types, were mixoploids, composed of cells with various chromosome numbers, mainly in a certain serial range. (4) The hybrid plants between B. carinata and O. violaceus were mixoploids with chromosome numbers in the range of 12–34, and cells with 2n=34 were the most frequent. The main categories of PMCs with 17 bivalents at metaphase I and 17 : 17 segregations at anaphase I contributed to the high fertility of the hybrids and the fact that their progeny after selfing were mainly plants with 2n=34. Somatic and meiotic separation of the parental genomes was proposed to have occurred in the hybrids between B. carinata and O. violaceus. (5) Mitotic and meiotic elimination of what could be O. violaceus chromosomes might also have contributed to the observed mitotic and meiotic cell types in the two kinds of hybrids studied. Finally, the possible mechanisms behind these cytological observations and their potential in the production of Brassica aneuploids were discussed. Received: 4 February 1997/Accepted: 29 July 1997  相似文献   

15.
首次报道在光镜下观察美味猕猴桃 (品种 :No.2 6原生质体植株的母株 )花粉母细胞( PMC)染色体在减数分裂前期的配对 ,发现其配对和凝缩有明显不同步性。不同细胞间染色体配对形式变化较大 ,一般以二价联会为主 ,其次由其它多种配对方式 (包括有复合配对、重复配对、着丝点或端粒处联合和多价联会 )形成多价体 ,还有少数未配对或发生内配对 (偶见 )的单价体和几条二价体之间的次级配对。粗线期观察到少数染色体有缺失 (或重复 )、倒位、易位和疏松配对等结构性改变。表明该植株是一个复杂的区段异源六位体 ,少数染色体在结构上累积有变异。还认为该植株是研究减数分裂染色体配对和联会机制的好材料。  相似文献   

16.
Abstract Lindelofia longiflora (Royle ex Benth.) Baill. var. falconeri (Cl.) Brand (Family: Boraginaceae) is investigated cytologically (n= 12) for the first time from the cold deserts of Pangi Valley, Chamba District (Himachal Pradesh) in India. We report the formation of syncytes and 2n pollen grains in the species. During meiosis, the majority of the pollen mother cells (PMCs) exhibited 12 bivalents, equal segregation of chromosomes during anaphases, regular tetrads, and normal‐sized pollen grain formation. Occasionally, two proximate PMCs fused during the early stages of prophase‐I and resulted in the formation of syncytes. The frequency of syncytes in the accession is rather low, at 25 out of 1866 (1.33%). Such syncyte PMCs are detectable during meiosis due to their larger size compared to typical PMCs. The syncytes or polyploid cells showed normal 24 bivalents and depicted perfectly regular meiotic course. But the products of such PMCs yield 2n or larger sized pollen grains that are almost double the size of typical normal or n pollen grains. The origin of syncytes as a consequence of the fusion of meiocytes during the early stages of meiosis‐I could be attributed to low temperature stress conditions prevailing in the Pangi Valley, where temperature during May and June dip to below freezing, the time the plants enters the reproductive/flowering bud stage. It is possible that such apparently fertile 2n pollen grains originating from syncytes might play a role in the origin of intraspecific polyploids in the species.  相似文献   

17.
Resynthesized Brassica napus cv. Hanakkori (AACC, 2n?=?38) was produced by cross-hybridization between B. rapa (AA, 2n?=?20) and B. oleracea (CC, 2n?=?18) as a new vegetative crop. Many studies have provided evidences for the instability and close relationship between A and C genome in the resynthesized B. napus cultivars. In fact, seed produced to obtain progeny in Hanakkori had unstable morphological characters and generated many off-type plants. In this study, we investigated the pollen fertility, chromosome number, structure, and behavior linked to various Hanakkori phenotypes to define factors of unstable phenotypic expression in the progeny. Hanakkori phenotypes were categorized into five types. The results of pollen fertility, chromosome number, and fluorescence in situ hybridization analysis for somatic mitosis cells indicated that the off-type plants had lower pollen fertility, aberrant chromosome number, and structures with small chromosome fragments. Observation of chromosomes at meiosis showed that the meiotic division in off-type plants led to appreciably higher abnormalities than in on-type plants. However, polyvalent chromosomes were observed frequently in both on- and off-type plants in diplotene stage of meiosis. We assume that the unstable morphological characters in resynthesized progeny were the result of abnormal division in meiosis. It results as important that the plants of normal phenotype, chromosome structure and minimized abnormal meiosis are selected to stabilize progeny.  相似文献   

18.
Summary Two F5 strains of tetraploid triticale (2n= 4x=28), obtained from 6x triticaleX2 rye progenies, were crossed with diploid and tetraploid rye, some durum and bread wheats, and various 8x and 6x triticale lines. Meiosis in the different hybrid combinations was studied. The results showed that the haploid complement of these triticales consists of seven chromosomes from rye and seven chromosomes from wheat. High frequencies of PMCs showing trivalents were observed in hybrids involving the reference genotypes of wheat and triticale. These findings proved that several chromosomes from the wheat component have chromosome segments coming from two parental wheat chromosomes. The origin of these heterogeneous chromosomes probably lies in homoeologous pairing occurring at meiosis in the 6x triticaleX2x rye hybrids from which 4x triticale lines were isolated. A comparison among different hybrids combinations indicated that the involvement of D-genome chromosomes in homoeologous pairing is quite limited. In contrast, meiotic patterns in 4x triticale X 2x rye hybrids showed a quite high pairing frequency between some R chromosomes and their A and B homoeologues.  相似文献   

19.
Lindelofia longiflora (Royle ex Benth.) Baill.var.falconeri (Cl.) Brand (Family:Boraginaceae) is investigated cytologically (n =12) for the first time from the cold deserts of Pangi Valley,Chamba District (Himachal Pradesh) in India.We report the formation of syncytes and 2n pollen grains in the species.During meiosis,the majority of the pollen mother cells (PMCs) exhibited 12 bivalents,equal segregation of chromosomes during anaphases,regular tetrads,and normal-sized pollen grain formation.Occasionally,two proximate PMCs fused during the early stages ofprophase-I and resulted in the formation of syncytes.The frequency of syncytes in the accession is rather low,at 25 out of 1866 (1.33%).Such syncyte PMCs are detectable during meiosis due to their larger size compared to typical PMCs.The syncytes or polyploid cells showed normal 24 bivalents and depicted perfectly regular meiotic course.But the products of such PMCs yield 2n or larger sized pollen grains that are almost double the size of typical normal or n pollen grains.The origin of syncytes as a consequence of the fusion of meiocytes during the early stages of meiosis-I could be attributed to low temperature stress conditions prevailing in the Pangi Valley,where temperature during May and June dip to below freezing,the time the plants enters the reproductive/flowering bud stage.It is possible that such apparently fertile 2n pollen grains originating from syncytes might play a role in the origin of intraspecific polyploids in the species.  相似文献   

20.
萝卜与甘蓝属间杂种基因组原位杂交分析   总被引:2,自引:0,他引:2  
用基因组原位杂交方法(Genomic in situ hybridization, 简称GISH)研究了萝卜( Raphanus sativus,2n=18,RR)和甘蓝(Brassica oleracea , 2n=18, CC)属间杂种F1减数分裂过程。结果表明杂种体细胞染色体组成为RC,2n=18,但花粉母细胞有三种不同类型:1. RC,2n=18, 终变期染色体平均配对构型为14.87Ⅰ+1.20Ⅱ+0.04Ⅲ+0.06Ⅳ, 染色体配对主要发生在萝卜和甘蓝染色体之间, 后期Ⅰ9条萝卜染色体主要以5/4和6/3的分离比移向两极, 所形成配子的染色体数目和组成均不平衡,配子败育; 2. RRCC,4n=36, 终变期染色体形成18个二价体,后期Ⅰ染色体均衡分离,形成RC不减数配子;3. RRCC缺体,4n=30-34, 少数萝卜染色体丢失,形成的配子具有全套的甘蓝染色体和部分萝卜染色体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号