首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the distribution of seven heavy metals and As in typical municipal greenbelt roadside soils in Pudong New District, Shanghai, China. As and Ni showed no significant accumulation compared with the background values of the local soils, but there was strong evidence of accumulation of Cd, Cr, Cu, Hg, Pb and Zn in the roadside soils. However, only Zn and Cd contents were higher than the pollution thresholds of the Chinese National Soil Quality standard. The concentrations of heavy metal(loid)s in the soils were significantly affected by the length of time since the roads were constructed. Soils from areas adjacent to an older road had higher levels of Cu, Pb, Cd and Zn. In terms of spatial distribution, more Cd, Cu, Pb and Zn were found in the soil from the green areas of median between carriageways than from those of the roadside verges. Vertical distribution analysis shows that the contents of Pb, Cd, Cu and Zn had maximum values in the topsoil and were substantially lower in the deeper layers of the soil profile. Moreover, correlation analysis reveals that these four heavy metals originated from the same pollution sources and their contents were directly associated with the traffic density.  相似文献   

2.
铜尾矿库区土壤与植物中重金属形态分析   总被引:23,自引:2,他引:21  
对铜陵铜尾矿区土壤和植物中重金属形态进行了研究.结果表明,尾矿库区种植地极端贫瘠,有机质含量仅2.6~.8 g·kg-1,而土壤Cu、Cd、Pb、Zn含量皆高于对照土壤,其中Cu含量达809.30~1 39.4 mg·kg-1,Cd含量达3.2~6.3 mg·kg-1,达到对照土壤30~60倍.结缕草和三叶草体内重金属含量与土壤重金属交换态及有机结合态含量成正相关,与碳酸盐结合态、铁锰氧化物结合态成显著或极显著负相关,与矿物态含量相关性不显著.在两种优势植物中,Cu、Zn、Pb均以活性较低的醋酸提取态、盐酸提取态和残渣态为主;Zn在根系和茎叶中,NaCl提取态占有较大比例,而Cd均以NaCl提取态为主.  相似文献   

3.
上海市小羽藓属植物重金属含量及其与环境的关系   总被引:17,自引:0,他引:17  
安丽  曹同  俞鹰浩 《应用生态学报》2006,17(8):1490-1494
应用原子吸收法对上海市13个样点的小羽藓植物体及相应土壤样品中的Cu、Pb、Cd、Zn、Cr 5种重金属元素含量进行了测定.通过对植物体内含量的聚类分析,将13个样点按重金属污染程度的轻重分为3个组:1)污染严重点,包括桂林公园、复兴公园、光启公园3个样点,均位于市区交通繁忙地带,其小羽藓体内重金属含量分别为:Cu 35.25~50.36 mg·kg-1、Pb 55.50~65.00 mg·kg-1、Cd 1.68~2.30 mg·kg-1、Zn 829.63~1140.13 mg·kg-1、Cr 7.41~16.41 mg·kg-1;2)污染点,包括长风公园、古钟园、中山公园、和平公园、上海师范大学徐汇校区5个样点,均位于市区近郊,小羽藓体内重金属含量分别为:Cu 18.51~62.50 mg·kg-1、Pb 14.38~34.25 mg·kg-1、Cd 0.81~1.40 mg·kg-1、Zn 354.25~671.75 mg·kg-1、Cr 3.62~25.08 mg·kg-1;3)相对清洁点,包括佘山、大观园、罗泾、植物园、崇明东平国家森林公园5个样点,位于上海市远郊,小羽藓体内重金属含量分别为:Cu 11.13~16.41 mg·kg-1、Pb 4.63~27.25 mg·kg-1、Cd 0.93~1.28 mg·kg-1、Zn 489.25~1 086.75 mg·kg-1、Cr 1.53~7.62 mg·kg-1.结果表明,小羽藓属苔藓植物可作为监测上海地区环境重金属污染的良好指示植物.苔藓植物体内重金属含量水平与土壤重金属含量存在一定的相关性,而且也受其他因素的影响.  相似文献   

4.
Disposal of sewage water in cultivated soils often containing considerable amount of potentially toxic metals such as Cu, Zn, Ni, Cd, Pb and Cr can be beneficial or harmful to plant growth, rhizobial survival, nodulation and nitrogen fixation. Soil samples from 14 such locations were collected. Symbiotic effectivity of host-Rhizobium leguminosarum symbiosis in these soils was assessed. The total metal contents of Cd, Cu, Zn and Ni in all the 14 samples collected from farmer's fields receiving sewage water ranged between 1.3 and 6.7, 55.8-353.2, 356.0-1028.0 and 90.0-199.7 mg kg(-1) of soil, respectively. In Rohtak 1 soil, levels of Cd, Cu and Zn were highest while Ni was highest in Sonipat 2 soil. The content of available Cd, Cu, Zn and Ni in these soils ranged from 1.0-29.3; 6.2-47.0; 2.4-13.5, respectively, and was 2-9 percent of their total metal contents. All the N2 fixing parameters in pea and Egyptian clover were adversely affected by the presence of heavy metals. Available Cd and Cu contents significantly affected the N contents of pea and Egyptian clover plants, whereas Ni contents were negatively correlated with the plant biomass of pea and Egyptian clover.  相似文献   

5.
Characteristics of element contents(in ash) for 13 plant species in Naomuhong Cu mine area are disscussed. Results show that the level of element contents in sequence is: Mn>Cu> Zn > Cr > Ni>Pb>Co > Cd > Ag. Cu contents exhibit the greatest difference between species, with a 20 fold difference or more oetween maximum and minimum contents. Cu content is maximal in Potaninia mongolica, being from 209 ppm to 1543 ppm at various sites, with a mean of 735.2 ppm; whereas Cu content is minimal in Salsola passerina, being from 18 ppm to 54 ppm at various sites, with a mean of 31.01 ppm. Cu, Zn contents in skarn are more than in granite and those in limestone are mole than in sandstone. Correlation coefficients of linear regression between elements in the plants are of positive values. However, they are not significant between Cd, Ag and other eight elements, and between Cu, Cr et al. six elements are significant respectively. The correlative coefficients between elements in plants and soils are positive, Zn and Pb contents between P. mongolica and soils, and Pb content between Zygophyllum xanthoxylum and soils, and Cu content between Reaumuria soongorica and soils and significant, It is found that Cu phytogeochemical anomalies in P. mongolica and Reaumuria soongorica correlate closely with Cu ore deposit, and the anomalies were found not only in the outcropping ore, but also in the blind ore deposits.  相似文献   

6.
某农药工业园区周边土壤重金属含量与风险评价   总被引:11,自引:0,他引:11  
Shi NN  Ding YF  Zhao XF  Wang QS 《应用生态学报》2010,21(7):1835-1843
以苏南某农药工业园区周边30km2区域为研究区,采用同心圆法采集土壤样品183个,分析了农药工业园区周边土壤Cd、Cr、Cu、Ni、Pb、Zn、Hg和As8种重金属含量、空间变异性、来源及潜在风险.结果表明:以自然背景值为评价标准,研究区表层土壤Hg、Cu、Cd和Pb平均含量超过自然背景值,其中Hg和Cu含量最高;以国标二级标准为评价标准,土壤Cd、Cr、Ni、Pb、Zn、As6种重金属的单项污染指数平均值均小于1,Hg和Cu分别为1.59和1.05.在农药工业园区周边土壤重金属污染较重的东南方向和西北方向,随着与园区距离的增加,土壤Cd、Ni、Pb、Cr、As、Hg、Zn和Cu含量先上升、后下降、再趋于平稳.通过分析农药工业园区周边土壤重金属综合污染指数发现,距离园区约200~1000m周边土壤污染的风险较大,而1000m以外逐渐达到安全范围.利用地统计学和GIS相结合进行分析发现,8种重金属污染指数有明显的空间变异.依据相关分析与主成分分析结果推测,Zn、Ni、Cr、Pb和As主要来源于成土母质,而Hg、Cu和Cd主要与人类活动有关.  相似文献   

7.
铜尾矿区土壤与凤丹植株重金属富集研究   总被引:7,自引:0,他引:7  
对安徽铜陵铜尾矿区凤丹种植地的土壤和凤丹中重金属污染状况进行了研究,结果表明,尾矿库区种植地极端贫瘠,有机质含量仅1.1~3.4g·kg^-1,而土壤Cu、Cd、Pb、Zn含量皆高于对照土壤,其中Cu含量达587.43~1176.44mg·kg^-1,Cd含量达3.08~5.16mg·kg^-1,约达国家土壤二级标准的10倍,凤丹各部位的Cu、CA和Pb含量均超过了药用植物的限量标准,尤其是根皮部位Cu含量达31.50~64.00mg·kg^-1,Cd含量达0.98~1.45mg·kg^-1,超出标准1.6~3.6倍,表明种植地和凤丹都受到严重污染.凤丹不同部位中的Zn、Cd、Pb和Cu分别以茎、叶、叶和根皮中的含量最高.凤丹对Cd、Zn的富集比Cu和Pb高,但在根皮中的富集系数均较小。  相似文献   

8.
Abstract

This study addresses the issue of heavy metal (HM) accumulation and distribution for three different plant species, Carex pilosa, Dentaria bulbifera, Galium odoratum, in Carpathian beech ecosystems. Data are presented on HM concentrations in forest understory vegetation and a preliminary insight into different HM allocation patterns is provided. Bioaccumulation factors (BCFs) and shoot/root ratios differed considerably among the species and between polluted and unpolluted regions. HMs were accumulated in forest plants as follows: Cu > Zn > Cd >Pb in unpolluted areas and Zn> Cd > Cu >Pb in polluted areas. Zn was preferentially distributed to roots and Cu to shoots. The distribution of Cd and Pb in different plant parts was specific in terms of the species-dependence. Cd and Pb levels in Carex pilosaand Galium odoratumwere more strictly controlled in the transfer zone of root-shoot, compared to Dentaria bulbifera.The highest BCFs were found in Carex pilosafor Cu (5.9) and in Dentaria bulbiferawas found the highest shoot/root ratio for Cd (3.1).  相似文献   

9.
Summary Five soils of increasing specific surface area (SSA) were loaded to five levels of contamination with Cd, Pb and Cu, and bean plants (Phaseolus vulgaris L.) were grown on the soils for 30 days. A linear correlation was found between the concentration of Cd in the soil solutions and the amount absorbed by the plant per gram root material for four out of the five soils, and, in the case of Cu, for all five soils. Quantitatively, there was insufficient Cd or Cu in the soil solution to account for plant uptake of these metals. The amount of Cd absorbed by plants could also be related to the adsorption density (concentration/SSA soil) of the metal in four of the five soils, whereas the Cu content of plants could be related to the adsorption density of all five soils. It is thought that the metals were removed from the soil solution by root absorption and replenished by metal cations adsorbed onto surface sites in the soil. Consideration of the adsorption density of these metals in the soil may be a useful means to determine the permissible limits for heavy metal application for a wide range of soils. Lead uptake was significantly correlated to total Pb in soils, but not to the adsorption density or soil solution concentrations. The possible interpretation of the results are discussed.  相似文献   

10.
165 plants and 40 soil samples were collected at seven areas in Tianjin. The analysis of sulphur and heavy metals in these samples showed the polluted degree of the air. It is indicated that the plants at smeltery (polluted industry area) contain Zn, Cu, Cd, Pb highest and NJ, S higher. The content of heavy metals in these plants were 3 to 11 times higher than that of the background value. In business-traffic area and park, the amount of Zn, Cu, Ni, Cd in the plants were 1.5 to 3.5 times higher than the background value. In the other area, such as culture-education area, road and suburbs, the pollution is not significant, and in the clean area (Panshan), all elements in the plants are the lowest. As to the soils in polluted industry area (Smeltery), the amount of Ph, Cu, Cd, Zn and S was 725, 348, 9, 3 and 14 times higher than that of the background value respectively. Among them, most of Pb, Cu were deposited in surface layer. In soil of business-traffic area, Pb, Cu, Cd, Zn and S were 2 to 10 times higher than the background value, and in the soil of clean area, all elements are also the lowest. The stomata of plants which were blocked by the particles going down from the air resulted in increase in the stamotal diffusive resistance and the order of the resistance in the different places are as follows: polluted industry areas > parks > business-traffic areas > road > clean areas. These results are in agreement with the polluted state of the plants and soils in above mentioned areas.  相似文献   

11.
四川甘洛铅锌矿区优势植物的重金属含量   总被引:17,自引:1,他引:16  
刘月莉  伍钧  唐亚  杨刚  祝亮 《生态学报》2009,29(4):2020-2026
通过野外调查采样,分析了四川凉山州甘洛县铅锌矿区土壤的重金属含量,以及矿区生长的13种优势植物对Pb、Zn、Cd、Cr、Cu的吸收与富集能力及其富集特性.结果表明,矿区土壤受Pb、Zn、Cd 3种重金属污染严重,13种植物体内的Pb含量均高于普通植物10倍以上,具有修复矿区土壤铅污染的潜力,其中植物1的转运系数和富集系数都大于1,满足Pb超富集植物的基本特征.Zn在凤尾蕨、细风轮菜、大火草、蔗茅、小飞蓬和牛茄子中含量较高.小飞蓬和紫茎泽兰的Cd含量较一般植物高出17~61倍,其中,紫茎泽兰的转运系数与富集系数均大于1,其对Cd的吸收特性值得进一步研究.  相似文献   

12.
不同土壤生境下斑茅对重金属的富集特征   总被引:1,自引:0,他引:1  
为了筛选Cu、Zn、Pb、Cd多重金属离子的富集植物,对不同土壤生境(铜铁矿、钨矿、铅锌矿和无矿场污染)的优势种斑茅(Saccharum arundinaceum(Retz.)Jeswiet)对Cu、Zn、Pb、Cd离子富集情况进行了调查。结果表明,斑茅对Cu、Zn、Pb、Cd离子有富集优势并以Cu富集显著,斑茅根系土壤与斑茅地上部Cu含量存在相关性(P<0.05),斑茅对Pb和Cd的富集与转运存在极显相关性(P<0.01);在强酸、多金属污染弃耕农田土壤中,斑茅不仅符合Cu超富集植物的特征,而且其对Zn、Pb和Cd3种重金属的富集系数和转运系数均>1。在Cd、Cu、Pb和Zn均低于国家土壤环境质量二级标准(GB15618-1995)的弃耕农田中,斑茅对Cu、Zn和Cd的富集系数均>1。研究表明,斑茅可以作为Cu、Zn、Pb、Cd多金属污染土壤的富集植物进行人工修复。  相似文献   

13.
王波  毛任钊  曹健  王元仲  高云风  李冬梅 《生态学报》2006,26(12):4082-4090
随着工业和农业的快速发展,农田受到重金属污染的压力越来越大,其土壤环境质量的及时监测和掌握重金属在其空间的变异规律对农业生产具有十分重要的意义。利用地统计学和GIS技术对海河低平原区(肥乡县)农田土壤耕层(0—20Cm)8种重金属含量空间变异性进行了研究。结果表明:去除异常值后,8种重金属含量都符合正态分布,且其含量算术平均值未超过国家土壤环境质量二级标准。通过变异函数分析,Ph和Cr具有纯块金效应,Cu和Zn符合指数模型,Ni和Cd符合球状模型,地和As符合带基台值的线性模型。在该地区以2.0km为取样间距较大,以后调查时应该缩小间隔。Zn和Cd的空间变异性受人为因素影响较小,而Cu、Ni、Hg和As的空间变异性受人为因素影响较大,Ph和Cr在整个研究尺度上具有恒定的变异。Cu、Zn、Ni、Hg、As和Cd的变程差异较大,在2.5—13.7km之间。通过普通kriging法局部插值,Cu、Zn、Ni和As含量由西南部向东北部含量逐步升高,但是Hg却表现出相反的分布趋势。这将为当地正在开展的优势农产品区域布局规划提供理论依据。  相似文献   

14.
To investigate heavy metal accumulation in soils and evaluate health risk through maize consumption, a total of 196 soils and 55 maize samples were collected from Yushu, China, one of the most important maize production bases. The mean contents of Cd, Cr, Cu, Zn and Pb were 0.119, 56.51, 19.21, 70.58, and 34.42 mg kg?1 for soils and were 0.014, 0.68, 1.33, 17.15 and 0.02 mg kg?1 for maize, respectively. The contents of Cr, Cu, Zn and Pb in all soil and maize samples did not exceed safety thresholds, but the percentages of Cd content above guideline values of Chinese Environmental Quality Standards for Soil and maximum permissible limits for maize were 6.6% and 1.8%, respectively. The spatial distribution and correlation analysis suggested that Cr and Cu in soil were of lithogenic origin, while Zn and Pb were associated with coal combustion exhausts and chemical fertilizer application. The main source of Cd may be phosphate fertilizer application. The average target hazard quotients were all less than 1 and the average hazard index for adults was 0.065, indicating that there was not a potential health risk through maize.  相似文献   

15.
重庆溶溪锰矿区土壤重金属污染评价及植物吸收特征   总被引:17,自引:0,他引:17  
黄小娟  江长胜  郝庆菊 《生态学报》2014,34(15):4201-4211
对重庆溶溪锰矿尾渣堆积区土壤、优势植物以及周边农田土壤的重金属含量(Mn、Cd、Cu、Zn和Pb)进行测定分析,并以重庆市土壤背景值为评价标准,应用Hakanson潜在生态危害指数法对土壤中重金属的潜在生态危害进行了评价。结果表明:该锰矿尾渣堆积区土壤中Mn、Cd、Cu、Zn和Pb的平均含量分别为48382.5、3.91、79.97、131.23和80.68 mg/kg,受到Mn、Cd的严重污染,Mn为强或很强生态危害,Cd为极强生态危害,而Cu、Zn、Pb为轻微生态危害,各尾矿渣堆积区的综合潜在生态危害指数(RI)均远大于720,为极强生态危害。对优势植物重金属含量的分析显示,绝大部分植物地上部Mn、Cd含量都超出正常范围的上限值,而Cu、Zn和Pb含量基本都在正常范围内;根据植物对重金属的吸收特征,将植物分为三类:将重金属主要累积于地上部分的富集型,如垂序商陆(Phytolacca americana L.)和酸模叶蓼(Polygonum lapathifolium Linn.),适用于重金属复合污染土壤的植物修复;将重金属主要累积于根部的根部囤积型,如芒(Miscanthus sinensis Anderss.)和乌蕨(Stenoloma chusanum Ching);重金属含量较低的规避型,如黄花蒿(Artemisia annua L.)、长波叶山蚂蝗(Desmodium sequax Wall.)及钻形紫苑(Aster subulatus Michx.);后两种类型的植物可种植在重金属污染严重且使用价值相对较低的矿山废弃地上,同时规避型植物对于研究植物的重金属排斥机理具有重要价值。溶溪锰矿区周边农田土壤主要受到Cd的严重污染,Cd为很强或极强生态危害。  相似文献   

16.
A pot culture experiment and a field experiment were carried out separately to study heavy metal (HM) uptake from soil contaminated with Cu, Zn, Pb and Cd by Elsholtzia splendens Nakai ex F. Maekawa inoculated with arbuscular mycorrhizal (AM) fungi and the potential for phytoremediation. The HM-contaminated soil in the pot experiment was collected from the field experiment site. Two AM fungal inocula, MI containing only one AM fungal strain, Glomus caledonium 90036, and M II consisting of Gigaspora margarita ZJ37, Gigaspora decipens ZJ38, Scutellospora gilmori ZJ39, Acaulospora spp. andGlomus spp., were applied to the soil under unsterilized conditions. In the pot experiment, the plants were harvested after 24 weeks of growth. Mycorrhizal colonization rate, plant dry weight (DW) and P, Cu, Zn, Pb, Cd concentrations were determined. MI-treated plants had higher mycorrhizal colonization rates than MII-treated plants. Both MI and MII increased shoot and root DW, and MII was more effective than MI. In shoots, the highest P, Cu, Zn and Pb concentrations were all observed in the plants treated with MII, while MI decreased Zn and Pb concentrations and increased P but did not alter Cu, and Cd concentrations were not affected by either of two inocula. In roots, MII increased P, Zn, Pb concentrations but did not alter Cu and Cd, and MI did not affect P, Cu, Zn, Pb, Cd concentrations. Cu, Zn, Pb, Cd uptake into shoots and roots all increased in MII-treated plants, while in MI-treated plants, Cu and Zn uptake into shoots and Cu, Zn, Pb, Cd into roots increased but Pb and Cd uptake into shoots decreased. In general, MII was more effective than MI in promoting plant growth and HM uptake. The field experiment following the pot experiment was carried out to investigate the effects of MII under field conditions. The 45-day-old nonmycorrhizal and MII-colonized seedlings of E. splendens were transplanted to HM-contaminated plots and harvested after 5 months. MII-inoculation increased shoot DW and shoot P, Cu, Zn, Pb concentrations significantly but did not alter shoot Cd concentrations, which led to higher uptake of Cu, Zn, Pb, Cd by E. splendens shoots. These results indicate that the AM fungal consortium represented by MII can benefit phytoextraction of HMs and therefore play a role in phytoremediation of HM-contaminated soils.  相似文献   

17.
Remediation of soils is vital to mitigate the negative effects of heavy metals in ecosystems. There is little information available about the metals’ phytostabilization potential of old man saltbush plants [Atriplex nummularia]. A pot experiment in a randomized complete block design was conducted to study the accumulation of heavy metals by old man saltbush plants, as affected by the application of compost and biochar. The cultivation of A. nummularia is an effective tool in immobilizing metals in the contaminated soils. The cultivation of metal-contaminated soil with A. nummularia reduced the availability of Zn, Cu, Cd, and Pb by 20%, 4%, 21%, and 28%, respectively, in comparison to the non-cultivated soil. Zn, Cu, Cd, and Pb concentrations in the aboveground parts of old man saltbush plants were 70–100, 50–80, 4–5, and 50–90 mg/kg of dry biomass. The higher Zn, Cu, Cd, and Pb concentrations were accumulated in the roots, and the lower concentrations were transferred to the shoots of old man saltbush plants. Compost reduced the concentration of Zn, Cu, Cd, and Pb in the shoots by 10%, 19%, 20%, and 6%, respectively, compared to the control soil. Biochar reduced the concentrations of Zn, Cu, and Pb in the shoots by 30%, 38%, and 44%, respectively, compared to the control. Compost had a lower effect in reducing the metals uptake as biochar. Biochar reduced the uptake of Zn, Cu, and Pb in the shoots of the tested plant by 22%, 23%, and 41%, respectively, in comparison to compost. Based on the obtained results, old man saltbush has good characteristics to be a promising candidate for phytostabilization strategies of metal-contaminated soils. Moreover, biochar is a good tool to enhance metals’ phytostablization.  相似文献   

18.
贵州牛角塘铅锌矿区优势植物的重金属富集特征   总被引:1,自引:0,他引:1  
顿梦杰  张云霞  宋波  盛昕  周浪  宾娟 《广西植物》2022,42(3):479-490
为筛选适合贵州喀斯特地区重金属污染土壤修复治理以及矿区生态复垦的植物材料,该研究在贵州牛角塘铅锌矿区采集30种优势植物及其根系土壤,测定其地上部、地下部和根系土壤的Cd、Cu、Ni、Pb、Zn含量,计算植物对重金属的富集和转运系数,并通过聚类分析综合评估植物的应用潜力.结果表明:(1)千里光、鬼针草地上部Cd含量高达4...  相似文献   

19.
对安徽铜陵铜尾矿区凤丹种植地的土壤和凤丹中重金属污染状况进行了研究.结果表明,尾矿库区种植地极端贫瘠,有机质含量仅1.1~3.4g·kg-1,而土壤Cu、Cd、Pb、Zn含量皆高于对照土壤,其中Cu含量达587.43~1176.44mg·kg-1,Cd含量达3.08~5.16mg·kg-1,约达国家土壤二级标准的10倍.凤丹各部位的Cu、Cd和Pb含量均超过了药用植物的限量标准,尤其是根皮部位Cu含量达31.50~64.00mg·kg-1,Cd含量达0.98~1.45mg·kg-1,超出标准1.6~3.6倍,表明种植地和凤丹都受到严重污染.凤丹不同部位中的Zn、Cd、Pb和Cu分别以茎、叶、叶和根皮中的含量最高.凤丹对Cd、Zn的富集比Cu和Pb高,但在根皮中的富集系数均较小.  相似文献   

20.
研究了大冶钢绿山矿区海洲香薷(Elsholtziahaichowensis)及其群落中几种主要植物Cu、Mn、Zn、Cd、Pb的累积分布,植物与土壤元素、Cu矿的关系,并对海洲香薷的重金属耐受性、铜矿的指示作用作了初步探讨.结果显示海洲香薷植物中的元素表现为Cu>Mn>Zn>Pb>Cd.其中Cu、Mn、Pb元素含量表现为根>叶>茎,Zn、Cd表现为叶>根>茎.和其它植物相比,海洲香薷中的Cu、Mn、Cd含量均高于其它植物,是其它植物的1~10倍.海洲香薷与土壤元素关系中,Cu的相关性最显著,其次为Pb.海洲香薷集中分布于矿区内含Cu较高的土壤上(1645~8950ug/g),其分布与Cu密切相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号