首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In this study, we evaluated the floral ontogeny of Swartzia dipetala, which has peculiar floral features compared with other legumes, such as an entire calyx in the floral bud, a corolla with one or two petals, a dimorphic and polyandrous androecium and a bicarpellate gynoecium. We provide new information on the function of pollen in both stamen morphs and whether both carpels of a flower are able to form fruit. Floral buds, flowers and fruits were processed for observation under light, scanning and transmission electron microscopy and for quantitative analyses. The entire calyx results from the initiation, elongation and fusion of three sepal primordia. A unique petal primordium (or rarely two) is produced on the adaxial side of a ring meristem, which is formed after the initiation of the calyx. The polyandrous and dimorphic androecium also originates from the activity of the ring meristem. It produces three larger stamen primordia on the abaxial side and numerous smaller stamen primordia on the adaxial side. These two types of stamens bear morphologically similar ripening pollen grains. However, prior to the dehiscence of thecae and presentation of pollen in the anther, only the pollen grains of the larger stamens contain amyloplasts. Two carpel primordia are initiated as distinct protuberances, alternating with the larger stamens, in a slightly inner position in the floral meristem, constituting the bicarpellate gynoecium. Both carpels are able to form fruit, although only one fruit is generally produced in a flower. The increase in gynoecium merism probably results in an increase in the surface deposition of pollen grains and consequently in the chance of pollination. This is the first study to thoroughly investigate organogenesis and the ability of the carpel to form fruit in a bicarpellate flower from a member of Fabaceae, in addition to the pollen ultrastructure in the heteromorphic stamens associated with the ‘division of labour’ sensu Darwin. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 303–320.  相似文献   

2.
Symplocos parvibracteata sp. nov. (Symplocaceae) from Chemunji Hills, south Western Ghats, Kerala State, India, is described and illustrated. It is most similar to S. wynadensis and S. tenella, a putative synonym of S. wynadensis, but differs in having shorter racemes, shorter bracts and bracteoles that are persistent in flower and caducous in fruit, narrowly ellipsoid flower buds, and fewer stamens per flower. It is also similar to S. sumuntia, from which it differs by its pubescent branchlets, generally more stamens per flower, and a pubescent floral disk, and to S. macrophylla, from which it differs by the combination of 3 to 5 leaf secondary veins on each side of the midvein, 1–2‐cm long inflorescences, and bracts that are persistent in flower, caducous in fruit, and < 1.5 mm long.  相似文献   

3.
This paper reports the bisexual structure of the flowers of Pterocarya stenoptera. The bisexual flowers are borne at the end of a leafy shoot of the current year in many-flowered terminal pendulous catkins. They have the same structure as the general female ones. Each flower grows in the axil of a bract, with a pair of bracteoles and four small perianths. Each flower has two or three carpels in the centre of the flower, and upon them there are two or three styles with stigmas on the inner face. They differ from the general female ones in that each of them contains 4-6 stamens, forming a single whorl. The stamens alternates with, or is opposite to, the perianth elements. Sometimes they contain 8 (-10) stamens, forming two whorls, with 6 in the outer whorl and 2 (-4) in the inner whorl, and in this case the pistil in the bisexual flower of terminal catkins often becomes a rudiment. It is interesting that we have also found bisexual flowers in another tree, which are borne in lateral male catkins. They have the same structure as general male ones, and the pistils are often represented by a rudiment. Manning (1940) points out that some female flowers of Pterocarya stenoptera and P. fraxinifolia occasionally have stamens ( ? ) opposite the sepals. In P. stenoptera we have found that both the stamens and the stigmas of bisexual flowers are functional. They are capable of producing functional fruits. This is the same case as in Myrica Gale described by Davey and Gibson (1917). Rendle (1952) points out that in the male flowers of Platycarya the pistils often appeared as a rudiment. He considers, however, the male flowers derived from the bisexual flowers with an indefinite number of stamens. The rudimentary pistils of lateral male catkins in P. stenoptera we found are just the same as the ones found in Platycarya by Rendle. The discovery of the bisexual flowers in P. stenoptera may prove that the unisexual flowers of the present-day Juglandaceae are derived from ancestors with bisexual flowers.This tends to support the hypothesis that Cycadicae is the possible ancestor of the angiosperms.  相似文献   

4.
Pollen morphology in the subtribe Aspidistrinae is reported and the main viewpoints are summarized as follows: (1) Two major types of pollen grains, i.e., monosulcate,ellipsoidal pollen and inaperturate, spheroidal pollen, are identified in the genus Tupistra. The species with monosulcate, ellipsoidal pollen usually have monomodal karyotypes, brightcolored flower, smaller stigma, and stamens inserted at upper or middle part of perianth tube, while the inaperturate and spheroidal pollen is always found in the species with bimodal karyotypes, dingy-colored flower, swollen stigma and stamens inserted at the base of perianth tube. (2) Pollen grains in the genus Rhodea are monosulcate and ellipsoidal, while those in the genus Aspidistra are inaperturate and spheroidal, correspondingly similar to the second type of pollen grains in the genus Tupistra. (3) The most primitive pollen in the subtribe Aspidistinae is regarded as monosulcate and ellipsoidal, having perforate or reticulate exine sculpture. The inaperturate, spheroidal pollen with verrucate, gemmate or rugulate exine sculpture is considered derived; (4) Unlike those reported in other groups of the family Liliaceae, the infraspecific pollen shape, aperture type and exine sculpture in Aspidistrinae are basically stable and may serve as a taxonomic character.  相似文献   

5.
Eichhornia paniculata is a tristylous, self-compatible, emergent aquatic. A given plant produces flowers with either long, mid or short styles and two levels of stamens equal in length to the styles not found in that flower. Flowers of each morph have two whorls of three tepals, six stamens and three fused carpels. The six stamens differentiate into two sets of three stamens each. A relatively short set, having either short- or mid-level stamens, occurs on the upper side of the flower, while a relatively long set, having either mid- or long-level stamens, occurs on the lower side. Stamen level depends on differences among stamens in filament length and position of insertion on the floral tube. Floral parts arise in whorls of three, but the two stamen whorls do not form the two sets of stamens found in each mature flower. Instead, stamens from both whorls make up a given set. Floral differences among morphs are not present at flower origin or floral organ initiation. Morphological differences arise first among stamen sets. The two sets within a flower differ prior to meiosis in the size, number, and timing of comparable developmental events in the sporogenous cells. After these initial differences arise, anther size diverges. In later developmental stages differences in filament and floral tube length, cell size, and cell number, as well as differences in the length, cell size, and cell number of styles, develop among morphs. This sequence of developmental events suggests that the genes controlling development in different morphs do not control flower and floral organ initiation but are first morphologically visible in sporogenous cell differentiation.  相似文献   

6.
庙台械的花序为有限花序,由一顶花和6—9枝侧花枝组成,属圆锥状聚伞花序。一个花序共有14—29朵花,包括两性花、雄花和无性花三类花。根据花在花序上着生的位置,可分为三级。7月初,花序原基形成,在花序轴伸长的同时,侧面形成侧花枝轴原基。花序的顶花最早进行个体发育,随后是侧花枝顶花;侧花枝上同一级花的发育顺序则是从花序的下面向上进行。花器官发生时,花萼原基最先形成,然后是花瓣、雄蕊、心皮和胚珠。  相似文献   

7.
Mutations in the AGAMOUS (AG) gene cause transformations in two adjacent whorls of the Arabidopsis flower. Petals develop in the third floral whorl rather than the normal stamens, and the cells that would normally develop into the fourth whorl gynoecium behave as if they constituted an ag flower primordium. Early in flower development, AG RNA is evenly distributed throughout third and fourth whorl organ primordia but is not present in the organ primordia of whorls one and two. In contrast to the early expression pattern, later in flower development, AG RNA is restricted to specific cell types within the stamens and carpels as cellular differentiation occurs in those organs. Ectopic AG expression patterns in flowers mutant for the floral homeotic gene APETELA2 (AP2), which regulates early AG expression, suggest that the late AG expression is not directly dependent on AP2 activity.  相似文献   

8.
LYNDON  R. F. 《Annals of botany》1978,42(6):1343-1348
The initiation and development of the flower of Silene coeli-rosawas followed by examining apices by scanning electron microscopy.The sepals, stamens and carpets are initiated in a spiral sequence,the direction of the spiral king the opposite of the acropetalhelix of unequal axillary buds at the nodes below the flower.The petals are initiated almost simultaneously and at the sametime as the first few stamens. The change in phyllotaxis fromopposite and decussate in the vegetative shoot to spiral inthe flower occurs with the displacement of the first two sepalsaway from the mid-line of the apex and towards the axillarybud at the node below the flower. The sizes of the sepals andstamens are a function of their age since initiation but thepetals grow more slowly. The Silene flower can be interpretedas a shoot bearing primordia with associated axillary primordia,some of the latter being precocious in their development. Silent weli-rosa, flower initiation, flower development, phyllotaxis, primordia  相似文献   

9.
A histological study was made of the systemic growth of Botrytis cinerea from styles, stamens and sepals to the flower receptacle and mesocarp of immature pear fruit. In most styles, hyphal growth ceased in the upper portion at the onset of stylar senescence, which occurred at about 1 wk after full bloom. Hyphae never passed through styles into the carpel. Unlike the styles, hyphae in filaments grew without restriction and progressed within 4 days, via vascular tissue, through sepals into tissues of the upper end of the flower receptacle, or of the mesocarp adjoining the sepals, without causing symptoms. Filaments remained green to partly green until harvest. B. cinerea entered filaments and spread into the receptacle or mesocarp at any time between blossoming and harvest and then became latent in these tissues. Filaments were, however, more susceptible at the flowering stage. After 2 months floral tubes were closed, and the stamens protected from infection. Careful inspection of ripe, cold–stored fruit showed that decay invariably spreads from mesocarp tissue adjoining the sepals, outward along the vascular bundles, but not from secondary inoculum in the floral tube. The behaviour of the pathogen suggests that control of blossom–end rot could be achieved if pears are sprayed with fungicide at 75—100% petal fall (when most stamens are exposed) and a month later (before floral tubes started to close).  相似文献   

10.
To understand the details of the homeotic systems that govern flower development in tomato and to establish the ground rules for the judicious manipulation of this floral system, we have isolated the tomato AGAMOUS gene, designated TAG1, and examined its developmental role in antisense and sense transgenic plants. The AGAMOUS gene of Arabidopsis is necessary for the proper development of stamens and carpels and the prevention of indeterminate growth of the floral meristem. Early in flower development, TAG1 RNA accumulates uniformly in the cells fated to differentiate into stamens and carpels and later becomes restricted to specific cell types within these organs. Transgenic plants that express TAG1 antisense RNA display homeotic conversion of third whorl stamens into petaloid organs and the replacement of fourth whorl carpels with pseudocarpels bearing indeterminate floral meristems with nested perianth flowers. A complementary phenotype was observed in transgenic plants expressing the TAG1 sense RNA in that first whorl sepals were converted into mature pericarpic leaves and sterile stamens replaced the second whorl petals.  相似文献   

11.
《植物生态学报》2017,41(11):1190
Aims Viola philippica is a species with a typical chasmogamous-cleistogamous (CH-CL) mixed breeding system. It provides a flower model system to investigate floral organs development under different photoperiods. Morphological changes of intermediate cleistogamous (inCL) flowers have been observed, the trends in variation of changes from CH flowers to CL flowers or from CL flowers to CH flowers have been analyzed, the localized effects of poorly developed stamens and petals in CL and inCL flowers have been identified. This research provided morphology and structural changes with implication for the evolutionary significance of the dimorphic flower formation for further study in dimorphic flower development.Methods We used methods of anatomy and structural analysis to observe the morphological structures of flowers under different photoperiods.Important findings Photoperiod played an important role in the development of CH and CL flowers in V. philippica. Under short-day light and intermediate-day light, both CH and inCL flowers developed simultaneously. Most of the floral buds were CH flowers under a photoperiod of short-day light, but most of the floral buds were inCL flowers under mid-day light. Complete CL flowers formed under long-day lights. However, there were a series of transitional types in the number and morphology of stamens and petals among inCL flowers, including five stamens with three petals related to CH flowers and two stamens with one petal related to CL flowers. The former type was dominant under short-day light conditions, and the latter type was dominant under mid-day light. Further more, there were localized effects in stamen and petal development for CL and inCL flowers. The development of ventral lower petal (corresponding to the lower petal with spur of CH flower) and the adjacent two stamens in inCL flowers were best, and the back petal was similar to that of CL flowers, an organ primordium structure. The adjacent stamens with the back petals tended to be poorly developed. In extreme cases, these stamens in inCL flowers had no pollen sac, only a membranous appendage or even a primordium structure. When the plants with CL or CH flowers were placed under short-day light or long-day light, the newly induced flowers all showed a series of inCL flower types, finally the CL flowers transformed into CH flowers, and the CH flowers transformed into CL flowers. This result indicates the gradual effects of different photoperiods on dimorphic flowers development of V. philippica. A long photoperiod could inhibit the development of partial stamens and petals, and a short photoperiod could prevent the suppression of long-day light and promote the development of stamens and petals.  相似文献   

12.
Genetic interactions among floral homeotic genes of Arabidopsis.   总被引:79,自引:0,他引:79  
We describe allelic series for three loci, mutations in which result in homeotic conversions in two adjacent whorls in the Arabidopsis thaliana flower. Both the structure of the mature flower and its development from the initial primordium are described by scanning electron microscopy. New mutations at the APETALA2 locus, ap2-2, ap2-8 and ap2-9, cause homeotic conversions in the outer two whorls: sepals to carpels (or leaves) and petals to stamens. Two new mutations of PISTILLATA, pi-2 and pi-3, cause second and third whorl organs to differentiate incorrectly. Homeotic conversions are petals to sepals and stamens to carpels, a pattern similar to that previously described for the apetala3-1 mutation. The AGAMOUS mutations, ag-2 and ag-3, affect the third and fourth whorls and cause petals to develop instead of stamens and another flower to arise in place of the gynoecium. In addition to homeotic changes, mutations at the APETALA2, APETALA3 and PISTILLATA loci may lead to reduced numbers of organs, or even their absence, in specific whorls. The bud and flower phenotypes of doubly and triply mutant strains, constructed with these and previously described alleles, are also described. Based on these results, a model is proposed that suggests that the products of these homeotic genes are each active in fields occupying two adjacent whorls, AP2 in the two outer whorls, PI and AP3 in whorls two and three, and AG in the two inner whorls. In combination, therefore, the gene products in these three concentric, overlapping fields specify the four types of organs in the wild-type flower. Further, the phenotypes of multiple mutant lines indicate that the wild-type products of the AGAMOUS and APETALA2 genes interact antagonistically. AP2 seems to keep the AG gene inactive in the two outer whorls while the converse is likely in the two inner whorls. This field model successfully predicts the phenotypes of all the singly, doubly and triply mutant flowers described.  相似文献   

13.
油菜是我国重要的油料作物,油菜花器官具有典型的十字花科特点,无花瓣油菜在花期不存在花冠层,这种特点有助于提高油菜产量,预防茵核病的传播。雄蕊心皮化是指花器官的雄蕊结构被具有类似于雌蕊结构的器官代替,这不仅造成了花器官结构的变化也导致了雄性不育。本文通过对无花瓣油菜雄蕊心皮化突变不育分离群体中的雄性可育株和不育株的比较研究,发现心皮化现象是由遗传因素引起的。细胞学观察发现,雄蕊心皮化在花器官发育的早期就已经产生,心皮化的雄蕊中着生类似于胚珠的结构,其顶端细胞的形态和排列方式也与雌蕊柱头相似。花发育相关基因的表达分析表明,B组基因彳丹在不育株3轮花器中的表达都比可育株低,特别是在第二轮花器官中这种差异最为突出。而A组基因AP1在不育株第二轮花器官中的表达量较可育株高。c组基因AGL8、SHPI、SHP2、NAP在不育株心皮化的第二轮花器官中表达都较可育株中高。  相似文献   

14.
Floral ontogeny is described and documented using scanning electron microscopy in Myroxylon balsamum and Castanospermum australe, representatives respectively of Polhill's Myroxylon and Angylocalyx groups (Leguminosae: Papilionoideae), groups exhibiting relatively unspecialized flower structure for the tribe Sophoreae. Both are woody tropical trees with axillary or terminal racemes or panicles. Bracteoles are present in both Myroxylon and Castanospermum. Flowers are initiated singly in bract axils, which are produced in acropetal order by the inflorescence apical meristem. The flower structure of both includes a broad calyx tube, five petals lacking any fusion (only the vexillary distinctive), ten free homogeneous stamens in two whorls, and a long-stipitate carpel. The two taxa are alike in early organogenetic stages with essentially acropetal order of initiation: sepals, petals, outer stamens plus carpel, inner stamens. Within each whorl the order is unidirectional from the abaxial side. They are alike through middevelopment with one exception. There is accelerated vexillar enlargement in Castanospermum by middevelopment, not found in Myroxylon. Both have a hypanthium, which forms late in development. In both, large flower size, exserted stamens, and hypanthium are adaptations to bird-pollination. Differences between the two that are manifested in late development include strongly zygomorphic calyx and petal color change over time (Castanospermum), stamens sagittate and apiculate with some basal filament fusion (Myroxylon), stigma form differences, and fruit form.  相似文献   

15.
Individuals of Phoenix dactylifera L. have expanded pistillodes or pseudocarpels in staminate flowers. These pseudocarpels are located in the centre of the male flowers and are surrounded by stamens. The gynoecium has the characteristic three carpellate arrangement commonly found in female date palm flowers. Pseudocarpels from male flower buds can expand into parthenocarpic fruit. Histology of the expanded pistillodes or pseudotarpels is similar to that of normal carpels from pistillate plants. These pseudocarpels lack ovules. Nutrient medium containing 10 mg 1-1 of 2,4-dichlorophenoxyacetic acid or p-chlorophenylacetic acid and 0.3% activated neutralized charcoal enhanced the development and outgrowth of the pseudocarpels of cultured male flowers.  相似文献   

16.
The flower of Gastrodia elata B1. grows usually solitary in the bract-axial. The parts of flower are appeared in the following order: sepals, petals, stamens and pestil. In addition, the bases of calyx and corolla unite forming the oblique “floral tube”. Inner three petals, the median lip of the petal is usually larger and different in shape. The lip is three lobes, the marginal and its bases meristem keeps its activity forming lobes marginal tassel, at the base forming one fleshy reniform callus on both sides of lip. A column is united by stamen and style. The stamen is on the top at the back of rostellum in the column. Three stamens primodia of them, only one can developed, on the lateral stamens, during the early stage of flower development, it will not development further and stays on rudimentary, it forming two horn-like protuberances of the clinandrium.  相似文献   

17.
Summary Cashew trees produce four types of pollen from the large and small stamens of the hermaphrodite and male flower (HL, HS, ML, MS). Comparative studies were made of the grain number, structure, viability, vigour, and sugar and amino acid composition of the four pollen types. Anther and pollen grain numbers and dimensions of the four pollen types were similar, as were pollen structure and staining characteristics. The fluorescein diacetate test showed that the HL pollen had the highest percent fluorescence, and viability of all pollen types had declined by 48 h after anthesis. Following controlled hand pollination, the ML pollen had the highest capacity to germinate on the stigma and penetrate the ovule, followed by the MS, HL, and HS pollens. Glucose and fructose and 19 free amino acids were present in all pollen types, with higher levels in the hermaphrodite than in the male flower pollen. The results indicate that the pollen of the male flower is specialised for pollination and fruit set, whereas that of the hermaphrodite flower may be specialised for insect attraction.  相似文献   

18.
Inflorescence and floral ontogeny of the perennial, herbaceous crop Crocus sativus L. were studied using epi-illumination light microscopy. After production of leaves with helical arrangement a determinate inflorescence forms which becomes completely transformed into a single terminal flower. In some cases, bifurcation of the inflorescence meristem yields two or three floral meristems. The order of floral organs initiation is outer tepals – stamens – inner tepals – carpels. Stamens and outer tepals are produced from the lateral bifurcation of three common stamen-tepal primordia. Within each whorl, organs start developing unidirectionally from the adaxial side, except for the stamens which begin to grow from the abaxial side. Specialized features during organ development include interprimordial growth between tepals forming a perianth tube, fusion at the base of stamen filaments, and formation of an inferior ovary with unfused styles.  相似文献   

19.
The ontogeny of the flower and fruit of Illicium floridanum Ellis, the Star Anise, was investigated. Each of 5 or 6 bracts in each mixed terminal bud subtends either a vegetative or floral bud. The solitary flowers occur in terminal or axillary positions. Each flower has 3–6 subtending bracteoles arranged in a clockwise helix. The flowers in our material have 24–28 tepals, 30–39 stamens, and usually 13 (rarely 19) uniovulate carpels. Tepals and stamens are initiated in a low-pitched helix; carpels later appear whorled, but arise successively at different levels on the apical flanks. The floral apex is high-convex in outline with a tunica-corpus configuration; it increases in height and width throughout initiation of the floral appendages. Tepals, stamens, and carpels are initiated by one to several periclinal divisions in the subsurface layers low on the apical flanks, augmented by cell divisions in the outer layers of the corpus. The carpel develops as a conduplicate structure with appressed, connivent margins. Procambium development of floral appendages is acropetal and continuous. Bracteoles, tepals, stamens and carpels are each supplied by 1 trace; the carpellary trace splits into a dorsal and an ascending ventral sympodium. The latter bifurcates to form 2 ventral bundles. The ovular bundle diverges from the ventral sympodium. Ovule initiation occurs in a median axillary position to the carpel, an unusual type of ovule initiation. The fruit vasculature is greatly amplified as the receptacle and follicles enlarge. After carpel initiation an apical residuum persists which is not vascularized; a plate meristem develops over its surface to produce a papillate structure.  相似文献   

20.
Lythrum salicaria, now a widespread invasive species, exhibits tristyly, a form of heteromorphic selfincompatibility. In tristyly, each plant exhibits one (and only one) of three morphologically different floral forms. Moreover, each flower produces two types of stamens, and these two exhibit different incompatibility reactions. Differences between stamens of a single flower must be the result of epigenetic phenomena and for that reason, we performed two-dimensional gel electrophoresis (2-DE) to analyze fractions of soluble proteins derived from the pollen coat and protoplast including three hydrolytic enzymes from the six different stamen types (two from each of three floral forms). There were significant differences in the 2-D protein profiles both between pollen from the same flower and between the same type of pollen from two different flowers, in the pollen coat as well as in the protoplast extracts. In five of the six samples of pollen fractions, characteristic peptides were found. Quantitative differences between pollen from the same flower were observed in case of esterases. Furthermore, analysis of proteases and acid phosphatases revealed also qualitative differences between these enzymes in pollen from the same flower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号