首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report includes results demonstrating the existence of orotidine-5'-phosphate decarboxylase and orotidine-5'-phosphate pyrophosphorylase in plant leaves. The decarboxylase enzyme, purified 8 fold from leaves of etiolated pinto beans (Phaseolus vulgaris L.), had a pH optimum of 6.3. It was strongly inhibited by 6-azauridine-5'-phosphate; a concentration of 12 mum decreased the reaction rate 60%. The enzyme was not dependent upon magnesium ions or inhibited by p-chloromercuribenzoate. It was present in other parts of the bean plant and was found in young leaves of tomato (Lycopersicon esculentum Mill.) and Canada thistle (Cirsium arvense L.)The enzyme orotidine-5'-phosphate pyrophosphorylase, which catalyzes the formation of orotidine-5'-phosphate from orotic acid and 5-phosphoribosyl-1-pyrophosphate, was found in the etiolated bean leaves, and was also present in the leaves of tomato and Canada thistle. It was stimulated by manganous or magnesium ions and had a pH optimum of 7.2. The K(m) value obtained by varying the concentrations of 5-phosphoribosyl-1-pyrophosphate was 75 mum, and when orotic acid was varied the resulting K(m) was 3.5 mum.The presence of these 2 enzymes in higher plants, combined with previous results with inhibitors and labeled metabolites, indicates that the normal pathway of pyrimidine nucleotide synthesis in higher plants proceeds through orotic acid and OMP.  相似文献   

2.
L-Galactono-γ-lactone dehydrogenase, which catalyzes the final step of the biosynthesis of L-ascorbate, is bound to spinach mitochondrial membrane, as confirmed by linear sucrose density gradient centrifugation. The solubilized enzyme was very labile, but stabilized in the presence of L-galactono-γ-lactone under anaerobic conditions. The enzyme reduced cytochrome c and phenazine methosulfate in the presence of L-galactono-γ-lactone, but not when L-gulono-γ-lactone was used as an electron donor. The Kms of the enzyme for L-galactono-γ-lactone and cytochrome c were 192 μM and 180 μM, respectively.  相似文献   

3.
In the present study, the relationship between the nutritional status of leaves and the development of symptoms of cotton leaf curl virus (CLCuV) in two cotton (Gossypium hirsutum L.) cuItlvars (I.e. CIM-240 and S-12) was Investigated. The incidence of disease attack was found to be 100% In the S-12 cuItlvar and 16% in the CIM-240 cuItivar. Geminivirus particles in infected leaves were confirmed by transmission electron microscope examination of highly specific geminivirus coat protein antlsera-treated cell sap. The CLCuV Impaired the accumulation of different nutrients in both cuItivars. A marked decrease in the accumulation of Ca^2+ and K^+ was observed in infected leaves. However, the disease had no effect on leaf concentrations of Na^+, N, and P. It was observed that the curling of leaf margins in CLCuV-Infected plants was associated with the leaf Ca^2+ content; leaf curling was severe in plants with a significant reduction In Ca^2+ content. Moreover, leaf K&+ content was found to be associated with resistance/susceptibility to CLCuV infection.  相似文献   

4.
Physiological indices related to the efficiency ( Fv/Fm ) of light energy conversion in PSⅡ and the peroxidation of membrane lipid were measured in leaves of Oryza sativa L. sp. indica rice cv. “Shanyou 63” and sp. japonica rice cv. “9516” under different temperatures and light intensities for 4 days. No changes in Fv/Fm and membrane lipid peroxidation product (MDA) were observed, so neither photoinhibition nor photooxidation happened in both rice cultivars under moderate temperature and medium light intensity. However, Fv/Fm dropped obviously with no change in MDA contents, and photoinhibition appeared in indica rice cv. “Shanyou 63” under medium temperature and strong light intensity. Furthermore, both photoinhibition and photooxidation were observed in two rice cultivars under chilling temperature and strong light intensity. Experiments with inhibitors under chilling temperature and strong light intensity showed that indica rice had a decrease in D1 protein content and SOD activity, and the extent of inhibition of xanthophyll cycle and nonphotochemical quenching ( qN ) was larger, and a higher level of MDA was observed. The photoinhibition and photooxidation in indica rice were more distinct as compared with japonica rice. The authors suggested that PSⅡ light energy conversion efficiency ( Fv/Fm ) and membrane lipid peroxidation were the key indices for the detection of photooxidation.  相似文献   

5.
A novel O-glucosyltransferase (I4'GT) which catalyzes the transferof D-glucose from UDP-D-glucose to position 4' of prunetin (4',5-dihydroxyl-7-methoxyisoflavone)was isolated from the leaves of Prunus ? yedoensis Matsum. andpurified 66-fold by precipitation with ammonium sulfate andchromatography on DEAE-cellulose. UDP-glucose:flavonol 3-O-glucosyltransferase(F3GT) was also isolated and purified 50-fold in the same manner.The molecular weights of both I4'GT and F3GT were estimatedby elution from a column of Sephadex G-100 to be about 51,000Da. The pH optima for I4'GT and F3GT activities were 8.0 and7.5, respectively. The specificities of I4'GT and F3GT for thesugar donor were quite strict, and only UDP-glucose could serveas glucosyl donor, both ADP-D-glucose and GDP-D-glucose beingineffective. The apparent Km values for UDP-glucose and prunetinwere 10.0µM and 1.20µM, respectively, for I4'GT.The Km values for UDP-glucose and quercetin were 9.8 µMand 1.21 µM, respectively, for F3GT. The activities ofboth I4'GT and F3GT were stimulated by 1 mM Mg*+ and stronglyinhibited by 1 mM Cu2+, 1 mM Zn2+ and various reagents thatreact with sulfhydryl groups. (Received May 16, 1990; Accepted September 3, 1990)  相似文献   

6.
A multidisciplinary approach—anatomy, histochemistry and phytochemistry—was used to investigate the leaf structure, the content and the storage location of barbaloin in the leaves of Aloe vera L. var. chinensis (Haw.) Berg. Xeromorphic characteristics including secondary thickened epidermal cell walls, thicker cuticle, ambiguous differentiation of spongy and palisade tissues in the chlorenchyma, and well-developed aquiferous tissue could be seen in the leaves. Several large parenchymatous cells were observed at the phloem pole of the first ring of vascular bundles. The secondary ring of vascular bundles in the leaf base and the stomata, which are surrounded by five cells, have some classification significance in this species. The density of vascular bundles, the content of barbaloin and the intensity of histochemical reaction differed among leaf numbers L1 (annual leaf), L2 (biennial leaf), L3 (triennial leaf) and L4 (quadrennial leaf), and in different parts of the leaf. These three factors were highest in the youngest leaf, L1, and top parts of all the leaves and lowest in the basal parts and the oldest leaf, L4. The density of vascular bundles had a positive correlation to the content of barbaloin. The histochemical results revealed that the small sheath cells that surrounded the bundles might be the location of barbaloin synthesis and the large parenchymatous cells beneath the sheath might be the storage places of this metabolite.  相似文献   

7.
Chang NK 《Plant physiology》1981,68(2):464-468
The enzymes necessary to assimilate ammonia either via glutamine synthetase and glutamate synthase or via the glutamate dehydrogenase pathways are present in both green and white leaf tissues of Kalanchoë fedtschenkoi. Nitrate reductase activity develops to a maximum in a Crassulacean acid metabolism (CAM) plant canopy before either ribulose 1,5-bisphosphate carboxylase, or phosphoenolpyruvate carboxylase, or CAM. Nitrate reductase also is activated each morning and is inactivated late in the day as in other plants. However, there does not appear to be any direct relationship between nitrate reductase activity and the level of acid, its daily pattern or the amplitude of CAM. Though nitrate reductase is activated maximally each day by light, in Kalanchoë leaves for six days the activity followed a precise daily pattern independent of continuous light or dark.  相似文献   

8.
9.
An intricate network of hormone signals regulates plant development and responses to biotic and abiotic stress. Salicylic acid (SA), derived from the shikimate/isochorismate pathway, is a key hormone in resistance to biotrophic pathogens. Several SA derivatives and associated modifying enzymes have been identified and implicated in the storage and channeling of benzoic acid intermediates or as bioactive molecules. However, the range and modes of action of SA-related metabolites remain elusive. In Arabidopsis, Enhanced Disease Susceptibility 1 (EDS1) promotes SA-dependent and SA-independent responses in resistance against pathogens. Here, we used metabolite profiling of Arabidopsis wild type and eds1 mutant leaf extracts to identify molecules, other than SA, whose accumulation requires EDS1 signaling. Nuclear magnetic resonance and mass spectrometry of isolated and purified compounds revealed 2,3-dihydroxybenzoic acid (2,3-DHBA) as an isochorismate-derived secondary metabolite whose accumulation depends on EDS1 in resistance responses and during ageing of plants. 2,3-DHBA exists predominantly as a xylose-conjugated form (2-hydroxy-3-β-O-d-xylopyranosyloxy benzoic acid) that is structurally distinct from known SA-glucose conjugates. Analysis of DHBA accumulation profiles in various Arabidopsis mutants suggests an enzymatic route to 2,3-DHBA synthesis that is under the control of EDS1. We propose that components of the EDS1 pathway direct the generation or stabilization of 2,3-DHBA, which as a potentially bioactive molecule is sequestered as a xylose conjugate.  相似文献   

10.
11.
Abstract Temporal analyses of cell division and tissue expansion in pea, tobacco, and sunflower leaves reveal that both processes follow similar patterns during leaf development. Relative cell division and relative tissue expansion rates are maximal and constant during early leaf development, but they decline later. In contrast, relative cell expansion rate follows a bell-shaped curve during leaf growth. Cell division and tissue expansion have common responses to temperature, intercepted radiation, and water deficit. As a consequence, final leaf area and cell number remain highly correlated throughout a large range of environmental conditions for these different plant species, indicating that cell division and tissue expansion are co-ordinated during leaf development. This co-ordination between processes has long been explained by dependence between both processes. Most studies on dicotyledonous leaf development indicate that leaf expansion rate depends on the number of cells in the leaf. We tested this hypothesis with a large range of environmental conditions and different plant species. Accordingly, we found a strong correlation between both absolute leaf expansion rate and leaf cell number. However, we showed that this relationship is not necessarily causal because it can be simulated by the hypothesis of independence between cell division and tissue expansion according to Green's theory of growth (1976). Received 23 February 2000; accepted 3 March 2000  相似文献   

12.
The present study was performed to determine the changes in inorganic element content in barley leaves of mammalian sex hormones (MSH). Barley leaves were sprayed with 10−4, 10−6, 10−9, 10−12, 10−15 M concentrations of progesterone, β-estradiol, and androsterone at 7th day after sowing. The plants were harvested at the end of 18 days after treatment with MSH solutions. The inorganic element concentrations were determined using wavelength dispersive X-ray fluorescence spectroscopy technique. Although the all MSH concentrations significantly (p < 0.05) increased the concentrations of calcium, magnesium, phosphorus, sulfur, copper, manganese, aluminum, zinc, iron, potassium, and chlorine, it decreased those of sodium concentration in barley leaves. The maximum changes in the element concentrations were obtained at 10−9 M for plant leaves treated with progesterone, 10−6 M for plant leaves treated with β-estradiol and androsterone. The present study elucidated that MSH significantly (p < 0.05) affected the inorganic element concentrations in barley leaves.  相似文献   

13.
14.
The chemical components of different genera and species of Taxaceac have been analyzed in order to provide the data for discussion of the systematic position of this family. A characteristic component kayaflavone from the leaves of Torreya grandis cv. ‘Merrillii' has been reported in our previous paper. Recently we have obtained also a new diterpene torreyagrandate from the leaves of this species. The present paper deals with our preliminary study on essential oil composition of the leaves in the same species. 26 components have been identified. Three of them, limonene, α-pinene and δ-3-carene, are the main ones, with their contents being 44.24%, 20.75% and 4% respectively. The essential oilalso contains torreyol which is a characteristiccomponent in this species.  相似文献   

15.
A protein with an apparent molecular mass of 30 kDa that cross-reacts with barley glucanase antiserum was detected in healthy leaves of sorghum (Sorghum bicolor (L.) Moench). When sorghum leaves were infected with Exserohilum turcicum, the causal agent of leaf blight, the 30-kDa glucanase was substantially induced. The 30-kDa glucanase was partially purified from sorghum leaves using ammonium sulfate fractionation and anion exchange chromatography on DEAE-sephacel. The N-terminal amino acid sequence of the 30-kDa glucanase shows homology to glucanases of maize, barley, bean, soybean, tobacco and pea. The purified 30-kDa glucanase showed antifungal activity against Trichoderma viride.  相似文献   

16.
To achieve optimal functionality, plant organs like leaves and petals have to grow to a certain size. Beginning with a limited number of undifferentiated cells, the final size of an organ is attained by a complex interplay of cell proliferation and subsequent cell expansion. Regulatory mechanisms that integrate intrinsic growth signals and environmental cues are required to enable optimal leaf and flower development. This review focuses on plant-specific principles of growth reaching from the cellular to the organ level. The currently known genetic pathways underlying these principles are summarized and network connections are highlighted. Putative non–cell autonomously acting mechanisms that might coordinate plant-cell growth are discussed.Over millions of years, plant leaves and flowers evolved into an enormous range of shapes and sizes. Likely reflecting adaptations to changing environmental conditions, even closely related species often differ dramatically in their organ sizes (Mizukami 2001). Although interspecies diversity is remarkably high, species-specific leaf and petal characteristics are often highly uniform between individuals grown under constant conditions. This suggests that tight genetic control is used to integrate intrinsic growth signals and environmental cues to enable organ growth to a defined size. This review summarizes the current knowledge of the regulatory networks of plant size control at the cellular and at the organ level. We will focus on the regulation of determinate growth of lateral plant organs, such as simple leaves and petals.  相似文献   

17.
A new racemic xanthone, garmckeanin A ( 1 ), and eight known analogs 2 – 9 were isolated from the ethyl acetate (AcOEt) extract of the Vietnamese Garcinia mckeaniana leaves. Their structures were determined by MS and NMR spectral analyses and compared with the literature. The AcOEt extract showed good cytotoxicity against cancer cell lines KB, Lu, Hep-G2 and MCF7, with IC50 values of 5.40–8.76 μg/mL, and it also possessed α-glucosidase inhibitory activity, with an IC50 value of 9.17 μg/mL. Garmckeanin A ( 1 ) exhibited inhibition of all cancer cell lines, with an IC50 value of 7.3–0.9 μM. Allanxanthone C ( 5 ) successfully controlled KB growth, with an IC50 value of 0.54 μM, higher than that of the positive control, ellipticine (IC50 1.22 μM). Norathyriol ( 8 ) was a promising α-glucosidase inhibitor, with an IC50 value of 0.07 μM, much higher than that of the positive control, acarbose (IC50 161.0 μM). The interactions of the potential α-glucosidase inhibitors with the C- and N-terminal domains of human intestinal α-glucosidase were also investigated by molecular docking study. The results indicated that bannaxanthone D ( 2 ), garcinone E ( 4 ), bannaxanthone E ( 6 ), and norathyriol ( 8 ) exhibit higher binding affinity to the C-terminal than to the N-terminal domain through essential residues in the active sites. In particular, compound 8 could be assumed to be the most potent mixed inhibitor.  相似文献   

18.
Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light stress conditions. Results showed that D1 protein contents of PSⅡ in photosynthetic app aratus dropped, the generation of antheraxanthin (A) and zeaxanthin (Z)of xanthophyll cycle were inhibited partly, PSⅡ photochemical efficiency (Fv/Fm)and non photochemical quenching (qN) were also decreased obviously. In addition, endogenous active oxygen scavenger—superoxide dismutase (SOD) reduced, superoxide anion radical (O[SX(B-*3)-[]·[SX]]2) and malondialdehyde (MDA) accumulated, as a result, photooxidation of leaves occurred under chilling temperature and strong light stress conditions. Obvious differences in the changes of the above mentioned physiological parameters between indica and japonica rice were observed. Experiments in leaves treated with inhibitors under chilling temperature and strong light conditions showed that indica rice was more sensitive to chilling temperature with strong light and subjected to photooxidation more than japonica rice. Notable positive correlation between D1 protein contents and Fv/Fm or (A+Z)/(A+Z+V), and a marked negative correlation between Fv/Fm and MDA contents were obtained by regression analysis in indica and japonica rice during chilling temperature and strong light conditions. According to the facts mentioned above, it was inferred that PSⅡ photochemical efficiency(Fv/Fm) was the key index to forecast for the prediction of photooxidation under stress circumstances and the physiological basis were the synthetic capacity of D1 protein and the protection of xanthophyll cycle.  相似文献   

19.
Mulberry leaves have been used as the sole food for silkworms in sericulture, and also as a traditional medicine for diabetes prevention. Mulberry leaf components, for example 1-deoxynojirimycin (1-DNJ), inhibit the activity of α-glucosidase and prevent increased blood glucose levels, and they are highly toxic to caterpillars other than silkworms. The α-glucosidase inhibitory activity of mulberry leaves changes with the season, but it is unknown which environmental conditions influence the α-glucosidase inhibitory activity. We investigated in this study the relationship between the α-glucosidase inhibitory activity and environmental conditions of temperature and photoperiod. The results demonstrate that low temperatures induced decreasing α-glucosidase inhibitory activity, while the induction of newly grown shoots by the scission of branches induced increasing α-glucosidase inhibitory activity. These results suggest that the α-glucosidase inhibitory activity was related to the defense mechanism of mulberry plants against insect herbivores.  相似文献   

20.
DU Yan  YU DiQiu 《Plant Diversity》2010,32(3):263-269
To analyze the effect of β aminobutyrie acid (BABA) on anthocyanin of leaves of Arabidopsis, 30 old plants were sprayed with BABA while the control were sprayed with water. After treated with BABA, the content of anthocyanin was significantly lower than that of control. Furthermore, the results from RT PCR showed that CHS, LDOX, UF3GT were down regulated compared with contro1, while PAL showed an opposite trend. At the same time, the activity of PPO, which played an important role in the degradation of anthocyanin, showed higher level than control. In addition, the antioxidant capacity, the death rate of cells and electrical conductivity of leaves were also decreased with BABA treatment. All results suggested that BABA might inhibit the accumulation of anthocyanin in leaves of Arabidopsis in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号