首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A stable freeze-dried powder was prepared of partly purifiedribulose bisphosphate carboxylase from wheat leaves. As withpreparations from other leaves it is necessary to incubate theenzyme with Mg2$ and CO2 to achieve maximum activity. At 25°C this activity was 0.75 IU mg–1 protein for a preparationactivated at 50 °C for 10 min; the Km for CO2 was 15 µM. The time for reactivation of enzyme that had been inactivatedthrough the absence of CO2 and Mg2$ was influenced by the lengthof the inactivating treatment. After a short inactivation periodthe enzyme was reactivated within a few minutes, whereas aftera longer period several hours were needed. Enzyme in the latterstate had some properties in common with enzyme inactivatedby lower temperatures but in the presence of CO2 and Mg2$. Theenzyme kinetic characteristics are similarly affected by bothkinds of inactivation; the maximum velocity is decreased butthe affinity for CO2 is not affected. Reactivation following a long inactivating treatment becomesmore dependent on Mg2$ concentration as the temperature is increasedfrom 0 to 20 °C.  相似文献   

2.
The activation level of ribulosebisphosphate carboxylase following preincubation with ribulose 1,5-bisphosphate was increased by ATP and ribulosebisphosphate carboxylase activase in the absence of thylakoids or illumination. Maximal activation was obtained with 0.5 millimolar ATP in the presence of an ATP regenerating system (phosphoenolpyruvate and pyruvate kinase). Without the ATP regenerating system, activation was lower, linearly dependent on ATP concentration up to 1.0 millimolar, and was strongly inhibited by ADP.  相似文献   

3.
The time-dependent, slow inhibition of ribulose bisphosphatecarboxylase (RuBisCO) in the absence of ribulose bisphosphatewas dependent on the concentrations of RuBisCO and xylulosebisphosphate (XuBP). When incubated with excess XuBP, RuBisCOlost its activity gradually with incubation time. When RuBisCOof the concentration of 1.5 µM was incubated with 20 µMXuBP, the activity was inhibited for the initial 10 minutes,after which the activity recovered gradually with time. Therecovery was because XuBP in the incubation mixture was carboxy-latedto form 3-phosphoglycerate. The concentration of XuBP half-saturatingthe XuBP-carb-oxylation reaction of RuBisCO was 12 to 15 µM.The initial inhibition and the subsequent recovery of the activitywere due to the elimination from and re-binding to RuBisCO,respectively, of the activator CO2. (Received April 20, 1991; Accepted May 21, 1991)  相似文献   

4.
Ribulose bisphosphate carboxylase (EC 4.1.1.39 [EC] ) activity wasvery low in tomato leaf extracts unless prepared in the presenceof Mg2+, and polyclar AT. With young leaves, but not with fully-expanded leaves, the RuBP carboxylase activityextracted was increased by prolonged illumination of the leaves(2 h). The main effect of the light treatment was to increasethe specific activity of the enzyme but there was also a smallincrease in RuBP carboxylase protein. Tomato leaf RuBP carboxylasein extracts had specific activities in the range 0.2–0–6µmol CO2 min–1 mg–-1 total protein extracted,or 0.5–1.2 µmol CO2 min–1 mg–1 RuBPcarboxylase, and an apparent Km (CO2) at 20 ?C of 9.3 ? 1.2µM (using a of 6.407). Key words: Tomato leaf, RuBP carboxylase, Properties  相似文献   

5.
At concentrations of CO2 less than saturating, carbonic anhydrase(EC 4.2.1.1 [EC] ) stimulates the carboxylation of ribulose bisphosphatecatalysed by ribulose bisphosphale carboxylase (EC 4.1.1.3 [EC] .9)in vitro. This is not through any beneficial association ofthe two enzymes but is a consequence of the increased rate ofconversion of HCO3 ion to CO2, the substrate for thecarboxylation. Carbonic anhydrase should always be includedin reaction mixtures used to determine the Michaelis constantof ribulose bisphosphate carboxylase for CO2 where fixationof radioactive CO2 into phosphoglycerate is the basis of rateestimation. The effect is to decrease the value obtained forthe Michaelis constant.  相似文献   

6.
The effects of sulphite ion () and sulphate ion () on both the activation and the catalytic activities of ribulose- 1, 5-bisphosphate carboxylase (EC 4.1.1.39 [EC] )were studied and compared to those of other effectors of theenzyme, particularly inorganic phosphate (P1). The activationby CO2 and Mg2+ of a slow activating form of the carboxylasein the presence of the two anions produced high specific activitieswith significant lower concentrations of CO2 than normally required.This was due to stabilization of the ternary complex betweenthe enzyme, CO2 and Mg2+. With a rapidly activating speciesof enzyme, and caused only a small increase in activation with subsaturating CO2. , and P1, with saturatingconcentrations of CO2 also enhanced the catalytic activity abovethat achieved with CO2 and Mg2+ alone; P1 was the most effectiveof the anions, producing a 50% increase in the specific activity,both with the slow and rapidly activating species. and were potent inhibitors of the carboxylase and oxygenase reactions of the enzyme. was a non-competitive inhibitor with respect to CO2, and competitive/mixedwith respect to ribulose-1, 5-bisphosphate. The time courseof the carboxylase and oxygenase reactions in the presence of were biphasic with inhibition apparent only in the second phase. Key words: Ribulose bisphosphate carboxylase, Activation, SO32-, SO42-  相似文献   

7.
Vu CV  Allen LH  Bowes G 《Plant physiology》1983,73(3):729-734
Soybean (Glycine max L. Merr. cv Bragg) was grown throughout its life cycle at 330, 450, and 800 microliters CO2 per liter in outdoor controlled-environment chambers under solar irradiance. Leaf ribulose-1,5-bisphosphate carboxylase (RuBPCase) activities and ribulose-1,5-bisphosphate (RuBP) levels were measured at selected times after planting. Growth under the high CO2 levels reduced the extractable RuBPCase activity by up to 22%, but increased the daytime RuBP levels by up to 20%.

Diurnal measurements of RuBPCase (expressed in micromoles CO2 per milligram chlorophyll per hour) showed that the enzyme values were low (230) when sampled before sunrise, even when activated in vitro with saturating HCO3 and Mg2+, but increased to 590 during the day as the solar quantum irradiance (photosynthetically active radiation or PAR, in micromoles per square meter per second) rose to 600. The nonactivated RuBPCase values, which averaged 20% lower than the corresponding HCO3 and Mg2+-activated values, increased in a similar manner with increasing solar PAR. The per cent RuBPCase activation (the ratio of nonactivated to maximum-activated values) increased from 40% before dawn to 80% during the day. Leaf RuBP levels (expressed in nanomoles per milligram chlorophyll) were close to zero before sunrise but increased to a maximum of 220 as the solar PAR rose beyond 1200. In a chamber kept dark throughout the morning, leaf RuBPCase activities and RuBP levels remained at the predawn values. Upon removal of the cover at noon, the HCO3 and Mg2+-activated RuBPCase values and the RuBP levels rose to 465 and 122, respectively, after only 5 minutes of leaf exposure to solar PAR at 1500.

These results indicate that, in soybean leaves, light may exert a regulatory effect on extractable RuBPCase in addition to the well-established activation by CO2 and Mg2+.

  相似文献   

8.
The activation state of ribulose bisphosphate carboxylase/oxygenase (rubisco) in a lysed chloroplast system is increased by light in the presence of a saturating concentration of ATP and a physiological concentration of CO2 (10 micromolar). Electron transport inhibitors and artificial electron donors and acceptors were used to determine in which region of the photosynthetic electron transport chain this light-dependent reaction occurred. In the presence of DCMU and methyl viologen, the artificial donors durohydroquinone and 2,6-dichlorophenolindophenol (DCPIP) plus ascorbate both supported light activation of rubisco at saturating ATP concentrations. No light activation occurred when DCPIP was used as an acceptor with water as electron donor in the presence of ATP and dibromothymoquinone, even though photosynthetic electron transport was observed. Nigericin completely inhibited the light-dependent activation of rubisco. Based on these results, we conclude that stimulation of light activation of rubisco by rubisco activase requires electron transport through PSI but not PSII, and that this light requirement is not to supply the ATP needed by the rubisco activase reaction. Furthermore, a pH gradient across the thylakoid membrane appears necessary for maximum light activation of rubisco even when ATP is provided exogenously.  相似文献   

9.
The activation kinetics of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) following an increase in photon flux density (PFD) were studied by analyzing CO2 assimilation time courses in spinach leaves (Spinacia oleracea). When leaves were exposed to 45 minutes of darkness before illumination at 690 micromoles per square meter per second, Rubisco activation followed apparent first-order kinetics with a relaxation time of about 3.8 minutes. But when leaves were illuminated for 45 minutes at 160 micromoles per square meter per second prior to illumination at 690 micromoles per square meter per second the relaxation time for Rubisco activation was only 2.1 minutes. The kinetics of this change in relaxation times were investigated by exposing dark-adapted leaves to 160 micromoles per square meter per second for different periods before increasing the PFD to 690 micromoles per square meter per second. It was found that the apparent relaxation time for Rubisco activation changed from 3.8 to 2.1 minutes slowly, requiring at least 8 minutes for completion. This result indicates that at least two sequential, slow processes are involved in light-mediated activation of Rubisco in spinach leaves and that the relaxation times characterizing these two processes are about 4 and 2 minutes, respectively. The kinetics of the first process in the reverse direction and the dependence of the relaxation time for the second process on the magnitude of the increase in PFD were also determined. Evidence that the first slow process is activation of the enzyme Rubisco activase and that the second slow process is the catalytic activation of Rubisco by activase is discussed.  相似文献   

10.
Besford, R. T., Withers, A. C. and Ludwig, L. J. 1985. Ribulosebisphosphate carboxylase activity and photosynthesis duringleaf development in the tomato.—J. exp Bot. 36: 1530–1541. The carboxylase activity of ribulose-1,5-bisphosphate carboxylase/oxygenaseand of phosphoenolpyruvate carboxylase, and the light saturatedrate of net photosynthesis were measured in the developing 5thleaf of tomato plants. Values for light saturated net photosynthesiswere also calculated from the measured carboxylase activitiesand estimates of internal CO2 and oxygen concentrations. Thecalculated rate using the activity of ribulose bisphosphatecarboxylase alone for net CO2 assimilation in 300 mm3 dm–3CO2 was greater than the measured rate at 80% and full expansionbut less than the measured rate in younger leaves. When theactivities of both the carboxylases were taken into accountbetter agreement was evident for young leaves but the rate wasfurther overestimated for older leaves The calculated rate forphotosynthesis in 1200 mm3 dm–3 CO2, assuming saturationof ribulose bisphosphate carboxylase with RuBP, was an overestimatefor young leaves but was close to the observed values for leavesnear full expansion. The results are discussed in terms of measuredconductances for CO2 and the availability of RuBP in the leaf Key words: Tomato, leaf development, photosynthesis, RuBP carboxylase, oxygenase  相似文献   

11.
Plants obtained from anther culture of the African violet, Saintpaulia ionantha Wendl. `Shag' and vegetatively cloned copies of the parent anther donor plant were examined for their ploidy and ribulose-1,5-biphosphate carboxylase (RuBPcase) activity. The cloned parent plants were all diploid and did not vary much in their nuclear DNA, chlorophyll, and RuBPcase activity. Some of the anther-derived plants were similar to the parent plants while others were not. Different levels of ploidy were observed among the androgenetic plants. RuBPcase activities higher than that of the parent plants were found in some anther-derived plants. However, there was no direct correlation between ploidy and RuBPcase activity. Expression of nuclear genes from a single parent in the anther-derived plants and it's diploidization or plastid changes during early stages of microsporogenesis or androgenesis are suggested as possible reasons for the variations observed among them. This could be a useful technique to obtain physiological variants which could be agronomically desirable.  相似文献   

12.
Distinctive properties are identified in the molecular structure of ribulose, 1,5-bisphosphate carboxylase/oxygenase (RuBPCase) in chlorophyll c-containing algae (i.e., chromophytes). Using purified enzyme from Cryptomonas sp., Coccolithophora sp., and Cylindrotheca fusiformis, we have determined that the RuBPCase holoenzyme of each species has a molecular weight, subunit composition, and isoelectric points of its subunits similar to the purified enzymes from pea and Chlamydomonas reinhardtii. The large subunits from chromophytes exhibit microheterogeneity in their isoelectric points, whereas two to four well-resolved isoelectric variants of the small subunit were observed in each RuBPCase preparation. In spite of the high degree of similarity in terms of physical properties, both the small and large RuBPCase subunits of the chromophytes are structurally different from those of chlorophytes; immunological studies demonstrate that RuBPCase subunits of these two groups have few antigenic determinants in common.  相似文献   

13.
Changes in ribulose bisphosphate carboxylase (RuBPCase) and proteolytic activity were followed in the flag leaf and second leaf of field-grown winter wheat (cv. Arthur). These changes were followed in relation to changes in leaf chlorophyll, protein, and photosynthesis, and seed development. Levels of RuBPCase were determined by rocket immunoelectrophoresis as described previously (Wittenbach 1978 Plant Physiol 62: 604-608). RuBPCase constituted 40 to 45% of the total soluble protein in the flag leaf and an even higher percentage of the soluble protein in the second leaf. This ratio remained unchanged until senescence when RuBPCase protein was apparently lost at a faster rate than total soluble protein. No change in the specific activity of RuBPCase on either a milligram protein or RuBPCase basis was observed until senescence. A close correlation existed among the various indices of senescence in the field, namely, the decline in chlorophyll, protein, photosynthesis, and RuBPCase activity. In addition, proteinase activity increased with the onset of senescence. These enzymes readily degraded RuBPCase, exhibiting a pH optimum of 4.8 to 5.0 and a temperature optimum of 50 C. Proteinase activity was modified by sulfydryl reagents suggesting the presence of sulfydryl groups at or near the active sites.  相似文献   

14.
Photosynthetic carbon assimilation in plants is regulated by activity of the ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase. Although the carboxylase requires CO2 to activate the enzyme, changes in CO2 between 100 and 1,400 microliters per liter did not cause changes in activation of the leaf carboxylase in light. With these CO2 levels and 21% O2 or 1% or less O2, the levels of ribulose bisphosphate were high and not limiting for CO2 fixation. With high leaf ribulose bisphosphate, the Kact(CO2) of the carboxylase must be lower than in dark, where RuBP is quite low in leaves. When leaves were illuminated in the absence of CO2 and O2, activation of the carboxylase dropped to zero while RuBP levels approached the binding site concentration of the carboxylase, probably by forming the inactive enzyme-RuBP complex.

The mechanism for changing activation of the RuBP carboxylase in the light involves not only Mg2+ and pH changes in the chloroplast stroma, but also the effects of binding RuBP to the enzyme. In light when RuBP is greater than the binding site concentration of the carboxylase, Mg2+ and pH most likely determine the ratio of inactive enzyme-RuBP to active enzyme-CO2-Mg2+-RuBP forms. Higher irradiances favor more optimal Mg2+ and pH, with greater activation of the carboxylase and increased photosynthesis.

  相似文献   

15.
Pyke, K A. and Leech, R. M. 1985. Variation in nbulose 1, 5bisphosphate carboxylase content in a range of winter wheatgenotypes. J. exp. Bot. 36: 1523–1529. Amounts of ribulose 1, 5 bisphosphate carboxylase (RuBPCase;E.C 4.1.1.39 [EC] ) were measured in the first leaves of 14 hexaploidwheat genotypes. The genotypes were representative of winterwheat grown in Britain during the past 150 years. The highest levels of RuBPCase per unit leaf area were foundin semi-dwarf genotypes which had more mesophyll cells per unitleaf area and smaller cells than tall genotypes. There was nosignificant correlation relating the year of introduction ofgenotypes to either the amount of RuBPCase per leaf or the amountper mesophyll cell Semi-dwarf genotypes tended to have smallerleaves and were less variable. Genotypic variation in the cellular content of RuBPCase is discussedin terms of genotypic differences in leaf development and thepotential for maximal RuBPCase accumulation. Key words: —Ribulose bisphosphate carboxylase, semi-dwarf wheat, cell size  相似文献   

16.
The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase was measured at various times during the purification of the enzyme from leaves of Nicotiana tabacum which were collected either 1 hour before the start of the photoperiod (predawn) or in the middle of the photoperiod (midday). The activity of the enzyme in extracts of the predawn leaves (0.8 units/mg enzyme) was consistently about 2-fold lower than that measured in extracts of midday leaves (1.7 units/mg enzyme). The activity of the predawn enzyme was increased to that of the midday enzyme following removal of CO2 and Mg2+ (deactivation), (NH4)2SO4 precipitation, or incubation in SO42− (18 millimolar required for one-half maximal increase). Following purification to >95% homogeneity, the predawn enzyme was found to have ~0.5 moles of bound organic phosphate per mole of enzyme active sites, while the midday enzyme had only ~0.08 moles of bound organic phosphate per mole of enzyme active sites. Deactivation of the predawn enzyme or treatment with 0.2 molar SO42− resulted in the removal of most of the bound organic phosphate. These findings support the hypothesis that following the night period about 50% of the enzyme is catalytically inactive because of the tight-binding of a small molecular weight, phosphorylated inhibitor at the active site.  相似文献   

17.
The activities of ribulose bisphosphate carboxylase (RuBPC) and phosphoenolpyruvate carboxylase (PEPC), as indicators of autotrophic and nonautotrophic CO2 fixation, were measured in excised cotyledons of Pinus radiata D. Don cultured for 21 days under shoot-forming (SF) and nonshoot-forming (NSF) conditions. The activity of RuBPC was found to increase in both SF and NSF cultures during the initial 5 days of culture. However, it leveled off from day 5 to day 10 and subsequently began to decrease until the end of the culture period under the SF conditions. In contrast, in the NSF cultures, RuBPC activity increased until day 15, when it was twofold higher than the maximum activity found in the SF cultures. An increase in PEPC activity of about 2.5 times the level of activity in freshly excised cotyledons was observed during the initial 5 days of culture under the SF conditions. PEPC activity began to decline after day 5 until it reached the level of activity seen in NSF cotyledons by day 15. In contrast, the activity of PEPC did not show any significant increase during the initial 10 days of culture under the NSF conditions. The Km (phosphoenolpyruvate) of PEPC from SF cotyledons was about 35% higher than that of NSF cotyledons. Cotyledons from two culture periods (days 5 and 15) were incubated for 15 seconds with NaH14CO3. The label in the malate and asparatate fractions as a percentage of total 14C incorporation was 3 times higher in the SF cotyledons than in the NSF cotyledons. A higher incorporation of 14C into products of photosynthesis under the NSF conditions was also observed.  相似文献   

18.
Since activation of ribulose bisphosphate carboxylase (rubisco) by rubisco activase is sensitive to ATP and ADP in vitro, we aimed to test the correlation between ATP level and rubisco activation state in intact leaves of Spinacia oleracea L. in response to changes in irradiance and after feeding the electron acceptor methyl viologen. Leaves were exposed to various irradiances for 45 minutes at atmospheric partial pressures of CO2 and O2. After measuring the rate of CO2 assimilation, leaves were freeze-clamped in situ and the punched discs assayed for rubisco activity, and amounts of ribulose bisphosphate (RuBP), ATP, and ADP. The photosynthetic rate and the activation state of rubisco increased with increasing irradiance but the levels of RuBP, ATP, and ADP were not greatly affected. Methyl viologen fed leaves under low irradiance had rubisco activation states of 93% compared to 51% in control leaves. The ATP content of the leaves was also significantly higher and the ratio of ATP to ADP was 4.1 in methyl viologen fed leaves compared to 2.2 in control leaves. From these results and other published results we conclude that a correlation between ATP level and rubisco activation can be observed in intact leaves, but that during changes in irradiance some additional factors are involved in regulating rubisco activation.  相似文献   

19.
1,5二磷酸核酮糖羧化酶/加氧酶(Rubisco)是光合碳同化的关键酶,研究其降解机理对合理调控水稻生长后期光合衰退具有重要意义。前人用人为诱导植物衰老的方法,研究了Rubisco的降解机理,认为该酶降解之前,必需发生亚基间的交联聚合和向类囊体膜转移,这样在结构和空间上有利于水解酶的作用。我们用自然衰老叶片进行研究的结果表明:Rubisco在降解过程中其比活基本保持恒定,意味着未发生酶的失活,也就是说酶结构未发生根本性改变,由此也可初步判断酶未发生亚基间的交联聚合(已证明亚基交联可导致酶失活)。接着用SDSPAGE和蛋白印迹技术证实了上述观点:Rubisco降解之前只有极少量的大亚基聚合体,随后同未聚合大亚基一起很快降解。此外,研究结果进一步表明酶分子在降解之前有少量与叶绿体膜结合,但降解过程中并未见膜结合蛋白增加。根据上述结果我们认为,亚基间交联聚合和向膜转移并非水稻叶片自然衰老时Rubisco降解的必要条件。  相似文献   

20.
Pyke, K. A. and Leech, R. M. 1987. Cellular levels of ribulose1,5 bisphosphate carboxylase and chloroplast compartment sizein wheat mesophyll cells.—J. exp. Bot. 38: 1949–1956. The amount of the photosynthetic enzyme ribulose 1,5 bisphosphatecarboxylase (RUBISCO),as determined in mesophyll cells in primarywheat leaves was related to the size of the chloroplast compartmentwithin the cell for wheat species of three ploidy levels. Asimilar comparison was made for several genotypes of the hexaploidbreadwheat Triticum aestivum. Estimation of total chloroplastvolume per mesophyll cell was made assuming chloroplasts tobe oblate spheroid in shape. A significant correlation was found between the amount of RUBISCOper cell and the total chloroplast volume per cell for diploid,tetraploid and hexaploid wheat species. A significant correlationbetween cellular RUBISCO level and total chloroplast volumeper cell was also observed for a range of genotypes of the hexaploidT. aestivum but these genotypes of T. aestivutn accumulate agreater amount of RUBISCO per unit chloroplast volume than doany other wheat species. For these genotypes of T. aestivumthe stromal concentration of RUBISCO was estimated at 0·5mol m–3 with a ribulose Msphosphate binding site concentrationof 4·0 mol m–3. These results are discussed with respect to a gene dosage hypothesisto explain the accumulation of RUBISCO in leaf mesophyll cells. Key words: Ribulose, bisphosphate carboxylase, wheat chloroplasts, mesophyll cells  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号