首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two Anabaena mutants having heterocysts but incapable of fixing molecular nitrogen in air have been isolated by using ultraviolet radiation or NTG mutagenesis. Their vegetative cells differentiated into heterocysts at a higher frequency than that of the wild type. The phenotype of the mutants is stable and a low frequence of spontaneous reversion was observed. Under microaerobic condition the mutants cells can express the genetic information which encodes nitrogenase synthesis and were capable of utilizing nitrogen for growth with a low acetylene reductiop activity. The level of nitrogenase activity was correlated reciprocally with the content of cell phycocyanin and the light intensity. Both synthesis and activity of the mutant nitrogenase were very sensitive than wild type to the oxygen in vive. Introduction of 1% O2 (v/v) into the gas phase inhibited evidently acetylene reduction. Exposure of the mutant suspension to 20% O2 (v/v) resulted in total and irreversible denaturation of nitrogenase. Withdrawing of O2 in gas phase, the nitrogenase was synthesized de nero; The synthesis process was repressed by chloramphenical or ammonia. The nitrogenase activity of mutant cells increased significantly either by nitrogen- starvating to decrease the phycocyanin content or by lowering the light intensity. Specifically, during the anaerobic induction by treating the mutants filaments with diehloromethylurea which prevents photosynthetic oxygen production, the specific activity of mutant nitrogcnase was equivalent nearly to that of wild type. The ability to reduce 2, 3, 5-triphenyltetrazolium was lower in heterocysts and vegetative cells of mutants than in that of wild type. The results suggest that the oxygen sensitivity of nitrogen fixation by heterocystous bluegreen algal mutants may be duc to the defect of some enzymic systems which might play a role in scavenging oxygen toxity, so that the process of nitrogen fixation is inhibited by the active oxygen produced by vegetative cells. The mechanism of protecting nitrogenase from oxygen damage in blue-green algae is discussed.  相似文献   

2.
Summary Cell-free extracts capable of acetylene reduction and cyanide reduction have been prepared from heterocystous (Anabaena cylindrica) and non-heterocystous (Plectonema boryanum 594) blue-green algae. Extracts from Anabaena were obtained from cultures grown in blulk under aerobic conditions, while the Plectonema cultures were grown in bulk on nitrate-nitrogen, then washed free from nitrate and sparged with A/CO2 for 40 h after which time maximum nitrogenase activity was detected. The nitrogenases of both algae are similar and resemble in many respects nitrogenases from bacteria and legumes. Activity is located primarily in a 40,000xgx15 min supernatant fraction and the rate of C2H2 reduction observed is about 10 per cent of whole cell activity. ATP and a source of reducing power (Na2S2O4) are required for efficient functioning of the enzyme. ATP-dependent hydrogen evolution occurs, the extracts are cold labile and highly sensitive to oxygen and the oxygen inhibition is irreversible.  相似文献   

3.
MANY blue-green algae fix nitrogen, assimilate carbon dioxide and evolve oxygen and as algal nitrogenase is inhibited1–3 by high oxygen pressure, enhanced nitrogen fixation accompanying photosynthesis is surprising. Heterocysts do not contain4 or have comparatively less amounts4–7 of photosystem II (PS II) pigments, which are responsible for the evolution of oxygen. This tends to favour the suggestion of Fay et al.8 that these cells are the sites of nitrogenase activity. Until now, however, attempts at obtaining unequivocal evidence for heterocysts as principal loci for nitrogenase activity have yielded conflicting results. Stewart et al.7 first demonstrated nitrogenase activity in heterocysts incubated aerobically, a finding confirmed by Wolk and Wojciuch9 and Van Gorkom and Donze10. By contrast, Smith and Evans3,11 and Kurz and La Rue12 reported results favouring vegetative cells as the major site of nitrogenase activity. Other evidence2,13 showed high nitrogenase activity in cell-free preparations of Anabaena cylindrica and the non-heterocystous alga Plectonema boryanum strain 594.  相似文献   

4.
对三种固氮蓝藻:固氮鱼腥藻(水生686)、柱孢鱼腥藻和鱼腥藻7120的整细胞及无细胞抽提液的固氮酶活性,进行了比较研究。水生686的整细胞酶活虽然不低(51.9毫米乙烯峰高/光密度/30分),仅次于柱孢鱼腥藻,但其无细胞抽提液的酶活却最低。这可能与它含有大量藻胶有关。研究了Mn++、Fe++对蓝藻固氮酶的作用,以及测定其在不同酶浓度下的反应动力学表明:柱孢鱼腥藻中不存在象深红螺菌中所看到的那种激活因子。用甲苯-乙醇溶液处理藻细胞,对固氮酶作原位测定,探索了它的氧损伤及氧保护机理。    相似文献   

5.
蓝藻Anabaena 7120经光漂白后固氮活性明显下降,转入正常光照下又恢复活性。此种经光漂白的蓝藻细胞,其固氮活性对氧敏感度小,受分子氢的促进大些,而忍受CO_2和N_2抑制的浓度相对高些。其固氮活性为弱光和光合抑制剂减弱,而加入外源的碳水化合物则能提高它的固氮活性。当碳水化合物和光合抑制剂一起加入反应系统时,蓝藻光漂白细胞的固氮活性并不能受到促进。  相似文献   

6.
Anabaena7120经高温处理后,固氮活性下降,对氧的敏感度增大,增大程度随氧浓度增高而递增。高温胁迫下,分子氢与对正常条件下生长的蓝藻一样可以削弱或消除氧对固氮的伤害,氢的此种行为在光照下和黑暗中表现相似,其良好作用比正常生长蓝藻显著,添加光合抑制剂。CO2或N2时亦如何。有外源蔗糖时,氢的良好作用不表现。经CO或C2H2处理的蓝藻,氢在其固氮活性受氧伤害时的良好作用消失。  相似文献   

7.
Marine blue-green algae, Lyngbya Lagerheimii, Microcoleus chthonoplastes, Plectonema terebrans, Agmenellum quadruplicatum, and freshwater blue-green algae, Anacystis nidulans, Anabaena variabilis, Nostoc muscorura, and Oscillatoria sp. treated with lysozyme (muramidase) formed spheroplasts but not protoplasts. The time needed for spheroplast induction varied with the species. Approximate internal osmotic pressures of the blue-green algae were determined. Marine algae generally had a higher osmotic pressure than freshwater algae.  相似文献   

8.
The Effect of Temperature on Nitrogenase Activity   总被引:2,自引:0,他引:2  
Acetylene reduction by detached nodules of four non-legumes(Alnus, Hippopha, Myrica, Casuarina), five legumes (Glycine,Lupinus, Pisum, Vicia, Medicago), and two blue-green algae (Anabaena,Plectonema) was tested with respect to the effect of temperatureon nitrogenase activity. In all cases the activity was sensitiveto temperature change, and with the exception of the legumesthere was a simple exponential response to temperature up tothe optimum. The temperature sensitivity of nitrogenase activityin the two blue-green algae was reduced in low light intensities.Temperature data for several other species are compared, anda simple method of correcting for temperature differences suggested.It is emphasized that allowance for the sensitivity of acetylenereduction to temperature differences must be made if field dataare to be used for purposes of comparison.  相似文献   

9.
Propanil (3′,4′-dichloropropionanilide) was a potent inhibitor of the nitrogenase activity of blue-green algae (cyanobacteria) in flooded soil, but the herbicide at comparable concentrations was not toxic to rice, protozoa, and nitrogen-fixing bacteria. Ethanol-amended flooded soils treated with propanil exhibited higher rates of nitrogenase activity than those not treated with the herbicide. The enhanced nitrogenase activity in propanil-treated soils was associated with a rise in the population of purple sulfur bacteria, especially of cells resembling Chromatium and Thiospirillum. By employing propanil and a means of excluding light from the floodwater to prevent the development of phototrophs during rice growth under lowland conditions, the relative activities of blue-green algae, photosynthetic bacteria, and the rhizosphere microflora were determined. The results suggest that the potential contribution of photosynthetic bacteria may be quite high.  相似文献   

10.
Exposure of nitrogen-fixing cultures of Anabaena spp. to 100% oxygen resulted in the rapid decline of nitrogenase activity. When oxygen-treated cells were transferred to 100% argon, nitrogenase activity was quickly restored in a process that required protein synthesis. Anaerobiosis was not essential for the recovery process; in fact, cells of Anabaena sp. strains CA and 1F will recover nitrogenase activity after prolonged incubation in 100% oxygen. Oxygen treatment acted directly on the intracellular nitrogenase and did not affect other metabolic processes. Examination of crude extracts of oxygen-treated Anabaena sp. strain CA indicated that both components of nitrogenase are inactivated. However, several lines of evidence suggest that oxygen treatment does not result in irreversible denaturation of nitrogenase, but rather results in a reversible inactivation which may serve as a protection mechanism. Nitrogenase present in crude extracts from cells of Anabaena sp. strain 1F which had been incubated for a prolonged period in 100% oxygen was less sensitive to oxygen in vitro than was nitrogenase of a crude extract of untreated cells.  相似文献   

11.
Summary The various types of blue-green algae known to fix nitrogen are considered. Particular attention has been paid to the effects of oxygen and other physiological parameters on nitrogenase activity and on the ecological distribution of the group. Data on nitrogen fixation by cell-free extracts of blue-green algae are presented.  相似文献   

12.
Summary Anabaena flos-aquae is grown in chemostats under phosphate and urea-limited conditions. Nitrogenase activity in phosphate-limited cells has a maximum activity at a dilution rate of 0.025 h-1 and is repressed 24-fold by 15 mM KNO3. Cultures growing on 1.5 mM nitrate obtain 1/2–2/3 of cell nitrogen from N2. Cells form inducible nitrite assimilating enzymes when grown on nitrate. Algae growing under A or He on limiting urea or phosphate-limited with nitrate have active nitrogenase. The ratio of nitrogenase activity to heterocyst numbers varied 90-fold depending on source of nitrogen, 15 mM KNO3 gave the smallest ratio. The regulatory mechanisms controlling the activity of nitrogenase in blue-green algae is discussed.  相似文献   

13.
Thermophilic, nitrogen-fixing, blue-green algae (cyanobacteria) were investigated for use in biophotolysis. Three strains of Mastigocladus laminosus were tested and were found to be equally effective in biophotolysis as judged by nitrogenase activity. The alga, M. laminosus NZ-86-m, which was chosen for further study, grew well in the temperature range from 35 to 50°C, with optimum growth at 45°C, at which temperature acetylene reduction activity was also greatest. The maximum tolerable temperature was 55°C. Acetylene reduction activity was saturated at a light intensity of 1 × 104 ergs cm−2 s−1. Atmospheric oxygen tension was found to be slightly inhibitory to acetylene reduction of both slowly growing and exponentially growing cultures. Nonsterile continuous cultures, which were conducted to test problems of culture maintenance, could be operated for 2 months without any significant decrease in nitrogenase activity or contamination by other algae. Nitrogen-starved cultures of M. laminosus NZ-86-m produced hydrogen at comparable rates to Anabaena cylindrica. The conversion efficiency of light to hydrogen energy at maximum rates of hydrogen production was 2.7%.  相似文献   

14.
低温加剧氯化钠对蓝藻固氮的抑制,营养液中氯化钠浓度增高时,抑制程度更甚.能源受限(暗处理和加抑制剂时的光合受抑,N_2和Ar的厌氧下呼吸代谢受阻)和氧下固氮酶受到伤害时,低温处理使氯化钠对蓝藻固氮的抑制进一步加剧.在能源和还原剂供应,合成固氨酶蛋白的物质基础(如CO_2和N_2的加合).光合作用正常进行的条件得到改善和保证,以及供应CO_2、外源蔗糖和氮氧加合时,低温加剧氯化钠对蓝藻固氮的抑制程度明显变小.  相似文献   

15.
Mucinase is a soluble haemagglutinin protease, which may be important for the survival of Vibrio cholerae in association with mucilaginous blue-green algae (cyanobacteria). A comparative survival study was carried out with an Anabaena sp. and a wild-type V. cholerae O1 strain hap+ gene (haemagglutinin-protease), together with its isogenic mutant hap (hap-deleted gene). A simple spread plate technique was followed to count culturable V. cholerae O1 on taurocholate tellurite gelatin agar plate. The fluorescent antibody technique of Kogure et al. (1979) was used for the microscopical viable count of V. cholerae O1. Polymerase chain reaction (PCR) and Southern blot hybridization were carried out to detect a lower number of viable but nonculturable (VBNC) V. cholerae O1 from the laboratory-based experiments. The wild and mutant V. cholerae O1 strains survived in culturable form for 22 and 10 days. respectively, in association with the Anabaena sp., with the difference being statistically significant (P < 0.01). The fluorescent antibody technique, PCR, and hybridization results also showed that the wild strain survived better in the VBNC state than did the mutant VBNC strain in association with an Anabaena sp. These results indicate that the enzyme mucinase may play an important role in the association and long-term survival of V. cholerae O1 with a mucilaginous blue-green alga, Anabaena sp.  相似文献   

16.
The cyanobacterium Plectonema boryanum (IU 594-UTEX 594) fixes N2 only in the absence of combined N and of O2. We induced nitrogenase by transfer to anaerobic N-free medium and studied the effect of Mo starvation on nitrogenase activity and synthesis. Activity was first detected within 3 h after transfer by the acetylene reduction assay in controls, increasing for at least 25 h. Cells grown on nitrate and Mo and then transferred to N-free, Mo-free medium produced 8% of the control nitrogenase activity. Addition of W to the Mo-free medium reduced the activity to 0.5%. Under both Mo starvation conditions, nitrogenase protein components were synthesized. Component II of the cyanobacterial enzyme was detected by in vitro complementation with Mo-containing component I from Klebsiella pneumoniae or Azotobacter vinelandii but not Clostridium pasteurianum. Component I activity was restored by addition of Mo to cultures in which new enzyme synthesis was blocked by chloramphenicol. Acidified extracts of Plectonema induced in Mo-containing medium contained the Fe-Mo cofactor required to activate extracts of the Azotobacter mutant UW45 in vitro, but they did not activate extracts of Mo-starved Plectonema. Analysis of 35SO4(2-)-labeled proteins by polyacrylamide gel electrophoresis suggested that Mo is required for the conversion of a high-molecular-weight precursor to component I in Plectonema.  相似文献   

17.
Vanadate-sensitive proton efflux by filamentous cyanobacteria   总被引:1,自引:0,他引:1  
Abstract Light-induced proton efflux has been investigated with intact cells of Anabaena, Nostoc, Anacystis , and Aphanocapsa . The proton efflux by filamentous blue-green algae is biphasic, strongly inhibited by ortho -vanadate and insensitive to cyanide. These data are taken as evidence for a proton-pumping ATP-hydrolase present on the cytoplasmic membrane of Anabaena and Nostoc .  相似文献   

18.
本文报告了藻菌之间固氮酶组分的交叉互补试验。初步结果证明:固氮蓝藻(Anabacnaazotica水生686)的钼铁蛋白与棕色固氮菌(Azotobacter vinelandii)的铁蛋白之间存在着明显的互补功能。但这种蓝藻的铁蛋白在非细胞形态下很不稳定,易于失活。本实验为不同生理类型和不同进化程度的固氮生物之间固氮酶组分的交叉互补研究提供了新的资料。    相似文献   

19.
Cell-free extracts with high nitrogenase activity were prepared by sonic oscillation and French press treatment from the blue-gree alga Anabaena cylindrica. Extracts were prepared from cells grown on a 95% N(2)-5% CO(2) gas mixture followed by a period of nitrogen starvation under an atmosphere of 95% argon-5% CO(2). No increase in the specific activity of extracts was achieved by breaking heterocysts. Activity (assayed by acetylene reduction) was found to be dependent on adenosine triphosphate (ATP), an ATP-generating system, and a low-potential reductant. Na(2)S(2)O(2) employed as reductant supports higher rates of nitrogenase activity than reduced ferredoxin. The activity is associated with a small-particle fraction that can be sedimented by ultracentrifugation. In contrast to the particulate nitrogenase of Azotobacter, which is stable in air, the A. cylindrica nitrogenase is an oxygen sensitive as nitrogenase prepared from anaerobic bacteria.  相似文献   

20.
Protein phosphatases play important roles in the regulation of cell growth, division and differentiation. The cyanobacterium Anabaena PCC 7120 is able to differentiate heterocysts specialized in nitrogen fixation. To protect the nitrogenase from inactivation by oxygen, heterocyst envelope possesses a layer of polysaccharide and a layer of glycolipids. In the present study, we characterized All1731 (PrpJ), a protein phosphatase from Anabaena PCC 7120. prpJ was constitutively expressed in both vegetative cells and heterocysts. Under diazotrophic conditions, the mutant DeltaprpJ (S20) did not grow, lacked only one of the two heterocyst glycolipids, and fragmented extensively at the junctions between developing cells and vegetative cells. No heterocyst glycolipid layer could be observed in the mutant by electron microscopy. The inactivation of prpJ affected the expression of hglE(A) and nifH, two genes necessary for the formation of the glycolipid layer of heterocysts and the nitrogenase respectively. PrpJ displayed a phosphatase activity characteristic of PP2C-type protein phosphatases, and was localized on the plasma membrane. The function of prpJ establishes a new control point for heterocyst maturation because it regulates the synthesis of only one of the two heterocyst glycolipids while all other genes so far analysed regulate the synthesis of both heterocyst glycolipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号