首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Four diterpenes were isolated from the stem bark of Xylopia acutiflora and characterized as (?)-kauran-16α-ol, 7,8-acetoxy-(?)-kaur-16-en-19-oic acid, 15-oxo-(?)-kaur-16-en-19-oic acid, and 16α- hydroxy-(?)-kauran-19-oic acid.  相似文献   

2.
The biotransformation of isosteviol (ent-16-ketobeyeran-19-oic acid) by three fungi is described. Aspergillus niger produced the 7 beta-OH derivative, ent-7 alpha-hydroxy-16-ketobeyeran-19-oic, and the 1 alpha, 7 beta-diOH derivative, ent-1 beta, 7 alpha-dihydroxy-16-ketobeyeran-19-oic acid. The 17-OH compound, ent-17-hydroxy-16-ketobeyeran-19-oic acid, was obtained with Penicillium chrysogenum. Rhizopus arrhizus produced the 7 beta-OH derivative, ent-7 alpha-hydroxy-16-ketobeyeran-19-oic acid. The isolated metabolites were characterised by IR, NMR and MS.  相似文献   

3.
ent-Labdane diterpenes from the aquatic plant Potamogeton pectinatus   总被引:1,自引:0,他引:1  
Four new ent-labdane diterpenes were isolated from the freshwater aquatic plant Potamogeton pectinatus, together with two known furano-ent-labdanes. The new compounds were assigned the structures methyl-15,16-epoxy-12(R)-acetoxy- 8(17), 13(16),14-ent-labdatrien-19-oate,15,16-epoxy-12(R)-acetoxy-8(17), 13(16),14-ent-labdatrien-19-oic acid, 8(17),13-ent-labdadien-15 --> 16-lactone-19-oic acid and 16-hydroxy-8(17),13-ent-labdadien-15,16-olid-19-oic acid by spectroscopic means. Some of these labdanes showed a strong algicidal activity against Raphidocelis subcapitata.  相似文献   

4.
A new natural diterpene glycoside was isolated from Aster ageratoides Turcz. Its structure was elucidated by means of IR, MS (FAB, EI), NMR (1H-, 13C-, DEPT), 2D-NMR (1H-1H COSY, 13C-1 H COSY, J-resolved, CoLoC) spectra and chemical method as 16β, 17-dihydroxy- (—) -kauran- 19-oic acid-β-D-glucopyanosyl ester.  相似文献   

5.
This work describes the preparation of tetracyclic diterpenoids and determination of their plant growth regulator properties. Stevioside (2) was used as starting material and the derivatives 13-hydroxy-ent-kaur-16-en-19-oic acid (steviol, 3), ent-7alpha,13-dihydroxy-kaur-16-en-19-oic acid (4), 13-hydroxy, ent-kaur-16,17-epoxi-19-oic acid (steviol epoxide, 5), 17-hydroxy-16-ketobayeran-19-oic acid (17-hydroxyisosteviol, 6), 17-hydroxy-16-hydroxyiminobayeran-19-oic acid (7), 16-ketobayeran-19-oic acid (isosteviol, 9), 16,17-dihydroxybeyeran-19-oic acid (8), and 16-hydroxyiminobayeran-19-oic acid (isosteviol oxime, 10) were obtained by simple chemical procedures. Another derivative, ent-7alpha,13-dihydroxycaur-15-en-19-oic acid (4), was obtained by biotransformation of steviol (3) by Penicillium citrinum. In order to determine the plant growth regulator activity the compounds were submitted to the lettuce hypocotyl and barley aleurone bioassays. All compounds showed significant activities in both bioassays. Steviol (3) and isosteviol (9) were also tested in field-grown grapes resulting in an increase in berry weight and size.  相似文献   

6.
Methyl ent-17-hydroxy-16β-kauran-19-oate was fed to a 2-day-old culture of the fungus Rhizopus stolonifer, fermenting at room temperature (25 °C) in an orbital shaker (2 l). After 11 days, both broth and mycelia were extracted with ethyl acetate. Two novel compounds were isolated from this experiment: methyl ent-9α,17-dihydroxy-16β-kauran-19-oate and methyl ent-7α,17-dihydroxy-16β-kauran-19-oate. Their structures were fully confirmed by spectroscopic methods. Received: 22 July 1999 / Received revision: 2 November 1999 / Accepted: 12 November 1999  相似文献   

7.
The biotransformation of ent-kaur-16-en-19-oic acid by Rhizopus stolonifer.   总被引:1,自引:0,他引:1  
Microbial transformation of ent-kaur-16-en-19-oic acid was carried out with R. stolonifer. After seven days of incubation, two metabolites, ent-7 alpha-hydroxy-kaur-16-en-19-oic acid and ent-12 beta-hydroxy-kaur-9(11),16-dien-19-oic acid, were isolated as a result of hydroxylation and hydroxylation/dehydrogenation, respectively. Incubation for 15 days also afforded ent-16 beta,17-dihydroxy-kauran-19-oic acid. The metabolites were identified by spectroscopic methods.  相似文献   

8.
Two new ent-kaurane diterpenoids, namely 3α,16α-dihydroxy-ent-kauran-19-oic acid (1) and 3α,9β-dihydroxy-ent-kauran-19-oic acid (2), together with eight known compounds were isolated and identified from the leaves of Sphagneticola trilobata. Their structures were elucidated on the basis of extensive spectroscopic analysis including 1D, 2D NMR and MS techniques. Known compounds 4, 5 and 810 were obtained from S. trilobata for the first time. These compounds were tested for their in vitro α-glucosidase inhibitory activity and their tyrosinase inhibitory potential. Compounds 2, 3 and 6 were found to show in vitro α-glucosidase inhibitory activity with IC50 values ranging from 0.398 to 0.476 mM, which were close or more potent than reference compound acarbose (IC50 0.410 mM). Compounds 2 and 6 were further revealed to show in vitro tyrosinase inhibitory activity (IC50 29.25 and 40.74 μM) but inferior to that of the positive control kojic acid (IC50 12.55 μM).  相似文献   

9.
Diterpenoids from the pericarp of Platycladus orientalis   总被引:1,自引:0,他引:1  
Wang YZ  Tang CP  Ke CQ  Weiss HC  Gesing ER  Ye Y 《Phytochemistry》2008,69(2):518-526
Eight labdane-type diterpenes, 7beta,13S-dihydroxylabda-8(17),14-dien-19-oic acid (1), 12R,15-dihydroxylabda-8(17),13E-dien-19-oic acid (3c), 12R,15-dihydroxylabda-8(17),13Z-dien-19-oic acid (3d), 12R,13R,14S-trihydroxylabda-12,15-epoxy-8(17)-en-19-oic acid (4a), 12S,13S,14R-trihydroxylabda-12,15-epoxy-8(17)-en-19-oic acid (4b), 15-hydroxy-12-oxolabda-8(17),13E-dien-19-oic acid (5), 14R,15-dihydroxylabda-8(17),12Z-dien-19-oic acid (7a) and 14S,15-dihydroxylabda-8(17),12Z-dien-19-oic acid (7b), along with 20 known diterpenoids, were isolated from the pericarp of Platycladus orientalis. Their structures were unambiguously elucidated by NMR spectroscopic and single crystal X-ray diffraction analyses, as well as via chemical correlation conversion. NMR spectroscopic data of known isomers 8c and 8d were reported as a supplement to existing data.  相似文献   

10.
Ceriopsins F and G,diterpenoids from Ceriops decandra   总被引:1,自引:0,他引:1  
Anjaneyulu AS  Rao VL 《Phytochemistry》2003,62(8):1207-1211
Chemical examination of the ethyl acetate solubles of the CH(3)OH:CH(2)Cl(2) (1:1) extract of the roots of Ceriops decandra collected from Kauvery estuary resulted in the isolation of two more diterpenoids, ceriopsins F and G (1-2) and five known compounds, ent-13-hydroxy-16-kauren-19-oic acid (steviol, 3), methyl ent-16beta,17-dihydroxy-9(11)-kauren-19-oate (4), ent-16beta,17-dihydroxy-9(11)-kauren-19-oic acid (5), ent-16-oxobeyeran-19-oic acid (isosteviol, 6), 8,15R-epoxypimaran-16-ol (7). The structures of the new diterpenoids were elucidated by a study of their physical and spectral data as methyl ent-13,17-epoxy-16-hydroxykauran-19-oate (1) and ent-16-oxobeyeran-19-al (2).  相似文献   

11.
A phytochemical study of the methanol extract of Juniperus communis berries was undertaken. The crude extract was analysed by HPLC-UV and the isolation of the minor compounds was performed by centrifugal partition chromatography. By this means, five diterpenes were isolated, one of which was a new labdane diterpene 15,16-epoxy-12-hydroxy-8(17),13(16),14-labdatrien-19-oic acid. The structures of the isolated compounds were elucidated by spectroscopic methods, including UV, NMR, MS and HR-MS.  相似文献   

12.
Microbial transformation of isosteviol oxime (ent-16-E-hydroxyiminobeyeran-19-oic acid) (2) with Aspergillus niger BCRC 32720 and Absidia pseudocylindrospora ATCC 24169 yielded several compounds. In addition to bioconverting the d-ring to lactone and lactam moieties, 4α-carboxy-13α-hydroxy-13,16-seco-ent-19-norbeyeran-16-oic acid 13,16-lactone (7) and 4α-carboxy-13α-amino-13,16-seco-ent-19-norbeyeran-16-oic acid 13,16-lactam (10), one known compound, ent-1β,7α-dihydroxy-16-oxo-beyeran-19-oic acid (6), and five new compounds, ent-7α-hydroxy-16-E-hydroxyiminobeyeran-19-oic acid (3), ent-1β,7α-dihydroxy-16-E-hydroxyiminobeyeran-19-oic acid (4), ent-1β-hydroxy-16-E-hydroxyiminobeyeran-19-oic acid (5), ent-8β-cyanomethyl-13-methyl-12-podocarpen-19-oic acid (8), and ent-8β-cyanomethyl-13-methyl-13-podocarpen-19-oic acid (9), were isolated from the microbial transformation of 2. Elucidation of the structures of these isolated compounds was primarily based on 1D and 2D NMR, and HRESIMS data, and 35 were further confirmed by X-ray crystallographic analyses. Additionally, the inhibitory effects of all of these compounds were evaluated on NF-κB and AP-1 activation in LPS-stimulated RAW 264.7 macrophages. Among the compounds tested, 5 and 10 significantly inhibited NF-κB activation, with 5 showing equal potency to dexamethasone; 3 and 69 significantly inhibited AP-1 activation, particularly 8, which showed more inhibitory activity than dexamethasone.  相似文献   

13.
为了寻找生物活性成分,采用色谱分离法对望谟崖摩和曲枝崖摩进行了化学成分研究。根据波谱学分析鉴定了化合物结构。从两种植物中分离得到了15个化合物,分别为8(17),13(E)-半日花-二烯-15,19-二酸(1),8(17),13(E)-半日花-二烯-19-酸甲酯-15-醛(2),15-O-乙酰基-8(17),13(E)-半日花-二烯-19-酸(3),15-羟基-8(17),13(E)-半日花-二烯-19-酸(4),15,19-二羟基-8(17),13(E)-半日花-二烯(5),19-羟基-8(17),13(E)-半日花-二烯-15-醛(6),19-羟基-8(17),13(Z)-半日花-二烯-15-醛(7),8(17),13(E)-半日花-二烯-19-酸-15-醛(8),8(17),13(Z)-半日花-二烯-19-酸-15-醛(9),(+)-儿茶素(10),β-香树素(11),豆甾-5-烯-3β,7α-二醇(12),东莨菪内酯(13),β-谷甾醇(14),胡萝卜苷(15)。上述化合物均为首次从崖摩属植物中分离得到的半日花烷型二萜。  相似文献   

14.
The phytochemical investigation of Grazielia multifida aerial parts yielded eight compounds, including four ent-kaurenic acid diterpenes derivatives, 15-tiglinoyloxy-ent-kaur-16-en-19-oic acid (1), 15-hydroxy-ent-kaur-16-en-19-oic acid (2), 17-hydroxy-ent-kaur-15-en-19-oic acid (3) and 15-isovaleroyloxy-ent-kaur-16-en-19-oic acid (4), one amino acid, tryptophan (5), and three flavonoids, eupafolin (6), guaijaverin (7) and quercitrin (8). The structures of the isolated compounds were established based on analysis of their spectroscopic data and comparison with literature. All the compounds were isolated from this species for the first time. The chemotaxonomic significance of the absence of sesquiterpene lactones in G. multifida has also been summarized.  相似文献   

15.
Extraction of Conyza japonica gave strictic acid, ent-2β-hydroxy-15,16-epoxy-3,13(16),14-clerodatrien-18-oic acid and 5,7-dihydroxy-3,8,4′-trimethoxyflavone. Extraction of Grangea maderaspatana gave (-)-hardwickiic acid, ent-15,16-epoxy-1,3,13(16),14-clerodatetraen-18-oic acid and 3-hydroxy-8-acetoxypentadeca-1,9,14-trien-4,6-diyne. The structure of ent-2β-hydroxy-15,16-epoxy-3,13(16),14-cleroclatrien-18-oic acid was deduced by spectroscopic methods and by partial synthesis from (-)-hardwickiic acid and the stereochemistries of strictic acid and (ent-15,16-epoxy-1,3,13(16),14-clerodatraen-18-oic acid were established by correlation with ent-2β-hydroxy-15,16-epoxy-3,13(16),14-clerodatrien-18-oic acid.  相似文献   

16.
Three new labdane-type diterpenoids, labda-8(17),13-dien-15,12R-olid-19-oic acid (1), 12S-hydroxylabda-8(17),13(16),14-trien-19-oic acid (2) and 13-ethoxylabda-8(17),11,14-trien-19-oic acid (3), along with known diterpenoids, trans-communic acid (4), totarol (5), 12-methoxyabieta-8,11,13-trien-11-ol (6), and 7 alpha,8 alpha-epoxy-6 alpha-hydroxyabieta-9(11),13-dien-12-one (7) were isolated from the stem bark of Thuja standishii. The structures of 1--3 were established by spectroscopic methods and chemical conversion. These compounds together with standishinal (8), 12-hydroxy-6,7-seco-abieta-8,11,13-trien-6,7-dial (9) and 6 alpha-hydroxysugiol (10) were tested for their inhibitory effects on Epstein--Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), as a test for potential cancer chemopreventive agents. Compound 10 showed strong inhibitory effect on EBV-EA induction (100% inhibition at 1000 mol ratio/TPA), and compounds 2 and 6 showed moderate inhibitory effects on EBV-EA induction. In addition, 15-oxolabda-8(17),11Z,13E-trien-19-oic acid (11) was found to exhibit the anti-tumor promoting activity in two-stage mouse skin carcinogenesis test using 7,12-dimethylbenz[a]anthracene and TPA.  相似文献   

17.
Terpenes with antimicrobial activity from Cretan propolis   总被引:1,自引:0,他引:1  
Five terpenes, the diterpenes: 14,15-dinor-13-oxo-8(17)-labden-19-oic acid and a mixture of labda-8(17),13E-dien-19-carboxy-15-yl oleate and palmitate as well as the triterpenes, 3,4-seco-cycloart-12-hydroxy-4(28),24-dien-3-oic acid and cycloart-3,7-dihydroxy-24-en-28-oic acid were isolated from Cretan propolis. Moreover, 18 known compounds were also isolated, seven of them for the first time as propolis components. All structures were established on the basis of spectroscopic analysis and chemical evidence. All isolated compounds were tested for antimicrobial activity against some Gram-positive and Gram-negative bacteria as well as against some human pathogenic fungi showing a broad spectrum of antimicrobial activity.  相似文献   

18.
Microbial metabolism of steviol and steviol-16alpha,17-epoxide   总被引:1,自引:0,他引:1  
Yang LM  Hsu FL  Chang SF  Cheng JT  Hsu JY  Hsu CY  Liu PC  Lin SJ 《Phytochemistry》2007,68(4):562-570
Steviol (2) possesses a blood glucose-lowering property. In order to produce potentially more- or less-active, toxic, or inactive metabolites compared to steviol (2), its microbial metabolism was investigated. Incubation of 2 with the microorganisms Bacillus megaterium ATCC 14581, Mucor recurvatus MR 36, and Aspergillus niger BCRC 32720 yielded one new metabolite, ent-7alpha,11beta,13-trihydroxykaur-16-en-19-oic acid (7), together with four known related biotransformation products, ent-7alpha,13-dihydroxykaur-16-en-19-oic acid (3), ent-13-hydroxykaur-16-en-19-alpha-d-glucopyranosyl ester (4), ent-13,16beta,17-trihydroxykauran-19-oic acid (5), and ent-13-hydroxy-7-ketokaur-16-en-19-oic acid (6). The preliminary testing of antihyperglycemic effects showed that 5 was more potent than the parent compound (2). Thus, the microbial metabolism of steviol-16alpha,17-epoxide (8) with M. recurvatus MR 36 was continued to produce higher amounts of 5 for future study of its action mechanism. Preparative-scale fermentation of 8 yielded 5, ent-11alpha,13,16alpha,17-tetrahydroxykauran-19-oic acid (10), ent-1beta,17-dihydroxy-16-ketobeyeran-19-oic acid (11), and ent-7alpha,17-dihydroxy-16-ketobeyeran-19-oic acid (13), together with three new metabolites: ent-13,16beta-dihydroxykauran-17-acetoxy-19-oic acid (9), ent-11beta,13-dihydroxy-16beta,17-epoxykauran-19-oic acid (12), and ent-11beta,13,16beta,17-tetrahydroxykauran-19-oic acid (14). The structures of the compounds were fully elucidated using 1D and 2D NMR spectroscopic techniques, as well as HRFABMS. In addition, a GRE (glucocorticoid responsive element)-mediated luciferase reporter assay was used to initially screen the compounds 3-5, and 7 as glucocorticoid agonists. Compounds 4, 5 and 7 showed significant effects.  相似文献   

19.
Oxidized kaurene derivatives were isolated from the leaves of Solidago missouriensis and S. rigida and identified as kauran-16β-ol, kaur-16-en-19-oic acid and 7β-hydroxykaur-16-en-19-oic acid. The structure of the latter compound was determined by X-ray crystallographic analysis of its methyl ester.  相似文献   

20.
《Phytochemistry》1987,26(3):779-781
Eight known diterpene acids, ent-12-oxokaur-9(11),16-dien-19-oic acid, ent-12β-hydroxykaur-9(11),16-dien-19-oic acid, ent-isokaur-15(16)-en-17,19-dioic acid, ent-15α,16-epoxy-17-hydroxykaura-19-oic acid, ent-kaura-17,19-dioic acid, ent-kaur-16-en-19-oic acid, grandifloric acid, angeloyloxygrandifloric acid, as well as a new sesquiterpene lactone, ladibranolide, were isolated from Viguiera ladibractate. The stereochemistry of the sesquiterpene lactone was established by NOE experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号