首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
滇桐属系统位置的分支分析   总被引:2,自引:0,他引:2  
本文以讨论系统位置有争议的滇桐属的归属问题,尝试在植物分类学中具体应用分支系统学原理和方法的可能性。作者认为近年来分支系统学中出现的一种倾向,即不再强调祖先和直接的谱系关系,而把分支图解仅仅作为一种归类手段,为本文提供了理论基础。通过对梧桐科和椴树科7个属15个性状状态的分支分析,建立了符合简约性原则的分支图解。分支图解表明,滇桐属与通常置于梧桐科的马克韦桐属具有较密切的关系,而它们与椴树科的关系比与梧桐科的关系更接近。结论支持把滇桐属作为椴树科成员的观点。  相似文献   

2.
梧桐科一些属的分类位置探讨   总被引:4,自引:1,他引:4  
梧桐科(Sterculiaceae)是锦葵目中的一个多型科,科的特征比较比样化。自从E.P.Ventenat(1830)建立该科以来,对于该科范围和包含的属种数目,各国学者至今尚存在各种不同的看法。作者认为,火桐属(Erythropsis)应当从梧桐属(Firmiana)中分出成为单独的属;午时花属(Pentapetes)不应归入锦葵科(Malvaceae),应当置于梧桐科;田麻属(Corchor  相似文献   

3.
Pollen morphology of 44 species representing 9 genera of Tiliaceae in China was examined under light microscope, 10 of them were observed with scanning electron microscope. Nine genera involved in this paper are: Colona. Corchoropsis, Corchorus, Excentrodendron, Grewia, Hainannia, Microcos, Tilia and Triumfetta The pollen grains of Tiliaceae are eurypalynous. Based on the aperture type and ornamentation, they may be grouped into four types: (1) The Grewia type, pollen grains tricolporate: Colona, Corchorus, Grewia, Microcos and Triumfetta, (2) The Tilia type, pollen grains brevitricolporate: Hainania and Tilia, (3) The Corchoropsis type, pollen grains triporate, spinate: Corchoropsis, and (4) The Excentrodendron type, pollen grains triporate, reticulate: Exce ntrodendron. The significance of pollen morphology in taxonomy of Tiliaceae is discussed. The palynological data seem to support the separation of Microcos from Grewia and the transfer of Corchoropsis to Sterculiaceae from Tiliaceae.  相似文献   

4.
The systematic position of Paradombeya Stapf has been debated until now. The studies on gross morphology, anatomy, palynology and cytology were undertaken to confirm the systematic position and affinities of this genus. The combination of features, e. g., umbel-like cyme, 2-celled anther, presence of staminodes, staminal tube, 15 stamens, bifid cotyledons, wood anatomy, chromosome number of 2n=20, triporate, spiny and spheroidal pollen grains, suggests that the genus be better placed in the tribe Dombeyeaeof the Sterculiaceae.  相似文献   

5.
6.
The monophyly of the group comprising the core malvalean families, Bombacaceae, Malvaceae, Sterculiaceae, and Tiliaceae, was recently confirmed by molecular studies, but the internal structure of this clade is poorly understood. In this study, we examined sequences of the chloroplast ndhF gene (aligned length 2226 bp) from 70 exemplars representing 35 of the 39 putative tribes of core Malvales. The monophyly of one traditional family, the Malvaceae, was supported in the trees resulting from these data, but the other three families, as traditionally circumscribed, are nonmonophyletic. In addition, the following relationships were well supported: (1) a clade, /Malvatheca, consisting of traditional Malvaceae and Bombacaceae (except some members of tribe Durioneae), plus Fremontodendron and Chiranthodendron, which are usually treated as Sterculiaceae; (2) a clade, /Malvadendrina, supported by a unique 21-bp (base pair) deletion and consisting of /Malvatheca, plus five additional subclades, including representatives of Sterculiaceae and Tiliaceae, and Durionieae; (3) a clade, /Byttneriina, with genera traditionally assigned to several tribes of Tiliaceae, plus exemplars of tribes Byttnerieae, Hermannieae, and Lasiopetaleae of Sterculiaceae. The most striking departures from traditional classifications are the following: Durio and relatives appear to be more closely related to Helicteres and Reevesia (Sterculiaceae) than to Bombacaceae; several genera traditionally considered as Bombacaceae (Camptostemon, Matisia, Phragmotheca, and Quararibea) or Sterculiaceae (Chiranthodendron and Fremontodendron) appear as sister lineages to the traditional Malvaceae; the traditional tribe Helictereae (Sterculiaceae) is polyphyletic; and Sterculiaceae and Tiliaceae, as traditionally circumscribed, represent polyphyletic groups that cannot sensibly be maintained with their traditional limits for purposes of classification. We discuss morphological characters and conclude that there has been extensive homoplasy in characters previously used to delineate major taxonomic groups in core Malvales. The topologies here also suggest that /Malvatheca do not have as a synapormophy monothecate anthers, as has been previously supposed but, instead, may be united by dithecate, transversely septate (polysporangiate) anthers, as found in basal members of both /Bombacoideae and /Malvoideae. Thus, “monothecate” anthers may have been derived at least twice, independently, within the /Bombacoideae (core Bombacaceae) and /Malvoideae (traditional Malvaceae).  相似文献   

7.
8.
Recent phylogenetic research suggests that Malvaceae s.l. comprises formerly Tiliaceae, Byttneriaceae, Bombacaceae, and Sterculiaceae. Corchoropsis is traditionally included in Tiliaceae or Sterculiaceae and is distributed in China, Korea, and Japan. One to three species have been recognized for this genus. Phylogenetic relationships among the Malvacean taxa have been intensively studied with molecular data, and the evolution of their morphological characteristics has been re-interpreted accordingly. However, no Corchoropsis species have been included for their phylogenetic position. Here, three chloroplast coding regions—rbcL, atpB, and ndhF, from Corchoropsis psilocarpa and Corchoropsis crenata—were amplified and sequenced, then compared with other Malvacean taxa. This analysis of the three plastid gene sequences now places Corchoropsis species in Dombeyoideae, as previously proposed by Takeda (Bull Misc Inform Kew 365, 1912), Tang (Cathaya 4:131–150, 1992), and Bayer and Kubitzki (2003). Within Dombeyoideae, Corchoropsis forms a strongly supported sister relationship with the DombeyaRuizia clade.  相似文献   

9.
Evidence from vegetative anatomy, reproductive morphology, and palynology does not support a relationship of Oceanopapaver with Cistaceae, Cruciferae, Flacourtiaceae, Papaveraceae, and Tiliaceae, but suggests placement of the genus in Capparaceae. The apparent occurrence of myrosin cells, among other features, effectively excludes all of the aforenoted families except Capparaceae and Cruciferae. However, multicellular non-glandular trichomes, bracteate inflorescences, sepals and petals each occasionally other than four per flower, presence of an androgynophore, numerous stamens, tricolporate and binucleate pollen, the unilocular mature ovary, the stipitate fruit, and the exotegmic seed in Oceanopapaver favour Capparaceae over Cruciferae. Floral histology and vasculature provide no clues about the relationships of Oceanopapaver. A few features are anomalous, most notably the presence of secretory canals and secretory cells in the genus versus their absence in Capparaceae and their rarity in Cruciferae, the trichomic floral nectary in the genus versus the massive, non-trichomic nectaries in these two families, and the straight embryo in the genus versus the more or less curved or folded embryo in the two families. The fleshy endosperm in Oceanopapaver has counterparts in a few Capparaceae, contrary to previous claims that endosperm is absent or scanty in this family. The report of stamen fascicle traces for Oceanopapaver is the first for Capparaceae, but these should be sought elsewhere in the family. Within Capparaceae the genus fits best in Capparoideae compared to Cleomoideae or the nine other very restrictive subfamilies variously proposed for Capparaceae. There is no justification for the monotypic segregate Oceanopapaveraceae. The phylogenetic and functional anatomy of vegetative and reproductive structures is discussed.  相似文献   

10.
The pollen grains of Cochlidiosperma (Veronica) hederifolia and C. (Veronica) cymbalaria were examined under SEM and TEM. They differ vastly from those of all the others in Veronica (sensu Elenevskij, 1977, 1978). The taxonomic relationship between the group and the other Veronica spp. is discussed with respect to both gross morphology and pollen characters. Justification for the restoration of the genus as a valid taxon is argued and, finally, a number of new combinations are proposed. The group under consideration was sometimes treated as a separate genus but more often given different ranks in the genus Veronica, which has been a controversial group as to its concept and subdivision. No detail discussion has been made before on the relationship between the group and Veronica. Main purpose of the present mork is to examine pollen morphology and gross morphology of the group and to discussits relationship with Veronica.  相似文献   

11.
A broad comparative analysis reveals that the inflorescences of coreMalvales, familiesSterculiaceae, Tiliaceae, Bombacaceae andMalvaceae, include characteristic repeating units. The basic repeating unit is called bicolor unit (afterTheobroma bicolor, where it was first observed). It is determinate and bears three bracts, one of which is invariably sterile, whereas the others subtend lateral cymes or single flowers. Through the demonstration of intermediate steps in closely related taxa the triad of bracts within a bicolor unit and the trimerous malvalean epicalyx are shown to be homologous. Various possibilities for an origin of the bicolor unit are discussed. Bicolor units are variously arranged to form complete inflorescences. In many taxa they are terminal on modules that comprise two (or fewer) prophylls. These modules may be arranged in elongated anthocladia or condensed sympodia, which in turn may constitute components of higher order inflorescence structures. The presence of the bicolor unit or its derivatives linksSterculiaceae, Tiliaceae, Bombacaceae andMalvaceae. It is absent from all other families included in a broader defined orderMalvales and represents one of the rare morphological synapomorphies of coreMalvales. Furthermore, inflorescence morphology provides characters of systematic significance for various taxa within coreMalvales.  相似文献   

12.
Juan Chen  Nian-He Xia 《Flora》2011,206(5):458-467
In order to find new non-molecular evidence to support the phylogenetic and taxonomic position, pollen grains of 20 populations of 16 species of Chinese Curcuma L. and Boesenbergia Kuntz (Zingiberaceae) were investigated under SEM and TEM. The pollen grains are spherical and ovoid, nonaperturate. The pollen wall is composed of a very thin exine and a thick intine. The exine is psilate or echinate. The intine consists of two layers, i.e., a thick, channeled layer (exintine) and an inner homogenous layer (endintine). The results reveal morphological congruence between the pollen grains of species of Curcuma, which according to DNA sequence data appears to be a polyphyletic genus. However the uniform pollen morphology in Curcuma provides no evidence to divide this genus into separate taxonomic entities. Our results on pollen morphology also do not provide any additional evidence to either unite or segregate Boesenbergia albomaculata and Curcumorpha longiflora in the same genus and demonstrate that more taxonomic data on the genus Boesenbergia and its relatives are needed before a final decision can be made.  相似文献   

13.
囊萼紫草属与滇紫草属花粉形态比较研究   总被引:3,自引:1,他引:2  
本文借助光学显微镜和扫描电镜研究了囊萼紫草属3种和滇紫草属12种植物的花粉形态。囊萼紫草属的花粉为哑铃形或茧形,中等大小,P/E比为1.6一1.67,三孔沟,内孔横长;具小刺状纹饰。滇紫草属的花粉为近长球形或近卵球形,P/E为l—1.23;三孔沟或三合沟孔,内孔一般纵长,具皱波状纹饰,在皱波上具密集的小瘤或微颗粒。从花粉形态的角度,本文支持把囊萼紫草属从滇紫草属(广义)中分离出来的观点。值得注意的是,在滇紫草属的花粉中首次观察到了一种比较少见且特化的花粉即单极三合沟孔的花粉。  相似文献   

14.
We report a phylogenetic analysis of “core” Malvales (Tiliaceae, Sterculiaceae, Bombacaceae, and Malvaceae) based on morphological, anatomical, palynological, and chemical features. The results of the analyses lead to the conclusion that Tiliaceae, Sterculiaceae, and Bombacaceae, as variously delimited, are paraphyletic; only the Malvaceae are likely monophyletic. The genera of “core” Malvales form a well-defined clade. Genera of “Tiliaceae” constitute the basal complex within “core” Malvales. The “Sterculiaceae” (most genera)+ “Bombacaceae” + Malvaceae form a clade on the basis of a monadelphous androecium; “Bombacaceae”+ Malvaceae also form a clade, which is diagnosable on the basis of monoloculate anthers. It is clear that the traditional classification, with its arbitrarily delimited evolutionary grades, is unsatisfactory, especially if one seeks to reflect phylogeny accurately. Thus, Malvaceae is redefined to refer to the most recent common ancestor of plants previously considered to be “Tiliaceae,” “Sterculiaceae,” “Bombacaceae,” and Malvaceae, and all of the descendants of that ancestor. This broadly circumscribed Malvaceae can be diagnosed by several presumed synapomorphies, but we draw special attention to the unusual floral nectaries that are composed of densely packed, multicellular, glandular hairs on the sepals (or less commonly on the petals or androgynophore).  相似文献   

15.
The present study deals with pollen morphology of 4 genera and l0 species of Taxaceae in gymnosperms. Pollen grains of the family are spheroidal or subspheroidal, 20.8μm in diameter and with laptoma or papilla in the distal face. Exine is two-layered, with sexine equal to nexine in thickness, but sometimes the stratification is indistinct. The surface is scabrous or slightly granular under LM. Coarse verrucae and fine tuberculae on pollen surface are observed under SEM. From thin section, endexine is shown to have lamellate structure, and ectexine is made of verrucate elements. In Amentotaxus argotaenia, some pollen grains show remnant saccate. According to pollen morphology, this family may be divided into two tribes: 1, Pseudotaxeae (including Pseudotaxus only), and 2, Taxeae (including Taxus and Torreya). Owirg to the special feature of pollen grains in Amentotaxus the present author suggests that the genus be separated from Taxaceae and raised to the level of family, Amentotaxaceae.  相似文献   

16.
Seventeen species in the Tiliaceae, Sterculiaceae and Bombacaceae were tested for susceptibility to three virus isolates from naturally infected Cola chlamydantha trees and three from Adansonia digitata trees in Ghana. Seven species of Pseudococcidae were tested as vectors of the six isolates. These studies indicate that the Cola isolates should be classified with cocoa swollen shoot virus and those from Adansonia with cocoa mottle leaf virus.  相似文献   

17.
The generic scope and systematic position of the Cochlospermaceae were evaluated using observations from the anatomy of the stem, node, and leaf. There are few basic differences in vegetative anatomy between Amoreuxia and Cochlospermum. Secretory cells and canals, dilated phloem rays, and banded phloem are unifying features. Mature nodal anatomy is 3-trace, trilacunar, and the leaves of both genera have elongate, unicellular, branched idioblasts in the spongy mesophyll. Bixa has some features in common with Amoreuxia and Cochlospermum but is distinctive in vascularization of the petiole, leaf anatomy, and vestiture. Rhopalocarpus is quite different from the above genera, and its placement in a separate family is justified on anatomical grounds. The Cochlospermaceae, consisting of Amoreuxia and Cochlospermum, seem more closely related to the Sterculiaceae and Tiliaceae than to the Flacourtiaceae, Cistaceae, or Violaceae.  相似文献   

18.
Recent collections have brought to light the following new species from the states of Tabasco and Oaxaca, Mexico:Byttneria fluvialis (Sterculiaceae) from Tabasco;Bakeridesia amoena (Malvaceae), andTriumfetta calzadae (Tiliaceae) from Oaxaca.  相似文献   

19.
The genus Krameria is currently recognized as an enigmatic, monotypic family of dicotyledons. Previous studies of morphology, anatomy, and cytology have been unable to establish unequivocably its phyletic affinities. We report here the results of an intensive investigation of the pollen of Krameria using light, scanning electron (SEM), and transmission electron microscopy (TEM). Pollen characteristics of the genus were compared to those of all families referred to the Polygalales and to selected species of the Leguminosae-Caesalpinoideae, both groups with which Krameria has historically been allied. Superficially, the pollen of Krameria resembles that of the legumes more than that of genera in the Polygalales. However, in ultrastructure, it differs from the pollen of all taxa investigated from both groups. Within Krameria, several variations of a basic type of 3-colporate pollen are discernible. Species with similar pollen variants appear, on the basis of other morphological data, to represent natural groups within the genus. Nevertheless, an arrangement of groups of species of Krameria from “least” to “most” specialized, based on a logical sequence of modification of the pollen morphology, does not agree with any sequence of specialization using other morphological or ecological characters. It is concluded that pollen morphology and ultrastructure has systematic value for intrafamilial groupings of the Krameriaceae but that palynological modifications are incongruous with trends of specializations of other characters and, like many other lines of investigation, pollen studies do not provide significant data as to the phylogenetic affinities of the family.  相似文献   

20.
中国栝楼属(Trichosanthes L.)花粉形态的研究   总被引:2,自引:1,他引:2  
本文系统地研究了我国栝楼属30种及分布于日本的多裂栝楼的花粉形态,观察了各种花粉在光学显微镜及扫描电镜下的形态特征.同时通过花粉形态的研究,验证了在分类上本属所分各组的合理性。并观察了栝楼族另一属植物油瓜的花粉,探讨了二属之间的亲缘关系。由于本属植物多数为药用,而花粉形态特征为本属药材真伪的鉴别提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号