首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine the response of nitrogen metabolism to drought and recovery upon rewatering in barley (Hordeum vulgare L.) plants under ambient (350 μmol mol−1) and elevated (700 μmol mol−1) CO2 conditions. Barley plants of the cv. Iranis were subjected to drought stress for 9, 13, or 16 days. The effects of drought under each CO2 condition were analysed at the end of each drought period, and recovery was analysed 3 days after rewatering 13-day droughted plants. Soil and plant water status, protein content, maximum (NRmax) and actual (NRact) nitrate reductase, glutamine synthetase (GS), and aminant (NADH-GDH) and deaminant (NAD-GDH) glutamate dehydrogenase activities were analysed. Elevated CO2 concentration led to reduced water consumption, delayed onset of drought stress, and improved plant water status. Moreover, in irrigated plants, elevated CO2 produced marked changes in plant nitrogen metabolism. Nitrate reduction and ammonia assimilation were higher at elevated than at ambient CO2, which in turn yielded higher protein content. Droughted plants showed changes in water status and in foliar nitrogen metabolism. Leaf water potential (Ψw) and nitrogen assimilation rates decreased after the onset of water deprivation. NRact and NRmax activity declined rapidly in response to drought. Similarly, drought decreased GS whereas NAD-GDH rose. Moreover, protein content fell dramatically in parallel with decreased leaf Ψw. In contrast, elevated CO2 reduced the water stress effect on both nitrate reduction and ammonia assimilation coincident with a less-steep decrease in Ψw. On the other hand, Ψw practically reached control levels after 3 days of rewatering. In parallel with the recovery of plant water status, nitrogen metabolism was also restored. Thus, both NRact and NRmax activities were restored to about 75-90% of control levels when water supply was restored; the GS activity reached 80-90% of control values; and GDH activities and protein content were similar to those of control plants. The recovery was always faster and slightly higher in plants grown under elevated CO2 conditions compared to those grown in ambient CO2, but midday Ψw dropped to similar values under both CO2 conditions. The results suggest that elevated CO2 improves nitrogen metabolism in droughted plants by maintaining better water status and enhanced photosynthesis performance, allowing superior nitrate reduction and ammonia assimilation. Ultimately, elevated CO2 mitigates many of the effects of drought on nitrogen metabolism and allows more rapid recovery following water stress.  相似文献   

2.
Large amounts of nitrogen (N) fertilizers are used in the production of oilseed rape. However, as low-input methods of crop management are introduced crops will need to withstand temporary N deficiency. In temperate areas, oilseed rape will also be affected by frequent drought periods. Here we evaluated the physiological and metabolic impact of nitrate limitation on the oilseed rape response to water deprivation. Different amounts of N fertilizer were applied to plants at the vegetative stage, which were then deprived of water and rehydrated. Both water and N depletion accelerated leaf senescence and reduced leaf development. N-deprived plants exhibited less pronounced symptoms of wilting during drought, probably because leaves were smaller and stomata were partially closed. Efficiency of proline production, a major stress-induced diversion of nitrogen metabolism, was assessed at different positions along the whole plant axis and related to leaf developmental stage and water status indices. Proline accumulation, preferentially in younger leaves, accounted for 25-85% of the free amino acid pool. This was mainly due to a better capacity for proline synthesis in fully N-supplied plants whether they were subjected to drought or not, as deduced from the expression patterns of the proline metabolism BnP5CS and BnPDH genes. Although less proline accumulated in the oldest leaves, a significant amount was transported from senescing to emerging leaves. Moreover, during rehydration proline was readily recycled. Our results therefore suggest that proline plays a significant role in leaf N remobilization and in N use efficiency in oilseed rape.  相似文献   

3.
The symbiosis legume-arbuscular mycorrhizal fungi-nitrogen fixing bacteria is of relevant interest in Mediterranean regions where Anthyllis cytisoides L. grows. In these areas, nitrogen is one of the nutrients that most limits plant growth. In addition, the long periods of water deficit decrease the diffusion rate of phosphorus and, consequently, also decrease the biological nitrogen fixation. It is well known that mycorrhizal fungi can improve phosphorus uptake and, recently, some authors have found that antioxidant activities in mycorrhizal plants can delay drought-induced nodule senescence. The objective of our work was to evaluate weather mycorrhizal fungi could preserve the nodule metabolism in A. cytisoides subjected to drought. Results showed that a low soil water content associated with an enhancement of soil compaction accelerated the senescence of nodules in both non-mycorrhizal and mycorrhizal plants. However, while total soluble protein, leghaemoglobin (Lb) content, as well as carbon and antioxidant metabolism significantly decreased in nodules from non-mycorrhizal A. cytisoides subjected to drought, nodules from stressed mycorrhizal plants maintained Lb levels, showed greater rates of carbon metabolism, and exhibited higher enzymatic activities related to the removal of reactive oxygen species. In addition to the greater activity of antioxidant enzymes, other mechanisms related or unrelated to enhanced nodule water status could also be implied in the better nodule functioning observed in mycorrhizal plants under stressful conditions.  相似文献   

4.
氮代谢参与植物逆境抵抗的作用机理研究进展   总被引:2,自引:0,他引:2  
王新磊  吕新芳 《广西植物》2020,40(4):583-591
近年来,植物所受到的诸如干旱、盐、高温、低氧、重金属胁迫和营养元素缺乏等环境胁迫越来越多,严重影响了植物的生长发育及作物的质量和产量。氮素是植物生长发育所需的必需营养元素,同时也是核酸、蛋白质和叶绿素的重要组成成分,其代谢过程与植物抵抗逆境的能力息息相关。氮代谢是指植物对氮素的吸收、同化和利用的全过程,是植物体内基础代谢途径之一。氮代谢主要从氮素吸收、同化及氨基酸代谢等方面参与植物的抗逆性,并通过调节离子吸收和转运、稳定细胞形态和蛋白质结构、维持激素平衡和细胞代谢水平、减少体内活性氧(reactive oxygen species,ROS)生成以及促进叶绿素合成等生理机制来影响植物抵抗非生物胁迫的能力。因此,提高植物在逆境下的氮代谢水平是减轻外界胁迫对其损伤的一种潜在途径。该文从氮素同化的基本途径出发,分别阐述了氮代谢在干旱胁迫、盐胁迫和高温胁迫等多个方面的逆境抵抗过程中的作用机理,为氮代谢参与植物抗逆性研究提供了有利参考。  相似文献   

5.
Drought stress impacts the quality and yield of Pisum sativum. Here, we show how short periods of limited water availability during the vegetative stage of pea alters phloem sap content and how these changes are connected to strategies used by plants to cope with water deficit. We have investigated the metabolic content of phloem sap exudates and explored how this reflects P. sativum physiological and developmental responses to drought. Our data show that drought is accompanied by phloem-mediated redirection of the components that are necessary for cellular respiration and the proper maintenance of carbon/nitrogen balance during stress. The metabolic content of phloem sap reveals a shift from anabolic to catabolic processes as well as the developmental plasticity of P. sativum plants subjected to drought. Our study underlines the importance of phloem-mediated transport for plant adaptation to unfavourable environmental conditions. We also show that phloem exudate analysis can be used as a useful proxy to study stress responses in plants. We propose that the decrease in oleic acid content within phloem sap could be considered as a potential marker of early signalling events mediating drought response.  相似文献   

6.
Spikes of barley ( Hordeum vulgare L.) cultivar Bomi and high-lysine mutants Riso 1508 and Riso 56 were cultured on liquid media at varying N and sucrose levels. Bomi accumulated N in response to increasing N levels in the medium and a higher level was reached than in spikes of intact plants. The distribution of N in salt-soluble, hordein, and non-protein N fractions appeared to be normal. Endosperm dry weight and starch were lower than in intact plants and declined at higher N levels. A linear relationship was observed between starch content and the concentration of sucrose in the endosperm water. Uptake of culture medium by the spikes was affected by both N and sucrose concentration. The mutants had lower dry weights and starch contents, and higher sucrose contents than Bomi. At high N levels, the mutants accumulated less hordein, and more non-protein N than Bomi.  相似文献   

7.
堇菜叶片草酸钙晶体与水分维持的关系   总被引:1,自引:0,他引:1  
随着全球气候变化加重,干旱强度和持续时间逐渐增加,严重影响植物生长和作物产量。喀斯特为典型的干旱和高钙生境,植物叶片富集大量的草酸钙晶体,而该晶体与植物耐旱性之间的关系并不清楚。该研究以喀斯特适生植物堇菜(Viola verecumda)为材料,土壤进行自然干旱,分析堇菜叶片的草酸钙晶体变化特征与水分之间的关系。结果表明:在土壤自然干旱条件下,堇菜主要通过细胞内束缚水的释放,维持细胞内水分平衡;而在干旱后期,叶片通过关闭气孔,将部分自由水转变为束缚水,防止水分流失。此外,草酸钙晶体的密度与束缚水含量具有极其显著的强正相关线性回归关系(r=0.825 3,P0.000 1),表明草酸钙晶体作为主要的束缚水物质。因此,堇菜植物在耐旱过程中可能协调草酸钙晶体和气孔的生理行为忍耐干旱胁迫。  相似文献   

8.
Dwarf bamboo is an ecologically and economically important forest resource that is widespread in mountainous regions of eastern Asia and southern America. Fargesia denudata, one of the most important dwarf bamboos, is a staple food of the giant panda, but our knowledge about how F. denudata copes with drought stress is very limited. The objective of this study was to determine the responses of carbon (C) and nitrogen (N) metabolism to drought in leaves and roots of F. denudata plants. Plants were subjected to three water treatments, well-watered [WW, 85 % relative soil water content (RSWC)], moderate drought (MD, 50 % RSWC), and severe drought (SD, 30 % RSWC), for two consecutive years during the sprouting period. Plant growth parameters, levels of carbohydrates and N compounds, and activities of key enzymes involved in C and N metabolism were analyzed. In young leaves, C metabolism was in balance after drought stress, but nitrate (NO3 ?) reduction and ammonium (NH4 +) assimilation were accelerated. In old leaves, drought stress decreased carbohydrate contents by spurring the activities of the main enzymes that participate in C metabolism, whereas N metabolism was enhanced only under SD. Roots showed unchanged C metabolism parameters under MD, together with stable NO3 ? reduction and the key enzymes related to NH4 + assimilation, whereas they were stimulated by SD. Hydrolysates of carbohydrates in old leaves could be transferred into roots, but only to meet MD. Meanwhile, roots could allocate more N nutrition to young leaves and less to old leaves. These changes regulated the overall metabolic balance of F. denudata. Consequently, the results indicate that different organs with various response strategies will be well adapted to different drought intensities for ensuring regular growth of F. denudata plants at the whole-plant level.  相似文献   

9.
F. Zsoldos 《Plant and Soil》1962,16(3):269-283
Summary The factors which influence disease development greatly affect the nitrogen metabolism and water regime of the rice plant. Soluble nitrogen, mainly the amino acids, accumulates and this favours the establishment of parasitic micro-organisms. In diseased tissues the level of total-N and protein-N (per cent on dry weight) is higher than in the healthy ones. If the amount of protein-N is expressed on a total-N basis the diseased plants exhibit a lower protein content.High nitrogen doses lead to disturbances of the growth processes and may be attributed to the accumulation of NH3. The physiological activity of the root system of susceptible and resistant rice plants exhibits marked differences, particularly in the later developmental stages. Resistant varieties, due to their highly developed root system, yielded higher amounts of bleeding sap.As a result of excessive nitrogen nutrition the root/shoot ratio is shifted in favour of the latter and consequently the normal balance of water regime and the mineral nutrition is disturbed. In the so called brusone years physiological drought is observed and this leads to serious losses. The resistant varieties are more or less tolerant to the deleterious effect of physiological drought.  相似文献   

10.
1. Discs cut from tobacco leaf tissue infected with tobacco mosaic virus and cultured in water contain less non-protein nitrogen than comparable uninfected discs during the time at which TMV is formed. This deficiency disappears when virus formation ceases. Discs cultured in nutrient solution form about twice as much TMV as discs cultured in water. The maximum non-protein nitrogen deficiency is comparable in magnitude to the amount of virus synthesized. 2. The largest difference between injected and uninfected tissue occurs in the ammonia content. Smaller, but significant differences in amide content are found. Infected discs cultured in water show no significant differences from control discs in free amino acid content; infected discs cultured in nutrient solution develop a small deficiency in amino acid nitrogen. 3. The general patterns of change in composition of the pool of soluble nitrogen are similar in both infected and uninfected discs. 4. The data indicate that the bulk of the nitrogen incorporated into virus protein is withdrawn from the leaf's pool of soluble nitrogen; virus is formed de novo from ammonia nitrogen and non-nitrogenous carbon sources. The effect of virus infection on host nitrogen metabolism appears to be due to the formation of virus rather than to its presence.  相似文献   

11.
Six lines of sorghum ( Sorghum bicolor L. Moench) with differing drought resistance (IS 22380, ICSV 213, IS 13441 and SPH 263, resistant and IS 12739 and IS 12744, susceptible) were grown under field conditions in the semi-arid tropics and analysed for proline and nitrate reductase activity (NRA; EC 1.6.6.1) during a mid-season drought. The resistant lines accumulated high levels of proline, while the susceptible lines showed no significant proline accumulation. Most of the proline was accumulated after growth of the plants had ceased. In a separate greenhouse experiment, most of the proline was found in the green rather than the fired portions of leaves. The levels returned to that of irrigated controls within 5 days of rewatering. Proline levels increased as leaf water potential and relative water content fell, and there was no apparent difference among the different sorghum lines with change in plant water status. Susceptible lines accumulated less proline than resistant lines as leaf death occurred at higher water potentials. Proline accumulation may, however, contribute to the immediate recovery of plants from drought. Leaf NRA reached high levels at about 35 days after sowing in both the stressed and irrigated plants, after which it declined. The decline in NRA was more pronounced in the stressed than in the irrigated plants and closely followed changes in the growth rate. Upon rewatering, NRA increased several-fold in all the lines and, in contrast to proline accumulation, genotypic differences in NRA were small, both during stress and upon rewatering. The high sensitivity of NRA to mild drought stress was reflected in the rapid decline of activity with small changes in leaf water potential and relative water content. The results are discussed in the light of a possible role for proline during recovery from drought, and the maintenance of NRA during stress and its recovery upon rewatering.  相似文献   

12.
The influence of Russian wheat aphid ( Diuraphis noxia Mordvilko) infestation on the response of barley ( Hordeum vulgare L. ev Hazen) plants to drought stress was investigated. Fourteen-day-old plants were infested with eight apterous adult aphids, which were removed 7 days later with systemic insecticide. Leaves previously infested with aphids had lower relative water content, reduced stomatal conductance, more negative water potential, lower levels of chlorophyll and higher levels of amino-N, proline and glycinebetaine than corresponding leaves from uninfested plants. When water was withheld for a period of 7 days after aphids were removed, the relative water content of previously infested plants dropped steadily from 0.89 to 0.60, while the relative water content of uninfested plants remained at about 0.94 for the first 4 days of the drought stress period followed by a steady drop to about 0.77 by the end of the drought stress period. Leaf water potentials dropped steadily during the drought stress period in both previously infested (-1.14 to -1.91 MPa) and unin-fested (-0.54 to -1.52 MPa) plants. Analysis of glycinebetaine and proline levels at the end of the drought stress period indicated that leaves of previously infested plants accumulated lower levels of these solutes than leaves from uninfested plants. Upon alleviation of drought stress, plants previously infested with aphids showed little increase in dry weight while younger leaves and tillers from uninfested plants showed large increases. It is concluded that Russian wheat aphids cause drought-stress symptoms in leaves of infested plants even in the presence of ample root moisture. The observations of low levels of glycinebetaine and proline present in leaves after water was withheld from roots and lack of leaf growth upon alleviation of drought stress in previously-infested plants, suggest that aphid infestation limits the capacity of barley plants to adjust successfully to drought stress.  相似文献   

13.
The response to drought was compared for willow plants of optimal leaf nitrogen content (100 N) and those of 86% of this content (86 N). Gas exchange measurements revealed that the carboxylation efficiency (CE) of photosynthesis was more sensitive to drought than the photosynthetic capacity in both N regimes. Since the leaf content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was found to be much more resistant it is suggested that a decreased specific activity of Rubisco underlies the decreased CE. Although the rate of water consumption was the same for 86 N and 100 N plants the photosynthetic apparatus responded much more rapidly in the 86 N leaves. This increased sensitivity of 86 N leaves was not due to accelerated senescence as judged by comparison with parallel plants subjected to discontinued fertilization; the two categories of treatments resulted in the same loss of leaf nitrogen and Rubisco but drought induced a much more rapid photosynthetic depression. In contrast to the drought situation, 86 N and 100 N plants behaved similarly when compared under short term water stress. First, when single attached leaves were exposed to a sudden drop in air humidity the capacity of CO2 uptake in both N regimes decreased about 20% over 10 min while the leaf water potential remained high. Second, in freely transpiring leaf discs cut from 86 N and 100 N leaves the same relationship between capacity of O2 evolution and extent of dehydration was observed. The possible mechanisms underlying the increased susceptibility of 86 N leaves to drought is discussed; the water status of the roots not the leaves is suggested to be the determining factor.Abbreviations CE carboxylation efficiency - 100 N optimal nitrogen regime - 86 N suboptimal nitrogen regime with 86% of the optimal leaf nitrogen content, Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

14.
Trehalose Is a nonreduclng dlsaccharlde of glucose that functions as a protectant In the stabilization of blologlcal structures and enhances stress tolerance to abiotic stresses in organisms. We report here the expression of a Grlfola frondosa trehalose synthase (TSase) gene for Improving drought tolerance In sugarcane (Saccharum offlclnarum L.). The expression of the transgene was under the control of two tandem copies of the CaMV35S promoter and transferred Into sugarcane by Agrobacterium tumefaciens EHA105. The transgenlc plants accumulated high levels of trehalose, up to 8.805-12.863 mg/g fresh weight, whereas It was present at undetectable level in nontransgenlc plants. It has been reported that transgenlc plants transformed with Escherlchla coil TPS (trehalose-6-phosphatesynthase) and/or TPP (trehalose-6-phosphate phosphatase) are severely stunted and have root morphologlc alterations. Interestingly, our transgenlc sugarcane plants had no obvious morphological changes and no growth Inhibition in the field. Trehalose accumulation in 35S-35S:TSase plants resulted In In- creased drought tolerance, as shown by the drought and the drought physiological Indexes, such as the rate of bound water/free water, plasma membrane permeability, malondlaldehyde content, chlorophyll a and b contents, and activity of SOD and POD of the excised leaves. These results suggest that transgenlc plants transformed with the TSase gene can accumulate high levels of trehalose and have enhanced tolerance to drought.  相似文献   

15.
Key enzyme activities related to nitrogen metabolism, gas-exchange, chlorophyll fluorescence, and lipid peroxidation were determined in Leymus chinensis (Trin.) Tzvel. plants under four soil moisture regimes (control: 75%–80% of field moisture capacity, mild drought: 60%–65%, and moderate drought: 50%–55% as well as severe drought: 35%–40%). Severe drought significantly decreased the key enzyme activities of nitrogen anabolism such as nitrate reductase (NR, EC 1.6.6.1), glutamine synthetase (GS, EC 6.3.1.2), and glutamate dehydrogenase (GDH, EC 1.4.1.2) but increased the key enzyme activities of nitrogen catabolism such as asparaginase (AS, EC 6.3.5.4) and endopeptidase (EP, EC 3.4.24.11), especially after long-term soil drought. Plant biomass, leaf-biomass ratio between the green leaf and total plant biomass, net photosynthetic rate, stomatal conductance, the maximal efficiency of PSII photochemistry, the actual quantum yield, and the photochemical quenching were significantly reduced by severe water stress. Plant malondialdehyde (MDA) concentration increased with the increase in water stress, particularly at the late-growth stage. Our results suggest that the key enzymes of nitrogen metabolism may play an important role in the photosynthetic acclimation of L. chinensis plants to long-term soil drought.  相似文献   

16.
Drought is a major abiotic factor limiting agricultural crop production. The objective of this study was to investigate the effect of triadimefon (TDM) on leaf physiology and growth of soybean in response to drought stress. Soybean variety of Nannong 99-6 (Glycine max var.) was used to study the effects of TDM on carbon–nitrogen metabolism and root structure under drought stress with pot experiment. The results showed that drought stress significantly depressed the growth and yield regardless of spraying TDM. However, drought-stressed plants treated with TDM (D+T) showed much higher biomass and yield than those without TDM (D). Leaves of D+T plants exhibited a higher relative water content and chlorophyll content, but lower relative electric conductivity as compared with those of the D plants. Formation of lots of new roots, and more mitochondria and electron density deposits in the cells of root tips in D+T plants were noticed. Foliar glucose, fructose, and soluble sugar were increased by drought during the drought stress period. TDM decreased glucose and fructose a little during stress and the beginning stage of the recovery period but increased it later in the recovery period. Activities of sucrose synthase (SS EC 2.4.1.13), sucrose-phosphate synthase (SPS EC 2.4.1.13), and glutamine synthetase (GS EC6.3.1) and contents of NO3-N were increased by TDM. Collectively, the results indicated that TDM could effectively alleviate the adverse effects caused by drought stress, which was partially attributable to modifications in morphology and physiological characteristic.  相似文献   

17.
Legume-Rhizobium nitrogen fixation is dramatically affected under drought and other environmental constraints. However, it has yet to be established as to whether such regulation of nitrogen fixation is only exerted at the whole-plant level (e.g. by a systemic nitrogen feedback mechanism) or can also occur at a local nodule level. To address this question, nodulated pea (Pisum sativum) plants were grown in a split-root system, which allowed for half of the root system to be irrigated at field capacity, while the other half was water deprived, thus provoking changes in the nodule water potential. Nitrogen fixation only declined in the water-deprived, half-root system and this result was correlated with modifications in the activities of key nodule's enzymes such as sucrose synthase and isocitrate dehydrogenase and in nodular malate content. Furthermore, the decline in nodule water potential resulted in a cell redox imbalance. The results also indicate that systemic nitrogen feedback signaling was not operating in these water-stressed plants, since nitrogen fixation activity was maintained at control values in the watered half of the split-root plants. Thus, the use of a partially droughted split-root system provides evidence that nitrogen fixation activity under drought stress is mainly controlled at the local level rather than by a systemic nitrogen signal.  相似文献   

18.
Although glutathione S-transferases (GSTs) are thought to play major roles in oxidative stress metabolism, little is known about the regulatory functions of GSTs. We have reported that Arabidopsis (Arabidopsis thaliana) GLUTATHIONE S-TRANSFERASE U17 (AtGSTU17; At1g10370) participates in light signaling and might modulate various aspects of development by affecting glutathione (GSH) pools via a coordinated regulation with phytochrome A. Here, we provide further evidence to support a negative role of AtGSTU17 in drought and salt stress tolerance. When AtGSTU17 was mutated, plants were more tolerant to drought and salt stresses compared with wild-type plants. In addition, atgstu17 accumulated higher levels of GSH and abscisic acid (ABA) and exhibited hyposensitivity to ABA during seed germination, smaller stomatal apertures, a lower transpiration rate, better development of primary and lateral root systems, and longer vegetative growth. To explore how atgstu17 accumulated higher ABA content, we grew wild-type plants in the solution containing GSH and found that they accumulated ABA to a higher extent than plants grown in the absence of GSH, and they also exhibited the atgstu17 phenotypes. Wild-type plants treated with GSH also demonstrated more tolerance to drought and salt stresses. Furthermore, the effect of GSH on root patterning and drought tolerance was confirmed by growing the atgstu17 in solution containing l-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH biosynthesis. In conclusion, the atgstu17 phenotype can be explained by the combined effect of GSH and ABA. We propose a role of AtGSTU17 in adaptive responses to drought and salt stresses by functioning as a negative component of stress-mediated signal transduction pathways.  相似文献   

19.
Homobrassinolide (BR) was applied either as a seed treatment or foliar spray to two contrasting wheat varieties, viz. C306 (drought tolerant) and HD2329 (drought susceptible), to examine its effects on plant metabolism and grain yield under irrigated and moisture-stress/rainfed conditions. BR application resulted in increased relative water content, nitrate reductase activity, chlorophyll content and photosynthesis under both conditions. BR application also improved membrane stability (lower injury). These beneficial effects resulted in higher leaf area, biomass production, grain yield and yield related parameters in the treated plants. All the treatments were significantly better than the untreated control. Generally, 0.05 ppm either as a seed treatment or foliar spray was more effective than the 0.01 ppm treatment. The drought-tolerant genotype C306 showed more response to BR application under moisture-stress/rainfed condition than HD 2329. Increased water uptake, membrane stability and higher carbon dioxide and nitrogen assimilation rates under stress seemed to be related to homobrassinolide-induced drought tolerance.  相似文献   

20.
以蛋白质含量不同的两个冬小麦品种扬麦9号和豫麦34为材料,研究了不同温度和水分条件下小麦花后旗叶光合特性的变化、营养器官花前贮藏干物质和氮素转运特征及其与籽粒产量和品质形成的关系.结果表明,高温及干旱和渍水均明显降低了旗叶光合速率和叶绿素含量(SPAD值),但高温下干旱和渍水对光合作用的影响加重.小麦营养器官花前贮藏干物质、氮素转运量和转运率在适温下表现为干旱>对照>渍水,高温下则表现为对照>干旱>渍水.适温下花后同化物积累量表现为对照>渍水>干旱,高温下则表现为对照>干旱>渍水.花后氮素积累量在适温和高温下均表现为对照>渍水>干旱.籽粒淀粉含量以适温适宜水分处理最高,高温渍水下最低;蛋白质含量以高温干旱下最高,适温渍水下最低.温度和水分逆境下小麦粒质量和淀粉含量的降低与花后较低的光合能力及干物质积累有关,而蛋白质含量则与花前贮藏氮素的转运量和转运率有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号