首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soluble phosphatidylinositol (PtdIns) 4- and 3-kinase activities were partially purified and characterized from human placental extracts. The placental PtdIns 4-kinase (type 3) has a Km for ATP of 460 microM and is kinetically different to a partially purified human erythrocyte, membrane-bound, PtdIns 4-kinase (type 2). These three inositol lipid kinases were then used to compare their substrate specificities against the four synthetic stereoisomers of dipalmitoyl PtdIns. Only the placental 4-kinase was influenced by the chirality of the glycerol moiety of PtdIns. However, neither of the 4-kinases was able to phosphorylate L-PtdIns and, therefore, these kinases have an absolute requirement for the inositol ring to be linked to the glyceryl backbone of the lipid through the D-1 position. Phosphoinositide 3-kinase, on the other hand, was found to phosphorylate both D- and L-PtdIns. While the 3-kinase phosphorylated exclusively the D-3 position of D-PtdIns, further analyses demonstrated that the same enzyme phosphorylated two sites on L-PtdIns, namely the D-6 and D-5 positions of the inositol ring. Some implications of these findings are discussed.  相似文献   

2.
Phosphatidylinositol-4,5-bisphosphate plays a pivotal role in the regulation of cell proliferation and survival, cytoskeletal reorganization, and membrane trafficking. However, little is known about the temporal and spatial regulation of its synthesis. Higher eukaryotic cells have the potential to use two distinct pathways for the generation of phosphatidylinositol-4,5-bisphosphate. These pathways require two classes of phosphatidylinositol phosphate kinases, termed type I and type II PIP kinases. While highly related by sequence, these kinases localize to different subcellular compartments, phosphorylate distinct substrates, and are functionally nonredundant. Here, we show that a 20- to 25-amino acid loop spanning the catalytic site, termed the activation loop, determines both enzymatic specificity and subcellular targeting of PIP kinases. Therefore, the activation loop controls signaling specificity and PIP kinase function at multiple levels.  相似文献   

3.
It is well known that phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) plays important roles not only as a precursor lipid for generating second messengers but also as a regulator of cytoskeletal re-organization. The last step of PtdIns(4,5)P2 synthesis is catalyzed by PtdIns monophosphate(PIP) kinase. So far, three type I PIP kinases(alpha, beta, and gamma), which phosphorylate PtdIns(4) to PtdIns(4,5)P2, and three type II PIP kinases(alpha, beta, gamma), which phosphorylate PtdIns(5)P to PtdIns(4,5)P2 have been found. On the other hand, several inositolpolyphosphate 5-phosphatases which convert PtdIns(4,5)P2 to PtdIns(4) are known. Among them, synaptojanin, which associates with tyrosine kinase receptors through an adaptor protein, Ash/Grb2, in response to growth factors, is capable of hydrolyzing PtdIns(4,5)P2 bound to actin regulatory proteins, resulting in actin filament re-organization downstream of tyrosine kinases.  相似文献   

4.
5.
Type II phosphatidylinositol (PtdIns) 4-kinases produce PtdIns 4-phosphate, an early key signaling molecule in phosphatidylinositol cycle, which is indispensable for T cell activation. Type II PtdIns 4-kinase alpha and beta have similar biochemical properties. To distinguish these isoforms Epigallocatechin gallate (EGCG) has been evaluated as a specific inhibitor. EGCG is the major active catechin in green tea having anti-inflammatory, antiatherogenic and cancer chemopreventive properties. The precise mechanism of actions and molecular targets of EGCG in early signaling cascades are not well understood. In the present study, we have shown that EGCG inhibits type II PtdIns 4-kinases (α and β isoforms) and PtdIns 3-kinase activity in vitro. EGCG directly bind to both alpha and beta isoforms of type II PtdIns 4-kinases with a Kd of 2.62 μM and 1.02 μM, respectively. Type II PtdIns 4-kinase-EGCG complex have different binding pattern at its excited state. Both isoforms showed significant change in helicity upon binding with EGCG. EGCG modulates its effect by interacting with ATP binding pocket; the residues likely to be involved in EGCG binding were predicted by Autodock. Our findings suggest that EGCG inhibits two isoforms and could be a key to regulate T cell activation.  相似文献   

6.
In eukaryotes, calcium signalling has been linked to hydrolysis of the phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). The final enzyme in the synthesis of this phosphoinositide, a Type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K), is activated by the small G protein ADP-ribosylation factor 1 (ARF1). In mammals, the ARF-PIP5K pathway is a key regulator of cell motility, secretion and cell signalling. We report the characterisation of a unique, putative bifunctional PIP5K in the human malaria parasite Plasmodium falciparum. The protein comprises a C-terminal, functional PIP5K domain with catalytic specificity for phosphatidylinositol 4-phosphate. The recombinant enzyme is activated by ARF1 but not phosphatidic acid. The protein also incorporates an unusual N-terminal domain with potential helix-loop-helix EF-hand-like motifs that is a member of the neuronal calcium sensor family (NCS). Intriguingly, NCS-1 has been shown to stimulate phosphatidylinositol 4-phosphate synthesis by activating mammalian and yeast phosphatidylinositol 4-kinase β in vitro in a calcium-dependent manner. The unexpected physical attachment of an NCS-like domain to the plasmodial PIP5K might reflect a unique functional link between the calcium and PtdIns(4,5)P2 pathways allowing modulation of PtdIns(4,5)P2 production in response to changes in intracellular calcium concentrations within the parasite.  相似文献   

7.
Phosphatidylinositol phosphate kinases (PIPKs) have important roles in the production of various phosphoinositides. For type I PIP5Ks (PIP5KI), a broad substrate specificity is known. They phosphorylate phosphatidylinositol 4-phosphate most effectively but also phosphorylate phosphatidylinositol (PI), phosphatidylinositol 3-phosphate, and phosphatidylinositol (3,4)-bisphosphate (PI(3, 4)P(2)), resulting in the production of phosphatidylinositol (4, 5)-bisphosphate (PI(4,5)P(2)), phosphatidylinositol 3-phosphate, phosphatidylinositol (3,4)-bisphosphate (PI(3,4)P(2)), phosphatidylinositol (3,5)-bisphosphate (PI(3,5)P(2)), and phosphatidylinositol (3,4,5)-trisphosphate. We show here that PIP5KIs have also protein kinase activities. When each isozyme of PIP5KI (PIP5KIalpha, -beta, and -gamma) was subjected to in vitro kinase assay, autophosphorylation occurred. The lipid kinase-negative mutant of PIP5KIalpha (K138A) lost the protein kinase activity, suggesting the same catalytic mechanism for the lipid and the protein kinase activities. PIP5KIbeta expressed in Escherichia coli also retains this protein kinase activity, thus confirming that no co-immunoprecipitated protein kinase is involved. In addition, the autophosphorylation of PIP5KI is markedly enhanced by the addition of PI. No other phosphoinositides such as phosphatidylinositol phosphate, phosphatidylinositol bisphosphate, or phosphatidylinositol trisphosphate have such an effect. We also found that the PI-dependent autophosphorylation strongly suppresses the lipid kinase activity of PIP5KI. The lipid kinase activity of PIP5KI was decreased to one-tenth upon PI-dependent autophosphorylation. All these results indicate that the lipid kinase activity of PIP5KI that acts predominantly for PI(4,5)P(2) synthesis is regulated by PI-dependent autophosphorylation in vivo.  相似文献   

8.
The type I phosphatidylinositol 4-phosphate 5-kinases (PI4P5K) phosphorylate phosphatidylinositol 4-phosphate [PI(4)P] to produce phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. PI(4,5)P2 has been implicated in signal transduction, receptor mediated endocytosis, vesicle trafficking, cytoskeletal structure, and membrane ruffling. However, the specific type I enzymes associated with the production of PI(4,5)P2 for the specific cellular processes have not been rigorously defined. Murine PI4P5K type Ibeta (mPIP5K-Ibeta) was implicated in receptor mediated endocytosis through the isolation of a truncated and inactive form of the enzyme that blocked the ligand-dependent downregulation of the colony-stimulating factor-1 receptor. The present study shows that enforced expression of mPIP5K-Ibeta in 293T cells resulted in the accumulation of large vesicles that were linked to an endosomal pathway. Similar results were obtained after the expression of the PI(4,5)P2-binding pleckstrin homology (PH) domain of phospholipase-Cdelta (PLC-delta). Analysis of the conserved domains of mPIP5K-Ibeta led to the identification of dimerization domains in the N- and C-terminal regions. Enforced expression of the individual dimerization domains interfered with the proper subcellular localization of mPIP5K-Ibeta and the PLC-delta-PH domain and blocked the accumulation of the endocytic vesicles induced by these proteins. In addition to regulating early steps in endocytosis, these results suggest that mPIP5K-Ibeta acts through PI(4,5)P2 to regulate endosomal trafficking and/or fusion.  相似文献   

9.
Phosphatidylinositol (PtdIns) 4,5-bisphosphate is involved in many aspects of membrane traffic, but the regulation of its synthesis is only partially understood. Golgi membranes contain PI 4-kinase activity and a pool of phosphatidylinositol phosphate (PIP), which is further increased by ADP-ribosylation factor 1 (ARF1). COS7 cells were transfected with alpha and beta forms of PI 4-kinase, and only membranes from COS7 cells transfected with PI 4-kinase beta increased their content of PIP when incubated with ARF1. PtdIns(4, 5)P(2) content in Golgi membranes was nonexistent but could be increased to a small extent upon adding either cytosol or Type I or Type II PIP kinases. However, when ARF1 was present, PtdIns(4,5)P(2) levels increased dramatically when membranes were incubated in the presence of cytosol or Type I, but not Type II, PIP kinase. To examine whether ARF1 could directly activate Type I PIP 5-kinase, we used an in vitro assay consisting of phosphatidycholine-containing liposomes, ARF1, and PIP 5-kinase. ARF1 increased Type I PIP 5-kinase activity in a guanine nucleotide-dependent manner, identifying this enzyme as a direct effector for ARF1.  相似文献   

10.
The type II PIP kinases phosphorylate the poorly understood inositol lipid PtdIns5P, producing the multi-functional lipid product PtdIns(4,5)P(2). To investigate the regulation of these enzymes by phosphorylation, we partially purified a protein kinase from pig platelets that phosphorylated type IIalpha PIP kinase on an activation loop threonine residue, T376. Pharmacological studies suggested this protein kinase was protein kinase D (PKD), and in vitro experiments confirmed this identification. A phospho-specific antibody was developed and used to demonstrate phosphorylation of T376 in living cells, and its enhancement under conditions in which PKD was activated. Although we were unable to determine the effects of phosphorylation on PIP kinase activity directly, mutation of T376 to aspartate significantly inhibited enzyme activity. We conclude that the type II PIP kinases are physiological targets for PKD phosphorylation, and that this modification is likely to regulate inositol lipid turnover by inhibition of these lipid kinases.  相似文献   

11.
Phosphatidylinositol (PtdIns) 4-kinases catalyze the conversion of PtdIns to PtdIns 4-phosphate, the major precursor of phosphoinositides that regulates a vast array of cellular processes. Based on enzymatic differences, two classes of PtdIns 4-kinase have been distinguished termed Types II and III. Type III kinases, which belong to the phosphatidylinositol (PI) 3/4-kinase family, have been extensively characterized. In contrast, little is known about the Type II enzymes (PI4KIIs), which have been cloned and sequenced very recently. PI4KIIs bear essentially no sequence similarity to other protein or lipid kinases; hence, they represent a novel and distinct branch of the kinase superfamily. Here we define the minimal catalytic domain of a rat PI4KII isoform, PI4KIIalpha, and identify conserved amino acid residues required for catalysis. We further show that the catalytic domain by itself determines targeting of the kinase to membrane rafts. To verify that the PI4KII family extends beyond mammalian sources, we expressed and characterized Drosophila PI4KII and its catalytic domain. Depletion of PI4KII from Drosophila cells resulted in a severe reduction of PtdIns 4-kinase activity, suggesting the in vivo importance of this enzyme.  相似文献   

12.
Phosphorylated derivatives of phosphatidylinositol (PtdIns) are key components of many signaling cascades. Many isoforms of PtdIns kinases, PtdIns phosphate kinases and phosphatases use these lipids in amazing networks of signaling cascades that are yet to be understood fully. PtdIns 4-kinase(s) phosphorylates PtdIns at the 4th -OH position of inositol head group and are classified in to type II and III PtdIns 4-kinases. While type III PtdIns 4-kinases are implicated in vesicular trafficking, type II PtdIns 4-kinases are suggested to play a role in cell signaling, cytoskeletal rearrangements, cell motility and in microbial pathogenicity. This paper reviews the role of type II PtdIns 4-kinases in cell signaling cascades in health and disease.  相似文献   

13.
Type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) catalyzes the formation of the phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP(2)), which is implicated in many cellular processes. The Rho GTPases, RhoA and Rac1, have been shown previously to activate PIP5K and to bind PIP5K. Three type I PIP5K isoforms (Ialpha,Ibeta, and Igamma) have been identified; however, it is unclear whether these isoforms are differentially or even sequentially regulated by Rho GTPases. Here we show that RhoA and Rac1, as well as Cdc42, but not the Ras-like GTPases, RalA and Rap1A, markedly stimulate PIP(2) synthesis by all three PIP5K isoforms expressed in human embryonic kidney 293 cells, both in vitro and in vivo. RhoA-stimulated PIP(2) synthesis by the PIP5K isoforms was mediated by the RhoA effector, Rho-kinase. Stimulation of PIP5K isoforms by Rac1 and Cdc42 was apparently independent of and additive with RhoA- and Rho-kinase, as shown by studies with C3 transferase and Rho-kinase mutants. RhoA, and to a lesser extent Rac1, but not Cdc42, interacted in a nucleotide-independent form with all three PIP5K isoforms. Binding of PIP5K isoforms to GTP-bound, but not GDP-bound, RhoA could be displaced by Rho-kinase, suggesting a direct and constitutive PIP5K-Rho GTPase binding, which, however, does not trigger PIP5K activation. In summary, our findings indicate that synthesis of PIP(2) by the three PIP5K isoforms is controlled by RhoA, acting via Rho-kinase, as well as Rac1 and Cdc42, implicating that regulation of PIP(2) synthesis has a central position in signaling by these three Rho GTPases.  相似文献   

14.
Phosphatidylinositol 4,5-bisphosphate is mostly produced in the cell by phosphatidylinositol-4-phosphate 5-kinases (PIP5K) and has a crucial role in numerous signaling events. Here we demonstrate that in vitro all three isoforms of PIP5K, α, β, and γ, discriminate among substrates with different acyl chains for both the substrates phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol (PtdIns) although to different extents, with isoform γ being the most selective. Fully saturated dipalmitoyl-PtdIns4P was a poor substrate for all three isoforms, but both the 1-stearoyl-2-arachidonoyl and the 1-stearoyl-2-oleoyl forms of PtdIns4P were good substrates. Vmax was greater for the 1-stearoyl-2-arachidonoyl form compared with the 1-stearoyl-2-oleoyl form, although for PIP5Kβ the difference was small. For the α and γ isoforms, Km was much lower for 1-stearoyl-2-oleoyl PtdIns4P, making this lipid the better substrate of the two under most conditions. Activation of PIP5K by phosphatidic acid is also acyl chain-dependent. Species of phosphatidic acid with two unsaturated acyl chains are much better activators of PIP5K than those containing one saturated and one unsaturated acyl chain. PtdIns is a poor substrate for PIP5K, but it also shows acyl chain selectivity. Curiously, there is no acyl chain discrimination among species of phosphatidic acid in the activation of the phosphorylation of PtdIns. Together, our findings indicate that PIP5K isoforms α, β, and γ act selectively on substrates and activators with different acyl chains. This could be a tightly regulated mechanism of producing physiologically active unsaturated phosphatidylinositol 4,5-bisphosphate species in the cell.  相似文献   

15.
Phosphatidylinositolpolyphosphates (PIPs) are centrally involved in many biological processes, ranging from cell growth and organization of the actin cytoskeleton to endo- and exocytosis. Phosphorylation of phosphatidylinositol at the D-4 position, an essential step in the biosynthesis of PIPs, appears to be catalyzed by two biochemically distinct enzymes. However, only one of these two enzymes has been molecularly characterized. We now describe a novel class of phosphatidylinositol 4-kinases that probably corresponds to the missing element in phosphatidylinositol metabolism. These kinases are highly conserved evolutionarily, but unrelated to previously characterized phosphatidylinositol kinases, and thus represent the founding members of a new family. The novel phosphatidylinositol 4-kinases, which are widely expressed in cells, only phosphorylate phosphatidylinositol, are potently inhibited by adenosine, but are insensitive to wortmannin or phenylarsine oxide. Although they lack an obvious transmembrane domain, they are strongly attached to membranes by palmitoylation. Our data suggest that independent pathways for phosphatidylinositol 4-phosphate synthesis emerged during evolution, possibly to allow tight temporal and spatial control over the production of this key signaling molecule.  相似文献   

16.
Phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] occurs in the apical plasma membrane of growing pollen tubes. Because enzymes responsible for PtdIns(4,5)P2 production at that location are uncharacterized, functions of PtdIns(4,5)P2 in pollen tube tip growth are unresolved. Two candidate genes encoding pollen-expressed Arabidopsis thaliana phosphatidylinositol-4-phosphate 5-kinases (PI4P 5-kinases) of Arabidopsis subfamily B were identified (PIP5K4 and PIP5K5), and their recombinant proteins were characterized as being PI4P 5-kinases. Pollen of T-DNA insertion lines deficient in both PIP5K4 and PIP5K5 exhibited reduced pollen germination and defects in pollen tube elongation. Fluorescence-tagged PIP5K4 and PIP5K5 localized to an apical plasma membrane microdomain in Arabidopsis and tobacco (Nicotiana tabacum) pollen tubes, and overexpression of either PIP5K4 or PIP5K5 triggered multiple tip branching events. Further studies using the tobacco system revealed that overexpression caused massive apical pectin deposition accompanied by plasma membrane invaginations. By contrast, callose deposition and cytoskeletal structures were unaltered in the overexpressors. Morphological effects depended on PtdIns(4,5)P2 production, as an inactive enzyme variant did not produce any effects. The data indicate that excessive PtdIns(4,5)P2 production by type B PI4P 5-kinases disturbs the balance of membrane trafficking and apical pectin deposition. Polar tip growth of pollen tubes may thus be modulated by PtdIns(4,5)P2 via regulatory effects on membrane trafficking and/or apical pectin deposition.  相似文献   

17.
Ligation of high-affinity IgE receptor I (FcεRI) on RBL-2H3 cells leads to recruitment of FcεRI and type II phosphatidylinositol 4-kinases (PtdIns 4-kinases) into lipid rafts. Lipid raft integrity is required for the activation of type II PtdIns 4-kinases and signal transduction through FcεRIγ during RBL-2H3 cell activation. However, the molecular mechanism by which PtdIns 4-kinases are coupled to FcεRI signaling is elusive. Here, we report association of type II PtdIns 4-kinase activity with FcεRIγ subunit in anti-FcεRIγ immunoprecipitates. FcεRIγ-associated PtdIns 4-kinase activity increases threefold upon FcεRI ligation in anti-FcεRIγ immunoprecipitates. Biochemical characterization of PtdIns 4-kinase activity associated with FcεRIγ reveals that it is a type II PtdIns 4-kinases. Canonical tyrosine residues mutation in FcεRIγ ITAM (Y65 and Y76) reveals that these two tyrosine residues in γ subunit are required for its interaction with type II PtdIns 4-kinases.  相似文献   

18.
Phosphatidylinositol 5-phosphate (PtdIns5P) is a relatively recently discovered inositol lipid whose metabolism and functions are not yet clearly understood. We have transfected cells with a number of enzymes that are potentially implicated in the synthesis or metabolism of PtdIns5P, or subjected cells to a variety of stimuli, and then measured cellular PtdIns5P levels by a specific mass assay. Stable or transient overexpression of Type IIalpha PtdInsP kinase, or transient overexpression of Type Ialpha or IIbeta PtdInsP kinases caused no significant change in cellular PtdIns5P levels. Similarly, subjecting cells to oxidative stress or EGF stimulation had no significant effect on PtdIns5P, but stimulation of HeLa cells with a phosphoinositide-specific PLC-coupled agonist, histamine, caused a 40% decrease within 1 min. Our data question the degree to which inositide kinases regulate PtdIns5P levels in cells, and we discuss the possibility that a significant part of both the synthesis and removal of this lipid may be regulated by phosphatases and possibly phospholipases.  相似文献   

19.
Type I phosphatidylinositol 4-phosphate (PI(4)P) 5-kinases (PIP5Ks) catalyze the synthesis of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)), an essential lipid molecule involved in various cellular processes such as regulation of actin cytoskeleton and membrane traffic. The protein localizes to the plasma membrane where its activity has been shown to be regulated by small GTPase ARFs and/or phosphatidic acid. Deletion analysis of amino- or carboxy-terminal sequences of PIP5Kgamma fused with EGFP demonstrated that the presence of central kinase homology domain (KHD), a 380 amino acid-long region highly conserved among PIP5K family, was necessary and sufficient for the plasma membrane localization of PIP5Kgamma. Particularly, the dibasic Arg-Lys sequence located at the carboxy-terminal end of KHD was shown to be crucial for the plasma membrane targeting of PIP5Kgamma, since the deletion or charge-reversal mutation of this dibasic sequence resulted in the mislocalization of the protein to the cytoplasm. Mislocalized mutants also failed to complement the temperature-sensitive growth of Saccharomyces cerevisiae mss4-1 mutant defective in PIP5K function. The presence of dibasic residues at the C-terminal end of KHD was conserved among mammalian as well as invertebrate PIP5K family members, but not in the type II PIPKs that are not targeted to the plasma membrane, suggesting that the conserved dibasic motif provides a mechanism essential for the proper localization and cellular function of PIP5Ks.  相似文献   

20.
Phosphorylated derivatives of phosphatidylinositol (PtdIns) regulate many intracellular events, including vesicular trafficking and actin remodeling, by recruiting proteins to their sites of function. PtdIns(4,5)-bisphosphate [PI(4,5)P2] and related phosphoinositides are mainly synthesized by type I PtdIns-4-phosphate 5-kinases (PIP5Ks). We found that PIP5K induces endosomal tubules in COS-7 cells. ADP-ribosylation factor (ARF) 6 has been shown to act upstream of PIP5K and regulate endocytic transport and tubulation. ARF GAP with coiled-coil, ankyrin repeat, and pleckstrin homology domains 1 (ACAP1) has guanosine triphosphatase-activating protein (GAP) activity for ARF6. While there were few tubules induced by the expression of ACAP1 alone, numerous endosomal tubules were induced by coexpression of PIP5K and ACAP1. ACAP1 has a pleckstrin homology (PH) domain known to bind phosphoinositide and a Bin/amphiphysin/Rvs (BAR) domain that has been reported to detect membrane curvature. Truncated and point mutations in the ACAP1 BAR and PH domains revealed that both BAR and PH domains are required for tubulation. These results suggest that two ARF6 downstream molecules, PIP5K and ACAP1, function together in endosomal tubulation and that phosphoinositide levels may regulate endosomal dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号