首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Incomplete fermentation of inulin-containing extracts by Saccharomyces diastaticus allows the simultaneous production of ethanol and syrups with increased fructose content. The yeast strain used ferments sucrose and inulin small polymers but does not easily ferment inulin large polymers. After batch fermentation a production of 62.5 g/L ethanol and 75 g/L of sugars containing up to 94 % fructose can be obtained. A continuous fermentation was performed in a chemostat permitting the adjustment of both productions according to the dilution rate with a maximal ethanol productivity of 3.9 g/L.h.  相似文献   

2.
Summary Ethanol concentration and fermentation productivity using Saccharomyces cerevisiae were substantially increased in shake flask cultures with a normal inoculum by combining 3 methods: (a) by making nutrient additions to the standard medium for ethanol production, (b) by immobilizing the cells in alginate beads and (c) by using a glucose step-feeding batch process. Ethanol concentration by free yeast was improved from 5.9% (w/w) to 9.6% (w/w) when a further 0.8% yeast extract and 1% animal peptone were added to the standard 30% (w/v) glucose nutrient medium. This was further increased to 12.8% (w/w) by using alginate immobilized yeast. The ethanol concentration was increased again, to 15.0% (w/w) by using the glucose step-feeding batch process.  相似文献   

3.
Lactic acid production from α-cellulose by simultaneous saccharification and fermentation (SSF) was studied. The cellulose was converted in a batch SSF using cellulase enzyme Cytolase CL to produce glucose sugar andLactobacillus delbrueckii to ferment the glucose to lactic acid. The effects of temperature, pH, yeast extract loading, and lactic acid inhibition were studied to determine the optimum conditions for the batch processing. Cellulose was converted efficiently to lactic acid, and enzymatic hydrolysis was the rate controlling step in the SSF. The highest conversion rate was obtained at 46°C and pH 5.0. The observed yield of lactic acid from α-cellulose was 0.90 at 72 hours. The optimum pH of the SSF was coincident with that of enzymatic hydrolysis. The optimum temperature of the SSF was chosen as the highest temperature the microorganism could withstand. The optimum yeast extract loading was found to be 2.5 g/L. Lactic acid was observed to be inhibitory to the microorganisms’ activity.  相似文献   

4.
Marine yeast strain 1, isolated from the surface of a marine alga, was found to secrete a large amount of inulinase into the medium. This marine yeast was identified as a strain of Pichia guilliermondii according to the results of routine yeast identification and molecular methods. The crude inulinase produced by this marine yeast worked optimally at pH 6.0 and 60°C. The optimal medium for inulinase production was seawater containing 4.0% (w/v) inulin and 0.5% (w/v) yeast extract, while the optimal cultivation conditions for inulinase production were pH 8.0, 28°C and 170 rpm. Under the optimal conditions, over 60 U ml−1 of inulinase activity was produced within 48 h of fermentation in shake flasks. A large amount of monosaccharides and a trace amount of oligosaccharides were detected after the hydrolysis, indicating that the crude inulinase had a high exoinulinase activity.  相似文献   

5.
Fructose syrups and ethanol production by selective fermentation of inulin   总被引:2,自引:0,他引:2  
Jerusalem artichoke is a favorable substrate for inulin or fructose syrup production. The sugar content and the fructose ratio of inulin depend on various factors, particularly on the date of harvest. Incomplete fermentation of extracts by selected yeasts allows the production of inulin with increased fructose content. The yeast strains (Saccharomyces cerevisiae, S. diastaticus...) are chosen for their ability to ferment sucrose and inulin small polymers, but not easily inulin large polymers. A good increase in the fructose ratio and a good yield in residual sugars can be obtained with the better strains. After fermentation and acid or enzymatic hydrolysis, extracts from early and late harvested tubers lead to syrups of good quality containing up to 95% and 90% of fructose respectively. This fermentative enrichment process is competitive with others (for example, chromatographic enrichment), is appropriate to raw extracts, simplifies the purification steps, and also permits the simultaneous benefit of production of by-products in the form of ethanol and yeast (in addition to the pulps). Unhydrolyzed inulin polymers with high fructose content can be recovered by this selective fermentation.  相似文献   

6.
The utilization of fructooligosaccharides (FOS) and inulin by 55 Bifidobacterium strains was investigated. Whereas FOS were fermented by most strains, only eight grew when inulin was used as the carbon source. Residual carbohydrates were analyzed by high-performance anion-exchange chromatography with pulsed amperometric detection after batch fermentation. A strain-dependent capability to degrade fructans of different lengths was observed. During batch fermentation on inulin, the short fructans disappeared first, and then the longer ones were gradually consumed. However, growth occurred through a single uninterrupted exponential phase without exhibiting polyauxic behavior in relation to the chain length. Cellular β-fructofuranosidases were found in all of the 21 Bifidobacterium strains tested. Four strains were tested for extracellular hydrolytic activity against fructans, and only the two strains which ferment inulin showed this activity. Batch cultures inoculated with human fecal slurries confirmed the bifidogenic effect of both FOS and inulin and indicated that other intestinal microbial groups also grow on these carbon sources. We observed that bifidobacteria grew by cross-feeding on mono- and oligosaccharides produced by primary inulin intestinal degraders, as evidenced by the high hydrolytic activity of fecal supernatants. FOS and inulin greatly affected the production of short-chain fatty acids in fecal cultures; butyrate was the major fermentation product on inulin, whereas mostly acetate and lactate were produced on FOS.  相似文献   

7.
Six thermotolerant yeasts were isolated at 37 degrees C from over-ripe grapes by serial dilution technique using glucose yeast extract medium. Purified yeast cultures were screened for ethanol production at 37 degrees C by batch fermentation, using cane molasses containing 20% sugars. Sugar conversion efficiency of these isolates varied from 66.0 to 88.5% and ethanol productivity from 1.11 to 1.73 ml/l/h. The highest ethanol producing isolate was exposed to UV radiations and 13 mutants were picked up from the UV treatment exhibiting 0.1 to 1.0%, survival. The UV mutants varied in cell size from parent as well as among themselves. Determination of ethanol produced by all the mutants revealed that only five mutants resulted in 4.5 to 6.2% increase in sugar conversion and 8.25 to 18.56% increase in ethanol concentration coupled with maximum ethanol productivity of 2.4 ml/l/h in 48 h of batch fermentation of cane molasses (20% sugars) at 37 degrees C temperature.  相似文献   

8.
Summary The enriched medium based on yeast nitrogen basc(YNB)increased hirudin synthesis and secretion in rccombinant Saccharomyces cerevisiae in batch and fed-batch cultures. Fed-batch fermentation with the defined medium yielded 342mg hirudin/l but supplementation of yeast extract increased the final hirudin concentration to 461mg hirudin/l. The defined medium, however, produced the product protein with higher purity of 21% and hence will allow easy separation of secreted hirudin from other contaminated polypeptides present in the growth medium. In a continuous culuture, the defined medium yielded higher concentrations of cell mass and hirudin than the complex medium.  相似文献   

9.
The utilization of fructooligosaccharides (FOS) and inulin by 55 Bifidobacterium strains was investigated. Whereas FOS were fermented by most strains, only eight grew when inulin was used as the carbon source. Residual carbohydrates were analyzed by high-performance anion-exchange chromatography with pulsed amperometric detection after batch fermentation. A strain-dependent capability to degrade fructans of different lengths was observed. During batch fermentation on inulin, the short fructans disappeared first, and then the longer ones were gradually consumed. However, growth occurred through a single uninterrupted exponential phase without exhibiting polyauxic behavior in relation to the chain length. Cellular beta-fructofuranosidases were found in all of the 21 Bifidobacterium strains tested. Four strains were tested for extracellular hydrolytic activity against fructans, and only the two strains which ferment inulin showed this activity. Batch cultures inoculated with human fecal slurries confirmed the bifidogenic effect of both FOS and inulin and indicated that other intestinal microbial groups also grow on these carbon sources. We observed that bifidobacteria grew by cross-feeding on mono- and oligosaccharides produced by primary inulin intestinal degraders, as evidenced by the high hydrolytic activity of fecal supernatants. FOS and inulin greatly affected the production of short-chain fatty acids in fecal cultures; butyrate was the major fermentation product on inulin, whereas mostly acetate and lactate were produced on FOS.  相似文献   

10.
Summary In batch cultures of Streptococcus cremoris growth parameters, especially the specific growth rate and its alteration during time-courses of fermentation, were found to be dependent on the culture conditions, in particular the inoculum size and medium composition. It was demonstrated that growth was subject to two main factors, inhibition by lactic acid and limitation by nutritional compounds, the first effect being strongly dependent on medium composition. The tolerance of the strain towards lactic acid was characterized, and critical values of the end-product were related to the concentration of yeast extract and bactotryptone in the medium. After taking into consideration the inhibitory effect of lactic acid, the level of nutritional limitation accounted for the change in specific growth rate during time courses of the culture.  相似文献   

11.
Although available kinetic data provide a useful insight into the effects of medium composition on xanthan production by Xanthomonas campestris, they cannot account for the synergetic effects of carbon (glucose) and nitrogen (yeast extract) substrates on cell growth and xanthan production. In this work, we studied the effects of the glucose/yeast-extract ratio (G/YE) in the medium on cell growth and xanthan production in various operating modes, including batch, two-stage batch, and fed-batch fermentations. In general, both the xanthan yield and specific production rate increased with increasing G/YE in the medium, but the cell yield and specific growth rate decreased as G/YE increased. A two-stage batch fermentation with a G/YE shift from an initial low level (2.5% glucose/0.3% yeast extract) to a high level (5.0% glucose/0.3% yeast extract) at the end of the exponential growth phase was found to be preferable for xanthan production. This two-stage fermentation design both provided fast cell growth and gave a high xanthan yield and xanthan production rate. In contrast, fed-batch fermentation with intermittent additions of glucose to the fermentor during the stationary phase was not favorable for xanthan production because of the relatively low G/YE resulting in low xanthan production rate and yield. It is also important to use a moderately high yeast extract concentration in the medium in order to reach a high cell density before the culture enters the stationary phase. A high cell density is also important to the overall xanthan production rate. Received: 30 September 1996 / Received revision: 21 January 1997 / Accepted: 10 February 1997  相似文献   

12.
Lee K 《Bioresource technology》2005,96(13):1505-1510
The aim of this study was to investigate industrial media for lactic acid fermentation to reduce the cost of nitrogen sources. Corn steep liquor (CSL) was successfully used at 5% (v/v) in batch fermentations. Use of soluble CSL improved the productivity approximately 20% with an advantage of clearer fermentation broth. Yeast extract (YE)-complemented CSL media further increased the productivity. It was found that 3.1 g L(-1) yeast extract and 5% CSL could be an effective substitute for 15 g L(-1) yeast extract in 10% glucose medium. Spent brewery yeast was also used as a sole nitrogen source equivalent to 5% CSL. Lactic acid was recovered by electrodialysis from the cell free broth. Depleted cell free broth supplemented with 5 g L(-1) of yeast extract performed reasonably in batch cultures. Reuse of the fermentation broth may reduce the cost of raw materials as well as minimize the fermentation wastes.  相似文献   

13.
Very good solvent formation rates were observed when Clostridium beijerinckii NRRL B592 was cultivated on different whole potato media. The increase in whole potato concentration contributed to the increased final solvent concentrations, while the addition of yeast extract or mineral salts gave negative effects. To obtain good solvent productivities and high final solvent concentrations during batch fermentation, no enzymatic hydrolysis of the potato starch was necessary, indicating high activity of the clostridial amylases produced by the strain applied. Received: 17 April 1998 / Received revision: 22 June 1998 / Accepted: 27 June 1998  相似文献   

14.
采用液体发酵蝉拟青霉,对蝉拟青霉的发酵条件进行优化,以提高蝉拟青霉胞外多糖产量及生物量。摇瓶发酵条件下,在单因素基础上设计正交实验确定各因素的最佳组合。优化后得最佳发酵培养基:蔗糖8%,牛肉膏0.75%,酵母膏0.125%,MgSO_4·7H_2O 0.3%,KH_2PO_4 0.2%,麸皮0.5%。该条件下胞外多糖产量为5.96 g/L,生物量为42 g/L,较优化前提高了1倍。采用发酵罐进行扩大培养,对分批发酵时的初糖浓度进行了优化,并分析了补料分批发酵对发酵过程的影响。发酵罐培养时最适初糖浓度为5%,此时生物量最高为38 g/L,多糖含量最高为5.5 g/L;采用补料分批发酵时,多糖产量最高为5.89 g/L,生物量最高为40 g/L,效果优于分批发酵。  相似文献   

15.
To develop an economical industrial medium, untreated cane molasses (UCM) was tested as a carbon source for fermentation culturing of Escherichia coli. To test the industrial application of this medium, we chose a strain co-expressing a carbonyl reductase (PsCR) and a glucose dehydrogenase (BmGDH). Although corn steep liquor (CSL) could be used as an inexpensive nitrogen source to replace peptone, yeast extract could not be replaced in E. coli media. In a volume of 40 ml per 1-l flask, a cell concentration of optical density (OD600) 15.1 and enzyme activities of 6.51 U/ml PsCR and 3.32 U/ml BmGDH were obtained in an optimized medium containing 25.66 g/l yeast extract, 3.88 g/l UCM, and 7.1% (v/v) CSL. When 3.88 g/l UCM was added to the medium at 6 h in a fed-batch process, the E. coli concentration increased to OD600 of 24, and expression of both PsCR and BmGDH were twofold higher than that of a batch process. Recombinant cells from batch or fed-batch cultures were assayed for recombinant enzyme activity by testing the reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (S)-4-chloro-3-hydroxybutanoate (CHBE). Compared to cells from batch cultures, fed-batch cultured cells showed higher recombinant enzyme expression, producing 560 mM CHBE in the organic phase with a molar yield of 92% and an optical purity of the (S)-isomer of >99% enantiomeric excess.  相似文献   

16.
Photolysis in a culture medium for Tetrahymena pyriformis   总被引:2,自引:0,他引:2  
Considerable variability has been found in the yield of cells in batch cultures of Tetrahymena pyriformis grown axenically in 1% tryptone/0.05% yeast extract. This variability has been traced to the photolysis by visible light of the flavin mononucleotide and thiamine components of yeast extract.  相似文献   

17.
Submerged batch cultures of Aspergillus kawachii grown on indigestible dextrin were investigated for potential improvements in glucoamylase (GA) production. In flask culture, specific GA productivities per dry weight biomass using dextrin and indigestible dextrin were 11.0 and 56.1 mU/mg-DW, respectively. Indigestible dextrin was a poor substrate for enzymatic hydrolysis. Rates of glucose formation from dextrin and indigestible dextrin by enzymatic hydrolysis were 0.477 and 0.100 mg-glucose/ml/h, respectively. For this reason, residual glucose concentrations in batch cultures grown on indigestible dextrin remained below 1.32 mg/ml where glucose-limiting conditions were easily maintained. Batch culture using indigestible dextrin had the same residual glucose profile as dextrin fed-batch culture, and nearly the same GA activity was obtained after 42.5 h of growth. However, between 42.5 and 66 h, the GA production rate of the indigestible dextrin batch culture (11.5 mU/ml/h) was higher than that of the dextrin fed-batch culture (6.5 mU/ml/h). During this period, a high amount of residual maltooligosaccharide was detected in the culture supernatant grown on indigestible dextrin. The high GA productivity observed in the indigestible dextrin batch culture may have resulted from the absence of glucose and the simultaneous presence of maltooligosaccharides throughout growth.  相似文献   

18.
A production process for ectoine has been developed, using Brevibacterium epidermis DSM20659 as the producer strain. First, the optimal conditions for intracellular synthesis of ectoine were determined. The size of the intracellular ectoine pool is shown to be dependent on the external salt concentration, type of carbon source, and yeast extract concentration. Under the optimized conditions of 1 M NaCl, 50 g/L monosodium glutamate, and 2.5 g/L yeast extract, a maximum concentration of intracellular ectoine of 0.9 g/L was obtained in shake flask cultures. After optimizing the batch fermentation parameters of temperature, pH, agitation, and aeration, the yield could be further increased by applying the fed-batch fermentation principle in 1.5- to 2-L fermentors. Glutamate and yeast extract were fed to the bacterial cells such that the total glutamate concentration in the broth remained constant. A total yield of 8 g ectoine/L fermentation broth was obtained with a productivity of 2 g ectoine/L/day. After the bacterial cells were harvested from the culture broth, the ectoine was recovered from them by a two-step extraction with water and ethanol. Crystallization of the product was obtained after concentration of the extract via evaporation under reduced pressure. After this downstream process, 55% of the ectoine produced in the fermentor could be crystallized in four fractions. The first fractions were of very high purity (98%). This production process can compete with other described production processes for ectoine in productivity and simplicity. Further advantages are the relatively low amounts of NaCl needed and the absence of hydroxyectoine, often a byproduct, in the final product.  相似文献   

19.
The production of lipids by oleaginous yeast and fungi becomes more important because these lipids can be used for biodiesel production. To understand the process of lipid production better, we developed a model for growth, lipid production and lipid turnover in submerged batch fermentation. This model describes three subsequent phases: exponential growth when both a C-source and an N-source are available, carbohydrate and lipid production when the N-source is exhausted and turnover of accumulated lipids when the C-source is exhausted. The model was validated with submerged batch cultures of the fungus Umbelopsis isabellina (formerly known as Mortierella isabellina) with two different initial C/N-ratios. Comparison with chemostat cultures with the same strain showed a significant difference in lipid production: in batch cultures, the initial specific lipid production rate was almost four times higher than in chemostat cultures but it decreased exponentially in time, while the maximum specific lipid production rate in chemostat cultures was independent of residence time. This indicates that different mechanisms for lipid production are active in batch and chemostat cultures. The model could also describe data for submerged batch cultures from literature well.  相似文献   

20.
During yeast biomass production, cells are grown through several batch and fed‐batch cultures on molasses. This industrial process produces several types of stresses along the process, including thermic, osmotic, starvation, and oxidative stress. It has been shown that Saccharomyces cerevisiae strains with enhanced stress resistance present enhanced fermentative capacity of yeast biomass produced. On the other hand, storage carbohydrates have been related to several types of stress resistance in S. cerevisiae. Here we have engineered industrial strains in storage carbohydrate metabolism by overexpressing the GSY2 gene, that encodes the glycogen synthase enzyme, and deleting NTH1 gene, that encodes the neutral trehalase enzyme. Industrial biomass production process simulations were performed with control and modified strains to measure cellular carbohydrates and fermentation capacity of the produced biomass. These modifications increased glycogen and trehalose levels respectively during bench‐top trials of industrial biomass propagation. We finally show that these strains display an improved fermentative capacity than its parental strain after biomass production. Modification of storage carbohydrate content increases fermentation or metabolic capacity of yeast which can be an interesting application for the food industry. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:20–24, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号