首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor activator of NF-kappaB ligand (RANKL) is a membrane-bound or soluble cytokine essential for osteoclast differentiation, whereas the decoy receptor osteoprotegerin (OPG) masks RANKL activity. In mouse serum, both soluble RANKL and OPG are detectable. We observed that mice injected with LPS showed significantly down-regulated serum RANKL levels, whereas serum OPG levels were up-regulated. However, the roles of RANKL and OPG in innate immunity remain obscure. We found that RANKL pretreatment suppressed production of proinflammatory cytokines in macrophages in response to stimulation by bacteria and their components. Furthermore, such RANKL-induced tolerance in macrophages was inhibited by GM-CSF treatment, which blocks RANKL signaling. RANKL-induced tolerance occurred in the absence of c-Fos, which is essential for osteoclast differentiation. In mice lacking OPG, LPS-induced production of proinflammatory cytokines was reduced, whereas in mice lacking RANKL, it was increased, and lethality following LPS injection was also elevated, suggesting that constitutive activities of RANKL suppress cytokine responsiveness to LPS in vivo. Strikingly, prior administration of RANKL protected mice from LPS-induced death. These data reveal prophylactic potential of RANKL in acute inflammatory diseases.  相似文献   

2.
Vascular endothelium plays an essential role in the pathogenesis of vasoocclusion. The changes in the endothelial cell function can be triggered by changes in gene expression caused by interaction with cytokines and blood cells. Using cDNA arrays, we have recently reported complex patterns of gene expression after stimulation of endothelial cells with TNFalpha and IL-1beta. Better understanding of the time course of gene expression changes, their concentration dependence and reversibility after withdrawal of the offending cytokine is essential for successful prevention and therapy of vasoocclusion. Here we present a detailed study of the concentration dependence and time course of gene expression in endothelial cells after their exposure to TNFalpha and IL-1beta. We focus on the adhesion molecules (VCAM-1, ICAM-1, E-selectin) and cytokines (IL-6, GCP-2, MCP-1) that are likely to contribute to vasoocclusion. We report differences in the time course and intensity of their expression and in their response to TNFalpha and IL-1beta stimulation. We demonstrate that expression of the studied genes is upregulated by low TNFalpha concentrations that better reflect the TNFalpha levels detected in the plasma of patients developing vasoocclusion. These results help to understand the changes in the endothelium and to design rational prevention and therapy of vasoocclusion.  相似文献   

3.
4.
IL-6, leukemia inhibitory factor (LIF), and oncostatin M (OSM) are IL-6-type cytokines that stimulate osteoclast formation and function. In the present study, the resorptive effects of these agents and their regulation of receptor activator of NF-kappaB ligand (RANKL), RANK, and osteoprotegerin (OPG) were studied in neonatal mouse calvaria. When tested separately, neither human (h) IL-6 nor the human soluble IL-6R (shIL-6R) stimulated bone resorption, but when hIL-6 and the shIL-6R were combined, significant stimulation of both mineral and matrix release from bone explants was noted. Semiquantitative RT-PCR showed that hIL-6 plus shIL-6R enhanced the expression of RANKL and OPG in calvarial bones, but decreased RANK expression. Human LIF, hOSM, and mouse OSM (mOSM) also stimulated 45Ca release and enhanced the mRNA expression of RANKL and OPG in mouse calvaria, but had no effect on the expression of RANK. In agreement with the RT-PCR analyses, ELISA measurements showed that both hIL-6 plus shIL-6R and mOSM increased RANKL and OPG proteins. 1,25-Dihydroxyvitamin D3 (D3) also increased the RANKL protein level, but decreased the protein level of OPG. OPG inhibited 45Ca release stimulated by RANKL, hIL-6 plus shIL-6R, hLIF, hOSM, mOSM, and D3. An Ab neutralizing mouse gp130 inhibited 45Ca release induced by hIL-6 plus shIL-6R. These experiments demonstrated stimulation of calvarial bone resorption and regulation of mRNA and protein expression of RANKL and OPG by D3 and IL-6 family cytokines as well as regulation of RANK expression in preosteoclasts/osteoclasts of mouse calvaria by D3 and hIL-6 plus shIL-6R.  相似文献   

5.
Numerous studies have indicated that inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with cancers and other diseases. Gene deletion studies have shown that receptor activator of NF-kappaB ligand (RANKL) is one of the critical mediators of osteoclastogenesis. How RANKL mediates osteoclastogenesis is not fully understood, but an agent that suppresses RANKL signaling has potential to inhibit osteoclastogenesis. In this report, we examine the ability of curcumin (diferuloylmethane), a pigment derived from turmeric, to suppress RANKL signaling and osteoclastogenesis in RAW 264.7 cells, a murine monocytic cell line. Treatment of these cells with RANKL activated NF-kappaB, and preexposure of the cells to curcumin completely suppressed RANKL-induced NF-kappaB activation. Curcumin inhibited the pathway leading from activation of IkappaBalpha kinase and IkappaBalpha phosphorylation to IkappaBalpha degradation. RANKL induced osteoclastogenesis in these monocytic cells, and curcumin inhibited both RANKL- and TNF-induced osteoclastogenesis and pit formation. Curcumin suppressed osteoclastogenesis maximally when added together with RANKL and minimally when it was added 2 days after RANKL. Whether curcumin inhibits RANKL-induced osteoclastogenesis through suppression of NF-kappaB was also confirmed independently, as RANKL failed to activate NF-kappaB in cells stably transfected with a dominant-negative form of IkappaBalpha and concurrently failed to induce osteoclastogenesis. Thus overall these results indicate that RANKL induces osteoclastogenesis through the activation of NF-kappaB, and treatment with curcumin inhibits both the NF-kappaB activation and osteoclastogenesis induced by RANKL.  相似文献   

6.
7.
Endothelial cell survival and antiapoptotic pathways, including those stimulated by extracellular matrix, are critical regulators of vasculogenesis, angiogenesis, endothelial repair, and shear-stress-induced endothelial activation. One of these pathways is mediated by alpha(v)beta(3) integrin ligation, downstream activation of nuclear factor-kappaB, and subsequent up-regulation of osteoprotegerin (OPG). In this study, the mechanism by which OPG protects endothelial cells from death was examined. Serum-starved human microvascular endothelial cells (HMECs) plated on the alpha(v)beta(3) ligand osteopontin were protected from cell death. Immunoprecipitation experiments indicated that OPG formed a complex with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in HMECs under these conditions. Furthermore, inhibitors of TRAIL, including recombinant soluble TRAIL receptors and a neutralizing antibody against TRAIL, blocked apoptosis of serum-starved HMECs plated on the nonintegrin attachment factor poly-d-lysine. Whereas TRAIL was unable to induce apoptosis in HMECs plated on osteopontin, the addition of recombinant TRAIL did increase the percentage of apoptotic HMECs plated on poly-d-lysine. This evidence indicates that OPG blocks endothelial cell apoptosis through binding TRAIL and preventing its interaction with death-inducing TRAIL-receptors  相似文献   

8.
Acetyl-11-keto-beta-boswellic acid (AKBA), a component of an Ayurvedic therapeutic plant Boswellia serrata, is a pentacyclic terpenoid active against a large number of inflammatory diseases, including cancer, arthritis, chronic colitis, ulcerative colitis, Crohn's disease, and bronchial asthma, but the mechanism is poorly understood. We found that AKBA potentiated the apoptosis induced by TNF and chemotherapeutic agents, suppressed TNF-induced invasion, and inhibited receptor activator of NF-kappaB ligand-induced osteoclastogenesis, all of which are known to require NF-kappaB activation. These observations corresponded with the down-regulation of the expression of NF-kappaB-regulated antiapoptotic, proliferative, and angiogenic gene products. As examined by DNA binding, AKBA suppressed both inducible and constitutive NF-kappaB activation in tumor cells. It also abrogated NF-kappaB activation induced by TNF, IL-1beta, okadaic acid, doxorubicin, LPS, H2O2, PMA, and cigarette smoke. AKBA did not directly affect the binding of NF-kappaB to the DNA but inhibited sequentially the TNF-induced activation of IkappaBalpha kinase (IKK), IkappaBalpha phosphorylation, IkappaBalpha ubiquitination, IkappaBalpha degradation, p65 phosphorylation, and p65 nuclear translocation. AKBA also did not directly modulate IKK activity but suppressed the activation of IKK through inhibition of Akt. Furthermore, AKBA inhibited the NF-kappaB-dependent reporter gene expression activated by TNFR type 1, TNFR-associated death domain protein, TNFR-associated factor 2, NF-kappaB-inducing kinase, and IKK, but not that activated by the p65 subunit of NF-kappaB. Overall, our results indicated that AKBA enhances apoptosis induced by cytokines and chemotherapeutic agents, inhibits invasion, and suppresses osteoclastogenesis through inhibition of NF-kappaB-regulated gene expression.  相似文献   

9.
10.
11.
12.
Receptor activator of NF-kappaB ligand (RANKL) is essential for differentiation and function of osteoclasts. The negative signaling pathways downstream of RANKL are not well characterized. By retroviral transduction of RAW264.7 cells with a dominant negative Src homology 2 domain-containing phosphatase-1 (SHP-1)(C453S), we studied the role of tyrosine phosphatase SHP-1 in RANKL-induced osteoclastogenesis. Over-expression of SHP-1(C453S) significantly enhanced the number of tartrate-resistant acid phosphatase-positive multinuclear osteoclast-like cells in response to RANKL in a dose-dependent manner. RANKL induced the recruitment of SHP-1 to a complex containing TNFR-associated factor (TRAF)6. GST pull down experiments indicated that the association of SHP-1 with TRAF6 is mediated by SHP-1 lacking the two Src homology 2 domains. RANKL-stimulated IkappaB-alpha phosphorylation, IkappaB-alpha degradation and DNA binding ability of NF-kappaB were increased after over-expression of SHP-1(C453S). However, RANKL-induced phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase, was unchanged. In addition, SHP-1 regulated RANKL-stimulated tyrosine phosphorylation of p85 subunit of phosphatidylinositol 3 kinase and the phosphorylation of Akt. Increased numbers of osteoclasts contribute to severe osteopenia in Me(v)/Me(v) mice due to mutation of SHP-1. Like RAW264.7 cells expressing SHP-1(C453S), the bone marrow macrophages of Me(v)/Me(v) mice generated much more osteoclast-like cells than that of littermate controls in response to RANKL. Furthermore compared with controls, RANKL induces enhanced association of TRAF6 and RANK in both RAW264.7 cells expressing SHP-1(C453S) and bone marrow macrophages from Me(v)/Me(v) mice. Therefore, SHP-1 plays a role in signals downstream of RANKL by recruitment to the complex containing TRAF6 and these observations may help to understand the mechanism of osteoporosis in Me(v)/Me(v) mice.  相似文献   

13.
Numerous studies indicate that enteroviruses, such as the Coxsackievirus (CV) group, are linked to autoimmune diseases. Virus tropism and tissue access are modulated by vascular endothelial cells (ECs), mainly at the level of the microvasculature. Data on the permissiveness of ECs to CV are, however, scanty and derived from studies on large vessel ECs. To examine the susceptibility of microvascular ECs to infection of group B CV (CVB), human dermal microvascular ECs (HMEC-1) were infected with three CVB strains, and the immunological phenotype of the infected cells was analyzed. All CVB persistently infected the EC cultures without producing overt cytopathic effects. Infected ECs retained endothelial characteristics. Release of infectious particles in cell supernatants persisted for up to 3 mo of culture. Infection up-regulated expression of the adhesion molecules ICAM-1 and VCAM-1, with the highest values detected during the first 30 days of infection (p < 0.05 vs uninfected HMEC-1). CVB infection increased production of the proinflammatory cytokines, IL-6, IL-8, and TNF-alpha, which may account for the enhanced expression of adhesion molecules. Parallel infection of macrovascular HUVEC had less evident effects on induction of ICAM-1 and did not significantly increase expression of VCAM-1. Moreover, mononuclear cell adhesion to CVB-infected HMEC-1 monolayers was increased, compared with uninfected monolayers. These results provide evidence that small vessel ECs can harbor a persistent viral infection, resulting in quantitative modification of adhesion molecule expression, which may contribute to the selective recruitment of subsets of leukocytes during inflammatory immune responses. Furthermore, our data confirm that the behavior against a viral challenge of ECs in large vessels and microvessels may differ.  相似文献   

14.
Toll-like receptor (TLR) 4 has been identified as the primary receptor for enteric LPS, whereas TLR2 has been implicated as the receptor for Gram-positive and fungal cell wall components and for bacterial, mycobacterial, and spirochetal lipoproteins. Vascular endothelial cell (EC) activation or injury by microbial cell wall components such as LPS is of critical importance in the development of sepsis and septic shock. We have previously shown that EC express predominantly TLR4, and have very little TLR2. These cells respond vigorously to LPS via TLR4, but are unresponsive to lipoproteins and other TLR2 ligands. Here we show that LPS, TNF-alpha, or IFN-gamma induce TLR2 expression in both human dermal microvessel EC and HUVEC. Furthermore, LPS and IFN-gamma act synergistically to induce TLR2 expression in EC, and LPS-induced TLR2 expression is NF-kappaB dependent. LPS and IFN-gamma also up-regulate TLR4 mRNA expression in EC. These data indicate that TLR2 and TLR4 expression in ECs is regulated by inflammatory molecules such as LPS, TNF-alpha, or IFN-gamma. TLR2 and TLR4 molecules may render EC responsive to TLR2 ligands and may help to explain the synergy between LPS and lipoproteins, and between LPS and IFN-gamma, in inducing shock associated with Gram-negative sepsis.  相似文献   

15.
The influence of environmental factors (cytokines, matrix components, serum factors and O(2) level) on expression of receptors for angiogenic versus angiostatic CXC chemokines in human microvascular endothelial cells has not been extensively investigated. Our semi-quantitative RT-PCR analysis demonstrated that TNF-alpha and IFN-gamma repressed CXCR4 mRNA levels in immortalized human microvascular endothelial HMEC-1 cells after 4 h, whereas only TNF-alpha displayed inhibitory activity in primary human microvascular endothelial cells (HMVEC). CXCR4 mRNA expression was not affected by VEGF, GM-CSF, IL-1beta or various basal membrane matrix components, but was significantly up-regulated after serum starvation and/or hypoxic treatment of the microvascular endothelial cells. The alternative CXCL12 receptor, CXCR7/RDC1, was also up-regulated by hypoxia in HMEC-1 cells, although less consistently than CXCR4. Furthermore, hypoxia and serum starvation were required for cell surface display of CXCR4 and CXCL12 induction of ERK activation in HMEC-1 cells. In contrast, CXCR2 and CXCR3 mRNA levels remained, respectively, low and undetectable under all the conditions tested, and surface expression of CXCR2, CXCR3 and CXCR7 on the HMEC- 1 cells could not be demonstrated by FACS. In the human SK-MEL-5 melanoma cell line, CXCR4 mRNA expression was also increased under hypoxic conditions, whereas CXCR2 mRNA levels remained low and levels of CXCR3 and CXCR7 were undetectable. However, immunohistochemical staining of human metastatic melanoma sections demonstrated that CXCR2, CXCR3, CXCR4 and CXCR7 are expressed on tumor cells and, to a lesser extent, on endothelial cells. These results demonstrate that the tumor microenvironment regulates chemokine receptor expression through both cytokine and oxygen levels.  相似文献   

16.
Tissue damage induced by infection or injury can result in necrosis, a mode of cell death characterized by induction of an inflammatory response. In contrast, cells dying by apoptosis do not induce inflammation. However, the reasons for underlying differences between these two modes of cell death in inducing inflammation are not known. Here we show that necrotic cells, but not apoptotic cells, activate NF-kappaB and induce expression of genes involved in inflammatory and tissue-repair responses, including neutrophil-specific chemokine genes KC and macrophage-inflammatory protein-2, in viable fibroblasts and macrophages. Intriguingly, NF-kappaB activation by necrotic cells was dependent on Toll-like receptor 2, a signaling pathway that induces inflammation in response to microbial agents. These results have identified a novel mechanism by which cell necrosis, but not apoptosis, can induce expression of genes involved in inflammation and tissue-repair responses. Furthermore, these results also demonstrate that the NF-kappaB/Toll-like receptor 2 pathway can be activated both by exogenous microbial agents and endogenous inflammatory stimuli.  相似文献   

17.
The precise role of vascular endothelial growth factor (VEGF) in regulating integrins in brain microvascular endothelial cells is unknown. Here, we analyzed VEGF effects on integrin expression and activation in human brain microvascular endothelial cells (HBMECs). Using human cDNA arrays and ribonuclease (RNase) protection assays, we observed that VEGF up-regulated the mRNA expression of alpha(6) integrin in HBMECs. VEGF significantly increased alpha(6)beta(1) integrin expression, but not alpha(6)beta(4) integrin expression in these cells. Specific down-regulation of alpha(6) integrin expression by small interfering RNA (siRNA) oligonucleotides inhibited both the capillary morphogenesis of HBMECs and their adhesion and migration. Additionally, VEGF treatment resulted in activation of alpha(6)beta(1) integrins in HBMECs. Functional blocking of alpha(6) integrin with its specific antibody inhibited the VEGF-induced adhesion and migration as well as in vivo angiogenesis, and markedly suppressed tumor angiogenesis and breast carcinoma growth in vivo. Thus, VEGF can modulate angiogenesis via increased expression and activation of alpha(6)beta(1) integrins, which may promote VEGF-driven tumor angiogenesis in vivo.  相似文献   

18.
There isincreasing evidence that sensory nerves may participate in cutaneousinflammatory responses by the release of neuropeptides such assubstance P (SP). We examined the direct effect of SP on human dermalmicrovascular endothelial cell (HDMEC) intercellular adhesion molecule1 (ICAM-1) expression and function. Our results indicated that,although cultured HDMEC expressed mRNA for neurokinin receptors 1, 2, and 3 (NK-1R, NK-2R, and NK-3R), SP initiated a rapid increase in HDMECintracellular Ca2+ levels,primarily by the activation of NK-1R. Immunohistochemistry studieslikewise demonstrated that HDMEC predominantly expressed NK-1R. Theaddition of SP to HDMEC resulted in a rapid increase in cellular ICAM-1mRNA levels, followed by a fivefold increase in ICAM-1 cell surfaceexpression. This functionally resulted in a threefold increase in51Cr-labeled binding of J-Ylymphoblastoid cells to HDMEC. In vivo studies demonstrated a markedincrease in microvascular ICAM-1 immunostaining 24 and 48 h afterapplication of capsaicin to the skin. These results indicate thatneuropeptides such as SP are capable of directly activating HDMEC toexpress increased levels of functional ICAM-1 and further support therole of the cutaneous neurological system in modulating inflammatoryprocesses in the skin.

  相似文献   

19.
Following activation with the inflammatory mediator phorbol myristate acetate (PMA), human microvascular endothelial cells (DMEC) is olated from the human dermis (DMEC) rapidly and dramatically convert from a classical epithelioid morphology to a spindle-shaped configuration. This is accompanied by changes in the organization of gap junctions and the vimentin and actin cytoskeletons. This report describes the sequential changes in the expression of four proto-oncogenes, c-fos, c-myc, c-sis and H-ras in DMEC following PMA exposure. The synthesis of c-fos mRNA was transiently induced by PMA from a basal concentration below the limit of detection to a maximum at 60 min., declining to the unstimulated level within 2 hrs. Synthesis of c-myc mRNA declined continuously and reached 37% of control levels over 16 hrs. Expression of c-sis which encodes for the B chain of platelet-derived growth factor, also declined to 34% of the control value over 16 hrs. There was no change in the synthesis of H-ras mRNA nor of beta-actin mRNA which was used as a control. The expression of c-myc in normal DMEC was compared to a human dermal microvascular cell line transformed by SV-40 (TREND). The TREND cell line maintains a permanent spindle-shaped configuration under all growth conditions and multiplies faster than DMEC. In contrast to the non-transformed cell cultures, expression of c-myc in TREND cells was induced by PMA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号