首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca2+-ATPase and other membrane proteins of the sarcoplasmic reticulum membrane from rabbit skeletal muscle have been reconstituted into lipid vesicles with increasing amounts of phosphatidylcholine. The protein composition and phospholipid concentration of these vesicles were analyzed by determining the density of the reconstituted membrane vesicles on linear H2O-2H2O gradients, in a constant concentration of sucrose. In all combinations of the Ca2+-ATPase with a weight excess of phosphatidylcholine, the reconstituted vesicles had a phospholipid-to-protein ratio similar to that of the native sarcoplasmic reticulum membrane, even though both solubilization and mixing had occurred. These vesicles of low phospholipid and high protein content exhibited all the original Ca2+-ATPase activity and ATP-stimulated calcium transport. The Ca2+-ATPase, and the calcium-binding proteins to a lesser extent, may order the lipid in such a manner so as to maintain the initial stoichiometry of lipid to protein observed in the native sarcoplasmic reticulum membrane.  相似文献   

2.
Fourier transform infrared spectroscopy has been used to monitor lipid-protein interaction and protein secondary structure in native and reconstituted sarcoplasmic reticulum vesicles. Studies of the temperature dependence of the CH2 symmetric stretching frequency reveal no cooperative phase transitions in purified sarcoplasmic reticulum or in vesicles reconstituted with dioleoylphosphatidylcholine, although a continuous introduction of disorder into the lipid acyl chains is observed as the temperature is raised. In addition, temperature-dependent changes are observed in the Amide I and Amide II vibrations arising from protein peptide bonds. A comparison of lipid order in native sarcoplasmic reticulum and its lipid extract showed that the introduction of protein is accompanied by a slight increase in lipid order. Reconstitution of Ca2+-ATPase from sarcoplasmic reticulum with dipalmitoylphosphatidylcholine (lipid/protein ratio 30:1), reveals a perturbed lipid melting event broadened and reduced in midpoint temperature from multilamellar lipid vesicles. The onset of melting (27–28°C) correlates well with the onset of ATPase activity and confirms a suggestion (Hesketh, T.R., Smith G.A., Houslay M.D., McGill, K.A., Birdsall, N.J.M., Metcalfe, J.C. and Warren, G.B. (1976) Biochemistry 15, 4145–4151) that a liquid crystalline environment is a requirement for optimal protein function. Finally, Ca2+-ATPase has been reconstituted into binary lipid mixtures of DOPC and acyl-chain perdeuterated DPPC. The effect of protein on the structure and melting behavior of each lipid component was monitored. The protein appears to preferentially interact with the DOPC component.  相似文献   

3.
Ca 2+ uptake in reconstituted sarcoplasmic reticulum vesicles   总被引:3,自引:0,他引:3  
The reconstitution of functional sarcoplasmic reticulum vesicles capable of Ca2+ transport has been achieved. Sarcoplasmic reticulum vesicles are first solubilized with deoxycholate and then reassembled into membranous vesicles by removal of the detergent using dialysis. The Ca2+ pump protein can, by itself, be reconstituted to form membranous vesicles capable of energized Ca2+ binding and uptake. The lipid content of the reconstituted vesicles is about the same as that of the original sarcoplasmic reticulum vesicles. The reconstituted vesicles have an elevated ATPase activity. Ca2+ binding and uptake in the presence of ATP are restored to about 25% and 50%, respectively.  相似文献   

4.
Recovery of calcium transport and calcium-activated ATPase activity was studied in relation to the retention of protein components in sarcoplasmic reticulum reconstituted after solubilization with deoxycholate and centrifugation, followed by removal of the detergent from the supernatant by dialysis. Control sarcoplasmic reticulum was similarly treated except for omission of deoxycholate. Maximum capacity for oxalate- and phosphate-supported calcium uptake was increased 2- to 3-fold in reconstituted sarcoplasmic reticulum compared to original and control. Calcium uptake velocity of the reconstituted sarcoplasmic reticulum was approximately 80% that of original and 90% of control sarcoplasmic reticulum. Calcium uptake/ATP hydrolysis ratio was approximately 2 in the original sarcoplasmic reticulum and decreased to approximately 1 in the control and reconstituted sarcoplasmic reticulum. Calcium storage in the absence of calcium-precipitating anion was approximately 85% in control and 70% in reconstituted sarcoplasmic reticulum, compared to the original sarcoplasmic reticulum. Ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid-induced calcium release after phosphate-supported calcium uptake was slower in reconstituted sarcoplasmic reticulum than in original or control sarcoplasmic reticulum. Polyacrylamide gel electrophoresis of original and control sarcoplasmic reticulum showed similar amounts of protein components of approximately 93,000, 59,000, 50,000, 30,000 to 37,000, and 20,000 to 26,000 daltons. Reconstituted sarcoplasmic reticulum, however, lost over 85% of the 50,000- and 20,000- to 26,000-dalton proteins while retaining most of its calcium transport functions.  相似文献   

5.
The native form of phospholamban is not known and it is presently under debate whether this protein exists as a monomer or an oligomer in cardiac sarcoplasmic reticulum. The currently accepted model for phospholamban is pentameric, based primarily on its behavior in SDS-polyacrylamide gel electrophoresis. In this study, sucrose density gradient centrifugation and gel filtration chromatography were used to determine the form of phospholamban under nondenaturing conditions. Purified phospholamban or phospholamban present in solubilized cardiac sarcoplasmic reticulum was centrifuged through 5–20% sucrose density gradients in the absence or presence ofn-octylgucoside. The sucrose density gradient fractions were assayed for acid precipitable32P-incorporation in the presence of [-32P]ATP and cAMP-dependent protein kinase catalytic subunit.32P-containing peak fractions were subjected to SDS-polyacrylamide gel electrophoresis and immunoblot analysis, using a phospholamban-polyclonal antibody, to confirm the presence of phospholamban. Purified phosphoblamban migrated with an apparent molecular weight of 25,000 daltons in the sucrose gradients in either the absence or presence of detergent. Phospholamban present in solubilized cardiac sarcoplasmic reticulum migrated with a similar apparent molecular weight when detergent was included in the sucrose gradients. In addition, solubilized cardiac sarcoplasmic reticulum was subjected to gel filtration chromatography in the presence of deoxycholate. Under these conditions phospholamban migrated with an apparent molecular weight of 24,500 daltons. These data suggest that phospholamban prefers an oligomeric assembly and this may be the form present in cardiac sarcoplasmic reticulum membranes.  相似文献   

6.
The oligomeric size of calcium pump protein (CPP) in fast skeletal muscle sarcoplasmic reticulum membrane was determined using target theory analysis of radiation inactivation data. There was a parallel decrease of Ca2+-ATPase and calcium pumping activities with increasing radiation dose. The loss of staining intensity of the CPP band, observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, also correlated directly with the loss of activity. The target size molecular weight of the CPP in the normal sarcoplasmic reticulum membrane ranged between 210,000 and 250,000, which is consistent with a dimeric structure. Essentially the same size is obtained for the non-phosphorylated CPP or for the phosphoenzyme form generated from either ATP (E1 state) or inorganic phosphate (E2 state). Hence, the oligomeric state of the pump does not appear to change during the catalytic cycle. Similar results were obtained with reconstituted sarcoplasmic reticulum membrane vesicles with different lipid to protein ratios. We conclude that the CPP is a dimer in both native and reconstituted sarcoplasmic reticulum membranes. The target size of the calcium-binding protein (calsequestrin) was found to be 50,000 daltons, approximating a monomer.  相似文献   

7.
We have previously compared the electron density profiles for several highly-functional reconstituted sarcoplasmic reticulum membranes with that for the isolated sarcoplasmic reticulum membrane (Herbette, L., Scarpa, A., Blasie, J.K., Wang, C.T., Saito, A. and Fleischer, S. (1981) Biophys. J. 36, 47–72). In this paper, we compare the separate calcium pump protein profile within these reconstituted sarcoplasmic reticulum membranes, as derived by X-ray and neutron diffraction methods, with that within isolated sarcoplasmic reticulum membranes. In addition, the time-average perturbation of the lipid bilayer by the incorporated calcium pump protein within these reconstituted sarcoplasmic reticulum membranes has been determined in some detail.  相似文献   

8.
The effect of urea (1-3 M) on conformational changes in the active center of native and reconstituted Ca-ATPase of sarcoplasmic reticulum modified by fluorescein-5-isothiocyanate (FITC) was studied using the method of fluorescence titration by neodymium (Nd3+) ions. Based on the analysis of curves of fluorescence quenching of FITC-labeled Ca-ATPase by Nd3+ ions, the parameters characterizing the structural changes in the Mg-ATP binding center were determined. It was assumed that FITC and Nd3+ ion bind to different polypeptide fragments moving relative to each other, which provides the conformational lability of the nucleotide binding site at some stages of the catalytic cycle. A comparison of structural changes caused by urea at the active site of native and reconstituted Ca-ATPase of sarcoplasmic reticulum indicates that the Nd3+ binding center is localized in the region of contacts of monomers in the oligomer.  相似文献   

9.
A detailed functional characterization of reconstituted sarcoplasmic reticulum (SR) vesicles with similar lipid content as normal SR was obtained by studies of ATPase activity and calcium transport in transient state, steady state, and equilibrium conditions. For this purpose, enzyme phosphorylation with ATP, hydrolytic activity, calcium transport, phosphorylation with Pi, and ATP synthesis by reversal of the pump were measured, and utilized to demonstrate function and orientation of catalytic sites. The preparations used in these studies displayed the highest activity reported for reconstituted sarcoplasmic reticulum systems. The rates of phosphoenzyme formation from ATP and hydrolysis as well as steady state levels matched the values obtained with normal SR vesicles. Calcium transport and repeated cycles of ATP synthesis by reversal of the pump were also obtained. However, the efficiency of transport and ATP synthesis from a Ca2+ gradient was approximately three times lower than in native vesicles. This deficiency could not be attributed to passive calcium leak from the reconstituted vesicles but, in part, can be explained by the bidirectional alignment of the calcium pump in reconstituted SR. It is suggested that vectorial transport requires a more complex level of protein structure than that for sustaining simple ATPase activity. Time resolution of the phosphorylation reaction by rapid quench methods can be used to estimate the orientation of the calcium pump in the membrane. Such studies indicate that the calcium pump protein is largely bidirectionally oriented in reconstituted SR vesicles.  相似文献   

10.
1. From the intrinsic fluorescence spectral properties and fluorescence quenching experiments done with acrylamide and iodide, using native sarcoplasmic reticulum vesicles, purified ATPase and ATPase solubilized with 1% Triton X-100, it is deduced that practically all the fluorescent tryptophanyl residues of this protein belong to a single population showing similar hydrophobic microenvironments. 2. Both acrylamide and iodide seem to be able to penetrate through the sarcoplasmic reticulum membrane. 3. The intrinsic fluorescence of the Ca2+-ATPase due to tryptophan residues probably buried inside the membrane is used as a tool to follow thermotropic changes in membrane fluidity of reconstituted systems.  相似文献   

11.
We have previously compared the electron density profiles for several highly-functional reconstituted sarcoplasmic reticulum membranes with that for the isolated sarcoplasmic reticulum membrane (Herbette, L., Scarpa, A., Blasie, J.K., Wang, C.T., Saito, A. and Fleischer, S. (1981) Biophys. J. 36, 47-72). In this paper, we compare the separate calcium pump protein profile within these reconstituted sarcoplasmic reticulum membranes, as derived by X-ray and neutron diffraction methods, with that within isolated sarcoplasmic reticulum membranes. In addition, the time-average perturbation of the lipid bilayer by the incorporated calcium pump protein within these reconstituted sarcoplasmic reticulum membranes has been determined in some detail.  相似文献   

12.
We have previously compared the electron density profiles for several highly-functional reconstituted sarcoplasmic reticulum membranes with that for the isolated sarcoplasmic reticulum membrane (Herbette, L., Scarpa, A., Blasie, J.K., Wang, C.T., Saito, A. and Fleischer, S. (1981) Biophys. J. 36, 47–72). In this paper, we compare the separate calcium pump protein profile within these reconstituted sarcoplasmic reticulum membranes, as derived by X-ray and neutron diffraction methods, with that within isolated sarcoplasmic reticulum membranes. In addition, the time-average perturbation of the lipid bilayer by the incorporated calcium pump protein within these reconstituted sarcoplasmic reticulum membranes has been determined in some detail.  相似文献   

13.
Mild acid treatment of sarcoplasmic reticulum membranes results in a first order decline in calcium transport activity while calcium stimulated ATPase activity remains unimpaired (Berman, M.C., McIntosh, D.B. and Kench, K.E. (1977) J. Biol. Chem. 252 994–1001). This uncoupling is apparently irreversible. Acid inactivated sarcoplasmic reticulum membranes, solubilized with Triton X-100 and reconstituted by passage through a Bio-Bead column, reactivated 80% of the calcium transport activity when compared with untreated, control reconstituted SR vesicles. It is suggested that the inactivated conformation of the (Ca2+, Mg2+-)ATPase is constrained by lipid-protein interactions.  相似文献   

14.
The passive Ca2+ permeability of fragmented sarcoplasmic reticulum membranes is 10(4) to 10(61 times greater than that of liposomes prepared from natural or synthetic phospholipids. The contribution of membrane proteins to the Ca2+ permeability was studied by incorporating the purified [Ca2+ + Mg2+]-activated ATPase into bilayer membranes prepared from different phospholipids. The incorporation of the Ca2+ transport ATPase into the lipid phase increased its Ca2+ permeability to levels approaching that of sarcoplasmic reticulum membranes. The permeability change may arise from a reordering of the structure of the lipid phase in the environment of the protein or could represent a specific property of the protein itself. The calcium-binding protein of sarcoplasmic reticulum did not produce a similar effect. The increased rate of Ca2+ release from reconstituted ATPase vesicles is not a carrier-mediated process as indicated by the linear dependence of the Ca2+ efflux upon the gradient of Ca2+ concentration and by the absence of competition and countertransport between Ca2+ and other divalent metal ions. The increased Ca2+ permeability upon incorporation of the transport ATPase into the lipid phase is accompanied by similar increase in the permeability of the vesicles for sucrose, Na+, choline, and SO42- indicating that the transport ATPase does not act as a specific Ca2+ channel. Native sarcoplasmic reticulum membranes are asymmetric structures and the 75-A particles seen by freeze-etch electron microscopy are located primarily in the outer fracture face. In reconstituted ATPase vesicles the distribution of the particles between the two fracture faces is even, indicating that complete structural reconstitution was not achieved. The Ca2+ transport activity of reconstituted ATPase vesicles is also much less than that of fragmented sarcoplasmic reticulum. The density of the 40-A surface particles visible after negative staining of native or reconstituted vesicles is greater than that of the intramembranous particles and the relationship between these two structures remains to be established.  相似文献   

15.
Canine cardiac sarcoplasmic reticulum is phosphorylated by an endogenous calcium · calmodulin-dependent protein kinase and phosphorylation occurs mainly on a 27 kDa proteolipid, called phospholamban. To determine whether this phosphorylation has any effect on Ca2+ release, sarcoplasmic reticulum vesicles were phosphorylated by the calcium · calmodulin-dependent protein kinase, while non-phosphorylated vesicles were preincubated under identical conditions but in the absence of ATP to avoid phosphorylation. Both non-phosphorylated and phosphorylated vesicles were centrifuged to remove calmodulin, and subsequently used for Ca2+ release studies. Calcium loading was carried out either by the active calcium pump or by incubation with high (5 mM) calcium for longer periods. Phosphorylation of sarcoplasmic reticulum by calcium · calmodulin-dependent protein kinase had no appreciable effect on the initial rates of Ca2+ released from cardiac sarcoplasmic reticulum vesicles loaded under passive conditions and on the apparent 45Ca2+40Ca2+ exchange from cardiac sarcoplasmic reticulum vesicles loaded under active conditions. Thus, it appears that calcium · calmodulin-dependent protein kinase mediated phosphorylation of cardiac sarcoplasmic reticulum is not involved in the regulation of Ca2+ release and 45Ca2+40Ca2+ exchange.  相似文献   

16.
The influence of chemical modification on the morphology of crystalline ATPase aggregates was analyzed in sarcoplasmic reticulum (SR) vesicles. The Ca2+-ATPase forms monomer-type (P1) type crystals in the E1 and dimer-type (P2) crystals in the E2 conformation. The P1 type crystals are induced by Ca2+ or lanthanides; P2 type crystals are observed in Ca2+-free media in the presence of vanadate or inorganic phosphate. P1- and P2-type Ca2+-ATPase crystals do not coexist in significant amounts in native sarcoplasmic reticulum membrane. The crystallization of Ca2+-ATPase in the E2 conformation is inhibited by guanidino-group reagents (2,3-butanedione and phenylglyoxal), SH-group reagents, phospholipases C or A2, and detergents, together with inhibition of ATPase activity. Amino-group reagents (fluorescein 5′-isothiocyanate, pyridoxal phosphate and fluorescamine) inhibit ATPase activity but do not interfere with the crystallization of Ca2+-ATPase induced by vanadate. In fluorescamine-treated sarcoplasmic reticulum the vanadate-induced crystals contain significant P1-type regions in addition to the dominant P2 form.  相似文献   

17.
Permeability properties of reconstituted rabbit skeletal muscle sarcoplasmic reticulum vesicles were characterized by measuring efflux rates of [3H]inulin, [3H]choline+, 86Rb+, and 22Na+, as well as membrane potential changes using the voltage-sensitive probe, 3,3′-dipentyl-2,2′-oxacarbocyanine. Native vesicles were dissociated with deoxycholate and were reconstituted by dialysis. Energized Ca2+ accumulation was partially restored. About 12 of the reconstituted vesicles were found to be ‘leaky’, i.e., permeable to choline+ or Tris+ but not to inulin. The remaining reconstituted vesicles were ‘sealed’, i.e., impermeable to choline+, Tris+ and inulin. Sealed reconstituted vesicles could be further subdivided according to their K+, Na+ permeability. About 12, previously designated Type I, were readily permeable to K+ and Na+, indicating the presence of the K+, Na+ channel of sarcoplasmic reticulum. The remaining sealed vesicles (Type II) formed a permeability barrier to K+ and Na+, suggesting that they lacked the K+, Na+ channel. These studies show that the K+, Na+ channel of sarcoplasmic reticulum can be solubilized with detergent and reconstituted with retention of activity. Furthermore, our results suggest that part or all of the decreased Ca2+-loading efficiency of reconstituted vesicles may be due to the presence of a significant fraction of leaky vesicles.  相似文献   

18.
Crude homogenates of rat cardiac muscle were fractionated in order to examine the subcellular location of adenylate cyclase in this tissue. The fractionation procedure employed differential centrifugation of homonized material, followed by collagenase treatment, centrifugation on a discontinuous sucrose density gradient and extraction with 1 M KCl. The particulate fraction obtained by this procedure contained a high specific activity and yield of adenylate cyclase, moderate levels of mitochondria and low levels of sarcoplasmic reticulum and contractile protein as judged by marker enzyme activities. Adenylate cyclase was purified 20-fold with a 33% yield from the crude homogenate, while mitochondrial, sarcoplasmic reticulum and contractile protein yields were 5, 0.4 and 0.7% respectively. The membrane fractions prepared in this manner were examined by sodium dodecyl sulfate · gel electrophoresis.Adenylate cyclase copurified with ouabain-sensitive (Na+ + K+)-ATPase, a plasma membrane marker enzyme, and not with Ca2+-accumulating activity, which is associated with the sarcoplasmic reticulum. The distribution of marker enzyme activities indicates that heart adenylate cyclase is not located in the sarcoplasmic reticulum but is localized predominantly, if not exclusively, in the plasma membrane.  相似文献   

19.
The extent of the negative cooperativity with MgATP of the Ca2+-stimulated ATPase activity of sarcoplasmic reticulum has been studied with various membrane preparations and under various conditions. Preparations studied were fragmented sarcoplasmic reticulum vesicles, deoxycholate-solubilized and fractionated ATPase, triton extracted reticulum, vesicles reconstituted from either detergent, and limited trypsin digests of the reticulum. Conditions studied were suboptimal, optimal, and inhibitory Ca2+ concentrations; temperatures from 13 to 46 °C; 1 or 5 mm MgCl2; 0.1 m KCl, 0.1 m NaCl, or no added salt; and Triton or deoxycholate present in the assay. With preparations in which vesicles could accumulate Ca2+ ion, the ionophore A23187 was added to prevent inhibition by internal Ca2+ ions. Under all circumstances, the negative cooperativity of MgATP was present (Hill coefficient of 0.2 to 0.8), indicating the persistence of the properties of the enzyme molecule and its lipid environment giving rise to kinetic negative cooperativity. Attempts to measure the number of ATP sites by protection against N-ethylmaleimide inactivation and by binding of an analog suggested, but did not prove, that there was only one specific, active ATP binding site below 0.5 mm. These results are interpreted to be consistent with either of two mechanisms for ATP cooperativity of the Ca2+-stimulated ATPase activity of sarcoplasmic reticulum: (a) a single, high affinity ATP active site and a second, lower affinity “allosteric” activator site; or (b) a single ATP site which demonstrates two affinities through some kinetic mechanism such as a substrate-induced, slow transition.  相似文献   

20.
Sarcoplasmic reticulum, isolated from canine cardiac muscle, was phosphorylated in the presence of exogenous cAMP-dependent protein kinase or calmodulin. This phosphorylation has been shown previously to activate sarcoplasmic reticulum calcium uptake (LePeuch et al. (1979) Biochemistry18, 5150–5157). Calmodulin appeared to activate an endogenous protein kinase present in sarcoplasmic reticulum membranes. The incorporation of phosphate increased with time. However, once all the ATP was consumed, the level of phosphorylated protein started to decrease due to the action of an endogenous protein phosphatase. Dephosphorylation occurred even when the level of phosphorylated sarcoplasmic reticulum remained constant at high ATP concentrations. The phosphorylation of sarcoplasmic reticulum in the presence of calmodulin, increased as the pH was increased from pH 5.5 to 8.5. This phosphorylation was only inhibited by KCl concentrations greater than 100 mm. The apparent Km of cAMP-dependent protein kinase for ATP was 5.2 ± 0.2 × 10?5m, and of the calmodulin-dependent protein kinase for ATP was 3.67 ± 0.29 × 10?5m. Phosphorylation was maximally activated by 5–10 mm MgCl2; higher MgCl2 concentrations inhibited this phosphorylation. Thus the calmodulin-dependent phosphorylation of cardiac sarcoplasmic reticulum could be maximally activated at sarcoplasmic concentrations of K+, Mg2+, and ATP. The calmodulindependent phosphorylation was half-maximally activated at Ca2+ concentrations that were significantly greater than those required to promote the formation of the sarcoplasmic reticulum Ca-activated ATPase phosphoprotein intermediate. Thus at sarcoplasmic Ca2+ concentrations that might be expected during systole, the sarcoplasmic reticulum calcium pump would be fully activated before any significant calmodul-independent sarcoplasmic reticulum phosphorylation occurred. However, under certain pathological conditions when the sarcoplasmic Ca2+ becomes elevated (e.g., in ischemia) the kinase could be activated so that the sarcoplasmic reticulum would be phosphorylated and calcium uptake augmented. Thus, the calmodulin-dependent protein kinase may only function when the heart needs to rescue itself from a possibly fatal calcium overload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号