首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We describe a novel approach for high-throughput analysis of the immune response in cancer patients using phage-based microarray technology. The recombinant phages used for fabricating phage arrays were initially selected via the use of random peptide phage libraries and breast cancer patient serum antibodies. The peptides displayed by the phages retained their ability to be recognized by serum antibodies after immobilization. The recombinant phage microarrays were screened against either breast cancer or healthy donor serum antibodies. A model-based statistical method is proposed to estimate significant differences in serum antibody reactivity between patients and normals. A significant tumor effect was found with most of the selected phage-displayed peptides, suggesting that recombinant phage microarrays can serve as a tool in monitoring humoral responses towards phage-displayed peptides.  相似文献   

2.
Serum antibodies are valuable source of information on the health state of an organism. The profiles of serum antibody reactivity can be generated by using a high throughput sequencing of peptide-coding DNA from combinatorial random peptide phage display libraries selected for binding to serum antibodies. Here we demonstrate that the targets of immune response, which are recognized by serum antibodies directed against sequential epitopes, can be identified using the serum antibody repertoire profiles generated by high throughput sequencing. We developed an algorithm to filter the results of the protein database BLAST search for selected peptides to distinguish real antigens recognized by serum antibodies from irrelevant proteins retrieved randomly. When we used this algorithm to analyze serum antibodies from mice immunized with human protein, we were able to identify the protein used for immunizations among the top candidate antigens. When we analyzed human serum sample from the metastatic melanoma patient, the recombinant protein, corresponding to the top candidate from the list generated using the algorithm, was recognized by antibodies from metastatic melanoma serum on the western blot, thus confirming that the method can identify autoantigens recognized by serum antibodies. We demonstrated also that our unbiased method of looking at the repertoire of serum antibodies reveals quantitative information on the epitope composition of the targets of immune response. A method for deciphering information contained in the serum antibody repertoire profiles may help to identify autoantibodies that can be used for diagnosing and monitoring autoimmune diseases or malignancies.  相似文献   

3.

Celiac disease (CeD) is a T-cell-dependent enteropathy with autoimmune features where tissue transglutaminase (TG2)-mediated posttranslational modification of gliadin peptides has a decisive role in the pathomechanism. The humoral immune response is reported to target mainly TG2-deamidated γ-gliadin peptides. However, α-gliadin peptides, like p57-68, playing a crucial role in the T-cell response, and p31-43, a major trigger of innate responses, also contain B-cell gliadin epitopes and γ-gliadin like motifs. We aimed to identify if there are anti-gliadin-specific antibodies in CeD patients targeting the p31-43 and p57-68 peptides and to examine whether deamidation of these peptides could increase their antigenicity. We explored TG2-mediated deamidation of the p31-43 and p57-68 peptides, and investigated serum antibody reactivity toward the native and deamidated α and γ-gliadin peptides in children with confirmed CeD and in prospectively followed infants at increased risk for developing CeD. We affinity-purified antibody populations utilizing different single peptide gliadin antigens and tested their binding preferences for cross-reactivity in real-time interaction assays based on bio-layer interferometry. Our results demonstrate that there is serum reactivity toward p31-43 and p57-68 peptides, which is due to cross-reactive γ-gliadin specific antibodies. These γ-gliadin specific antibodies represent the first appearing antibody population in infancy and they dominate the serum reactivity of CeD patients even later on and without preference for deamidation. However, for the homologous epitope sequences in α-gliadins shorter than the core QPEQPFP heptapeptide, deamidation facilitates antibody recognition. These findings reveal the presence of cross-reactive antibodies in CeD patients recognizing the disease-relevant α-gliadins.

  相似文献   

4.
Humoral immune response to tumor-associated antigens in cancer patients can be used as a basis for disease diagnosis and monitoring. Moreover, identification of molecular targets of such response may be used to develop antigen-specific anticancer vaccines. Here, we review the main approaches to identification and study of tumor-associated antigens recognized by serum antibodies. We also focus on the challenges that must be met before serological antigens can be used in clinical cancer diagnostics.  相似文献   

5.
BACKGROUND: Profiling the immune responses in patients with cancer is expected to facilitate the design of diagnostic tests and therapeutic vaccines. Such studies usually require the parental antigens. We attempted to profile the immune responses in patients with breast cancer using a peptide phage display selection strategy, which identifies antibody specificities whether or not the antigens are known. MATERIALS AND METHODS: A panel of random peptide phage libraries was panned on serum IgG antibodies from breast cancer patients with stage IV, seeking for disease specific IgG epitopes. ELISA, immunoscreening, and Western blotting techniques were the main approaches used. RESULTS: Phage-displayed peptides were specifically enriched for binding to IgG antibodies from patients with breast cancer. Several peptides have been identified, in particular the SQRIPARIHHFPTSI peptide, which was recognized by IgG antibodies from breast cancer patients, but not from normals (p < 0.0004). In patients who responded to the selected peptides, in particular the SQRIPARIHHFPTSI peptide, antibodies against a 66 kDa cellular protein were found. Interestingly, three out of six patients with the strongest immunoreactivity are still alive, with a mean survival time from first recurrence until now of 2553 days. In contrast, all the nonresponders (n = 10) are deceased. The mean survival time of these patients was 784 days, whereas the mean survival time of the three deceased responders was 1050 days (p < 0.02). CONCLUSIONS: The data provide the first example in which panning of peptide phage display libraries on patient IgG antibodies results in the isolation of breast cancer specific IgG epitopes, some of which correlate with patient survival time. Thus, the identified B-cell epitopes should be of great interest in vaccine development.  相似文献   

6.
Simian Virus 40, experimentally assayed in vitro in different animal and human cells and in vivo in rodents, was classified as a small DNA tumor virus. In previous studies, many groups identified Simian Virus 40 sequences in healthy individuals and cancer patients using PCR techniques, whereas others failed to detect the viral sequences in human specimens. These conflicting results prompted us to develop a novel indirect ELISA with synthetic peptides, mimicking Simian Virus 40 capsid viral protein antigens, named mimotopes. This immunologic assay allowed us to investigate the presence of serum antibodies against Simian Virus 40 and to verify whether Simian Virus 40 is circulating in humans. In this investigation two mimotopes from Simian Virus 40 large T antigen, the viral replication protein and oncoprotein, were employed to analyze for specific reactions to human sera antibodies. This indirect ELISA with synthetic peptides from Simian Virus 40 large T antigen was used to assay a new collection of serum samples from healthy subjects. This novel assay revealed that serum antibodies against Simian Virus 40 large T antigen mimotopes are detectable, at low titer, in healthy subjects aged from 18–65 years old. The overall prevalence of reactivity with the two Simian Virus 40 large T antigen peptides was 20%. This new ELISA with two mimotopes of the early viral regions is able to detect in a specific manner Simian Virus 40 large T antigen-antibody responses.  相似文献   

7.

Background

Prostate cancer is the most common cancer among elderly men in the US, and immunotherapy has been shown to be a promising strategy to treat patients with metastatic castration-resistant prostate cancer. Efforts to identify novel prostate specific tumor antigens will facilitate the development of effective cancer vaccines against prostate cancer. Prostate-specific G-protein coupled receptor (PSGR) is a novel antigen that has been shown to be specifically over-expressed in human prostate cancer tissues. In this study, we describe the identification of PSGR-derived peptide epitopes recognized by CD8+ T cells in an HLA-A2 dependent manner.

Methodology/Principal Findings

Twenty-one PSGR-derived peptides were predicted by an immuno-informatics approach based on the HLA-A2 binding motif. These peptides were examined for their ability to induce peptide-specific T cell responses in peripheral blood mononuclear cells (PBMCs) obtained from either HLA-A2+ healthy donors or HLA-A2+ prostate cancer patients. The recognition of HLA-A2 positive and PSGR expressing LNCaP cells was also tested. Among the 21 PSGR-derived peptides, three peptides, PSGR3, PSGR4 and PSGR14 frequently induced peptide-specific T cell responses in PBMCs from both healthy donors and prostate cancer patients. Importantly, these peptide-specific T cells recognized and killed LNCaP prostate cancer cells in an HLA class I-restricted manner.

Conclusions/Significance

We have identified three novel HLA-A2-restricted PSGR-derived peptides recognized by CD8+ T cells, which, in turn, recognize HLA-A2+ and PSGR+ tumor cells. The PSGR-derived peptides identified may be used as diagnostic markers as well as immune targets for development of anticancer vaccines.  相似文献   

8.
Proteins containing tandemly repetitive sequences are present in several immunodominant protein antigens in pathogenic protozoan parasites. The tandemly repetitive Trypanosoma cruzi B13 protein is recognized by IgG antibodies from 98% of Chagas' disease patients. Little is known about the molecular mechanisms that lead to the immunodominance of the repeated sequences, and there is limited information on T cell epitopes in such repetitive antigens. We finely characterized the T cell recognition of the tandemly repetitive, degenerate B13 protein by T cell lines, clones and PBMC from Chagas' disease cardiomyopathy (CCC), asymptomatic T. cruzi infected (ASY) and non-infected individuals (N). PBMC proliferative responses to recombinant B13 protein were restricted to individuals bearing HLA-DQA1*0501(DQ7), -DR1, and -DR2; B13 peptides bound to the same HLA molecules in binding assays. The HLA-DQ7-restricted minimal T cell epitope [FGQAAAG(D/E)KP] was identified with an overlapping combinatorial peptide library including all B13 sequence variants in T. cruzi Y strain B13 protein; the underlined small residues GQA were the major HLA contact residues. Among natural B13 15-mer variant peptides, molecular modeling showed that several variant positions were solvent (TCR)-exposed, and substitutions at exposed positions abolished recognition. While natural B13 variant peptide S15.9 seems to be the immunodominant epitope for Chagas' disease patients, S15.4 was preferentially recognized by CCC rather than ASY patients, which may be pathogenically relevant. This is the first thorough characterization of T cell epitopes of a tandemly repetitive protozoan antigen and may suggest a role for T cell help in the immunodominance of protozoan repetitive antigens.  相似文献   

9.
Molecular mimicry between Streptococcus pyogenes Ags and human proteins has been considered as a mechanism leading to autoimmune reactions in rheumatic fever and rheumatic heart disease (RHD). Cardiac myosin has been shown as a putative autoantigen recognized by autoantibodies of rheumatic fever patients. We assessed the human heart-intralesional T cell response against human light meromyosin (LMM) and streptococcal M5 peptides and mitral-valve-derived proteins by proliferation assay. Cytokines induced by LMM peptides were also evaluated. The frequency of intralesional T cell clones that recognized LMM peptides was 63.2%. Thirty-four percent of T cell clones presented cross-reactivity with different patterns: 1) myosin and valve-derived proteins; 2) myosin and streptococcal M5 peptides; and 3) myosin, valve-derived proteins and M5 peptides. In addition, several LMM peptides were recognized simultaneously showing a multiple reactivity pattern of heart-infiltrating T cells. Inflammatory cytokines (IFN-gamma and TNF-alpha) were predominantly produced by heart-infiltrating T cells upon stimulation with LMM peptides. The alignment of LMM and streptococcal M5 peptides showed frequent homology among conserved amino acid substitutions. This is the first study showing the cellular response by human heart-infiltrating T cells against cardiac myosin epitopes in RHD patients. The high percentage of reactivity against cardiac myosin strengthens its role as one of the major autoantigens involved in rheumatic heart lesions. T cell reactivity toward myosin epitopes in RHD patients may also trigger the broad recognition of valvular proteins with structural or functional similarities.  相似文献   

10.
Survival of patients with lung cancer could be significantly prolonged should the disease be diagnosed early. Growing evidence indicates that the immune response in the form of autoantibodies to developing cancer is present before clinical presentation. We used a phage-displayed antibody library to select for recombinant scFvs that specifically bind to lung cancer-associated IgM autoantibodies. We selected for scFv recombinant antibodies reactive with circulating IgM autoantibodies found in the serum of patients with early stage lung adenocarcinoma but not matched controls. Discriminatory performance of 6 selected scFvs was validated in an independent set of serum from stage 1 adenocarcinoma and matching control groups using two independent novel methods developed for this application. The panel of 6 selected scFvs predicted cancer based on seroreactivity value with sensitivity of 0.8 and specificity of 0.87. Receiver Operative Characteristic curve (ROC) for combined 6 scFv has an AUC of 0.88 (95%CI, 0.76–1.0) as determined by fluorometric microvolume assay technology (FMAT) The ROC curve generated using a homogeneous bridging Mesa Scale Discovery (MSD) assay had an AUC of 0.72 (95% CI, 0.59–0.85). The panel of all 6 antibodies demonstrated better discriminative power than any single scFv alone. The scFv panel also demonstrated the association between a high score - based on seroreactivity - with poor survival. Selected scFvs were able to recognize lung cancer associated IgM autoantibodies in patient serum as early as 21 months before the clinical presentation of disease. The panel of antibodies discovered represents a potential unique non-invasive molecular tool to detect an immune response specific to lung adenocarcinoma at an early stage of disease.  相似文献   

11.
Proteins encoded by genes of the SSX family are specifically expressed in tumors and are therefore relevant targets for cancer immunotherapy. One of the first identified family members, SSX-1, is expressed in a large fraction of synovial sarcomas as a fusion protein together with the product of the SYT gene. In addition, the full-length SSX-1 antigen is frequently expressed in tumors of several other histological types such as sarcoma, melanoma, hepatocellular carcinoma, ovarian cancer and myeloma. To date, however, SSX-1 specific T cell responses have not been investigated and no SSX-1 derived T cell epitopes have been described. Here, we have assessed the presence of CD4(+) T cells directed against the SSX-1 antigen in circulating lymphocytes of cancer-free individuals. After a single in vitro stimulation with a pool of peptides spanning the entire SSX-1 protein we could detect and isolate SSX-1-specific CD4(+) T cells from 5/5 donors analyzed. SSX-1-specific polyclonal populations isolated from these cultures recognized peptides located in three distinct regions of the protein containing clusters of sequences with significant predicted binding to frequently expressed MHC class II alleles. Characterization of specific clonal CD4(+) T cell populations derived from one donor allowed the identification of several naturally processed epitopes recognized in association with HLA-DR. These data document the existence of a significant repertoire of CD4(+) T cells specific for SSX-1 derived sequences in circulating lymphocytes of any individual that can be exploited for the development of both passive and active immunotherapeutic approaches to control disease evolution in cancer patients.  相似文献   

12.
We previously demonstrated the importance of the RNP1 motif-bearing region 131–151 of the U1-70K spliceosomal protein in the intramolecular T-B spreading that occurs in MRL/lpr lupus mice. Here, we analyze the involvement of RNP1 motif in the development and prevention of naturally-occurring intermolecular T-B cell diversification. We found that MRL/lpr peripheral blood lymphocytes proliferated in response to peptides containing or corresponding exactly to the RNP1 motif of spliceosomal U1-70K, U1-A and hnRNP-A2 proteins. We also demonstrated that rabbit antibodies to peptide 131–151 cross-reacted with U1-70K, U1-A and hnRNP-A2 RNP1-peptides. These antibodies recognized the U1-70K and U1-A proteins, and also U1-C and SmD1 proteins, which are devoid of RNP1 motif. Repeated administration of phosphorylated peptide P140 into MRL/lpr mice abolished T-cell response to several peptides from the U1-70K, U1-A and SmD1 proteins without affecting antibody and T-cell responses to foreign (viral) antigen in treated mice challenged with infectious virus. These results emphasized the importance of the dominant RNP1 region, which seems to be central in the activation cascade of B and T cells reacting with spliceosomal RNP1+ and RNP1- spliceosomal proteins. The tolerogenic peptide P140, which is recognized by lupus patients' CD4+ T cells and known to protect MRL/lpr mice, is able to thwart emergence of intermolecular T-cell spreading in treated animals.  相似文献   

13.
Three mouse hybridomas secreting antibodies against the undecapeptide Lys-Pro-Pro-Thr-Pro-Pro-Pro-Glu-Pro-Glu-Thr, corresponding to the carboxy terminus of simian virus 40 large T antigen, were isolated and cloned. A sensitive enzyme-linked immunosorbent assay was used to characterize the properties of the monoclonal antibodies. All three hybridomas, designated KT1, KT3, and KT4, produced antibodies that immunoprecipitated large T. The antibodies differed in their affinities for the peptide and for the native protein. Antibodies from KT3 precipitated large T better than those from KT1 or KT4. KT3 antibodies also had the highest affinity for the free peptide (5.2 X 10(6) M-1) as determined by radioimmunoassay; KT1 and KT4 antibodies had ca. 5- and 1,000-fold lower affinities, respectively. Inhibition studies with shorter peptides, overlapping the undecapeptide, revealed the approximate regions recognized by the different monoclonal antibodies. KT3 antibodies bound to a region within the carboxy-terminal six amino acids of large T. Antibodies from KT1 and KT4 reacted with sequences located further towards the amino terminus of the undecapeptide. Surprising results were obtained with KT4 antibodies. Their binding to the undecapeptide was completely inhibited by the undecapeptide itself or the carboxy-terminal hexapeptide. The carboxy-terminal pentamer, on the other hand, slightly enhanced binding, and the carboxy-terminal tetramer, Glu-Pro-Glu-Thr, was strongly stimulatory. A model for this effect is proposed. Using the enzyme-linked immunosorbent assay, we confirmed previous studies (W. Deppert and G. Walter, Virology 122:56-70, 1982) which found that antiserum against sodium dodecyl sulfate-denatured large T reacts strongly with the carboxy terminus of large T. By inhibition studies, we identified the approximate region within the undecapeptide recognized by anti-sodium dodecyl sulfate-denatured large T and compared this region with the region identified by antipeptide serum.  相似文献   

14.
The cell-extrinsic apoptotic pathway triggers programmed cell death in response to certain ligands that bind to cell-surface death receptors. Apoptosis is essential for normal development and homeostasis in metazoans, and furthermore, selective activation of the cell-extrinsic pathway in tumor cells holds considerable promise for cancer therapy. We used phage display to identify peptides and synthetic antibodies that specifically bind to the human proapoptotic death receptor DR5. Despite great differences in overall size and structure, the DR5-binding peptides and antibodies shared a tripeptide motif, which was conserved within a disulfide-constrained loop of the peptides and the third complementarity determining region of the antibody heavy chains. The X-ray crystal structure of an antibody in complex with DR5 revealed that the tripeptide motif is buried at the core of the interface, confirming its central role in antigen recognition. We found that certain peptides and antibodies exhibited potent proapoptotic activity against DR5-expressing SK-MES-1 lung carcinoma cells. These phage-derived ligands may be useful for elucidating DR5 activation at the molecular level and for creating synthetic agonists of proapoptotic death receptors.  相似文献   

15.
Retro inverso (RI) analogues of antigenic synthetic peptides, which are made of D-amino acids with a reversed sequence, may mimic the side chain conformation of natural all-L peptides. RI analogues were cross-reactively recognized by antibodies and CD4+ T cells reactive against natural all-L synthetic peptides or native proteins in animal models. Since peptides containing D-amino acids are highly resistant to proteolytic digestion, cross-reactive RI analogues may be ideal for in vivo administration to humans as synthetic peptide vaccines or immunomodulators. B13 is an immunodominant tandemly repetitive protein from Trypanosoma cruzi, a protozoan parasite that is the causative antigen of Chagas' disease. In order to test whether RI peptides can be recognized by human antibody and T cells, we synthesized two all-L peptides containing the immunodominant B (S12) and T (S15.7) cell epitopes of B13 protein from T. cruzi and their retro (R, made of all-L amino acids with reversed sequence), inverso (I, made of all-D amino acids) and RI analogues. Recognition of peptides S12, S12-R, S12-I and S12-RI by anti-B13 antibodies in sera from T. cruzi-infected patients was tested in competitive ELISA assay with recombinant B13 protein as the solid phase antigen. Peptides S15.7 and its topological analogues were tested at the 10-50 microM range in proliferation assays on peripheral blood mononuclear cells (PBMC) from S15.7-responder individuals. The median percentage inhibition of B13 ELISA for peptide S12 was 94%, while those of the RI analogue or the other topological analogues were below 12%. While peptide S15.7 was recognized by PBMC from all subjects tested, none recognized the RI analogue of the S15.7 T cell epitope. Our results indicate that cross-reactivity with natural epitopes is not an universal property of RI analogues. This may limit the general applicability of the use of cross-reactive RI analogues as human vaccines and immunotherapeutic agents.  相似文献   

16.
Exposure to cow's milk constitutes one of the most common causes of food allergy. In addition, exposure to soy proteins has become relevant in a restricted proportion of milk allergic pediatric patients treated with soy formulae as a dairy substitute, because of the cross‐allergenicity described between soy and milk proteins. We have previously identified several cross‐reactive allergens between milk and soy that may explain this intolerance. The purpose of the present work was to identify epitopes in the purified αS1‐casein and the recombinant soy allergen Gly m 5.0101 (Gly m 5) using an α‐casein‐specific monoclonal antibody (1D5 mAb) through two different approaches for epitope mapping, to understand cross‐reactivity between milk and soy. The 1D5 mAb was immobilized onto magnetic beads, incubated with the peptide mixture previously obtained by enzymatic digestion of the allergens, and the captured peptides were identified by MALDI‐TOF MS analysis. On a second approach, the peptide mixture was resolved by RP‐HPLC and immunodominant peptides were identified by dot blot with the mAb. Finally, recognized peptides were sequenced by MALDI‐TOF MS. This novel MS based approach led us to identify and characterize four peptides on α‐casein and three peptides on Gly m 5 with a common core motif. Information obtained from these cross‐reactive epitopes allows us to gain valuable insight into the molecular mechanisms of cross‐reactivity, to further develop new and more effective vaccines for food allergy.  相似文献   

17.
Celiac disease is an autoimmune disorder in which gluten peptides presented by specific HLA-DQ2- and HLA-DQ8-positive antigen presenting cells elicit immune response in connective tissue of lamina propria. Immunoglobulin A (IgA) antiendomysial antibodies are specific for celiac disease and are used for screening, diagnosis and follow-up of this disease with an almost 100% sensitivity and specificity. The major target antigen of IgA antiendomysial antibodies was identified as tissue transglutaminase; nevertheless, the existence of the additional unique celiac disease-specific autoantigens is anticipated. In this study we have utilized a proteomic approach in order to search out new autoantigens recognized by serum antibodies of patients with active celiac disease. We report the detection of 11 proteins that were immunorecognized with various frequencies by sera of patients with celiac disease. Four autoantigens were identified by mass fingerprinting approach as actin, ATP synthase beta chain and two charge variants of enolase alpha. While production of IgA antibodies against actin molecules were described earlier, the existence of autoantibodies to ATP synthase beta chain and enolase alpha species in sera collected from patients with active celiac disease are described for the first time. These results are suggestive of the existence of additional celiac disease autoantigens with possible diagnostic utility.  相似文献   

18.
T cell recognition of peptide/allogeneic MHC complexes is a major cause of transplant rejection. Both the presented self-peptides and the MHC molecules are involved; however, the molecular basis for alloreactivity and the contribution of self-peptides are still poorly defined. The murine 2.102 T cell is specific for hemoglobin(64-76)/I-Ek and is alloreactive to I-Ep. The natural self-peptide/I-Ep complex recognized by 2.102 remains unknown. In this study, we characterized the peptides that are naturally processed and presented by I-Ep and used this information to define the binding motif for the murine I-Ep class II molecule. Interestingly, we found that the P9 anchor residue preferred by I-Ep is quite distinct from the residues preferred by other I-E molecules, although the P1 anchor residue is conserved. A degree of specificity for the alloresponse was shown by the lack of stimulation of 2.102 T cells by 19 different identified self-peptides. The binding motif was used to search the mouse genome for candidate 2.102 reactive allopeptides that contain strong P1 and P9 anchor residues and possess previously identified allowable TCR contact residues. Two potential allopeptides were identified, but only one of these peptides, G protein-coupled receptor 128, was able to stimulate 2.102 T cells. Thus, the G protein-coupled receptor 128 peptide represents a candidate allopeptide that is specifically recognized by 2.102 T cells bound to I-Ep and was identified using bioinformatics. These studies highlight the specific involvement of self-peptides in alloreactivity.  相似文献   

19.
B cell and T cell immunity to the Smith Ag (Sm) is a characteristic feature of systemic lupus erythematosus (SLE). We have shown that T cell immunity against Sm can be detected in SLE patients, and that T and B cell immunity against Sm are linked in vivo. TCR usage by Sm-reactive T cells is highly restricted and characteristic of an Ag-driven immune response. Sm is a well-characterized complex Ag consisting of proteins B1, B2, D1, D2, D3, E, F, and G. A unique feature of all Sm proteins is the presence of homologous motifs, Sm motif 1 and Sm motif 2. We used limiting dilution cloning and synthetic peptide Ags to characterize the human T cell immune response against Sm in seven SLE patients. We sought to determine the precise antigenic peptides recognized, the common features of antigenic structure recognized, and the evolution of the T cell response against Sm. We found there was a highly restricted set of Sm self-peptides recognized by T cells, with three epitopes on Sm-B and two epitopes on Sm-D. We found that T cell immunity against Sm-B and Sm-D was encoded within the highly conserved Sm motif 1 and Sm motif 2, and that immunity against these epitopes appeared stable. The present study supports the concept that T cell immunity to Sm is an Ag-driven immune response directed against a highly restricted set of self-peptides, encoded within Sm motif 1 and Sm motif 2, that is shared among all Sm proteins.  相似文献   

20.
We have previously reported that 90K/Mac-2 binding protein (M2BP) was highly expressed in lung cancer and that M2BP-specific immunity was observed in many of cancer patients. In this study, we analyzed the ability of 11 M2BP-derived oligopeptides with an HLA-A*0201-binding motif to induce M2BP-specific cytotoxic T lymphocytes (CTL) from peripheral blood lymphocytes of normal donors by in vitro stimulation. One of the CTLs that were induced using M2BP216-224 (RIDITLSSV) produced interferon-gamma in response to HLA-A2-positive T2 cells pulsed with the same peptide and lysed MDA-MB-231 cells expressing both M2BP and HLA-A2. The cytolytic activities were blocked by antibodies against HLA class I or CD8. These findings suggest that M2BP216-224 is naturally processed from the native M2BP in cancer cells and recognized by M2BP-specific CTLs in an HLA-A2 restriction. We first identified M2BP-derived CTL epitopes that may be useful as a target antigenic epitope in clinical immunotherapy of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号