首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
A procedure has been outlined for the synthesis of ribonucleoside 3'-di- and -triphosphates. The synthetic scheme involves the conversion of a ribonucleoside 3'-monophosphate to its 2'-(5'-di)-O-(1-methoxyethyl) derivative, followed by successive treatments of the blocked ribonucleotide with 1,1'-carbonyldiimidazole and mono(tri-n-butylammonium) phosphate or pyrophosphate. The resulting ribonucleoside 3'-di- and -triphosphate derivatives are then deblocked by treatment with dilute aqueous acetic acid, pH 3.0. The use of this procedure is illustrated for adenosine 3'-monophosphate, which has been converted to its corresponding 3'-di- and -triphosphates in 61% overall yield. The decomposition of adenosine 3'-di- and -triphosphates to adenosine 2'-monophosphate, adenosine 3'-monophosphate, and adenosine cyclic 2',3'-monophosphate as a function of pH at 100 degrees has been studied as has the attempted polymerization of adenosine 3'-diphosphate with polynucleotide phosphorylase. Also prepared was guanosine 5'-diphosphate 3'-diphosphate (guanosine tetraphosphate; ppGpp), which was accessible via treatment of 2'-O-(1-methoxyethyl)guanosine 5'-monophosphate 3'-monophosphate with the phosphorimidazolidate of mono(tri-n-butyl ammonium) phosphate. The resulting blocked tetraphosphate was deblocked in dilute aqueous acetic acid to afford ppGpp in an overall yield of 18%.  相似文献   

2.
Guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) were identified in the vegative mycelium of Streptomyces griseus. Adenosine 5'-diphosphate 3'-diphosphate (ppApp) and adenosine 5'-triphosphate 3'-diphosphate (pppApp) were not present but several other phosphorus-containing compounds which may have been inorganic polyphosphates were detected. During exponential growth of S. griseus the concentrations of ppGpp and pppGpp were several times higher than in the stationary stage. They fell sharply when exponential growth ended and then remained at an almost constant basal level. For the tetraphosphate the maximum concentration was about 50, and for the basal level about 10, pmol per millilitre of a culture with an optical density of 1.0. Production of streptomycin started several hours after exponential growth had ended and the concentrations of ppGpp and pppGpp had fallen. Streptomycin synthesis was delayed if the cells were resuspended just before production started in fresh medium lacking phosphate, but it was not delayed by glucose starvation. Both cultures, as well as cultures transferred to nitrogen-free medium, showed an immediate increase in ppGpp content to about four-fold the basal level. The results suggest that the guanosine polyphosphates do not directly control initiation of streptomycin production in S. griseus. Twelve additional species of Streptomyces examined all contained ppGpp and pppGpp.  相似文献   

3.
Rat vascular smooth muscle cells (VSMCs) from renal microvessels metabolize 2',3'-cAMP to 2'-AMP and 3'-AMP, and these AMPs are converted to adenosine that inhibits microvascular VSMC proliferation via A(2B) receptors. The goal of this study was to test whether this mechanism also exists in VSMCs from conduit arteries and whether it is similarly expressed in human vs. rat VSMCs. Incubation of rat and human aortic VSMCs with 2',3'-cAMP concentration-dependently increased levels of 2'-AMP and 3'-AMP in the medium, with a similar absolute increase in 2'-AMP vs. 3'-AMP. In contrast, in human coronary VSMCs, 2',3'-cAMP increased 2'-AMP levels yet had little effect on 3'-AMP levels. In all cell types, 2',3'-cAMP increased levels of adenosine, but not 5'-AMP, and 2',3'-AMP inhibited cell proliferation. Antagonism of A(2B) receptors (MRS-1754), but not A(1) (1,3-dipropyl-8-cyclopentylxanthine), A(2A) (SCH-58261), or A(3) (VUF-5574) receptors, attenuated the antiproliferative effects of 2',3'-cAMP. In all cell types, 2'-AMP, 3'-AMP, and 5'-AMP increased adenosine levels, and inhibition of ecto-5'-nucleotidase blocked this effect of 5'-AMP but not that of 2'-AMP nor 3'-AMP. Also, 2'-AMP, 3'-AMP, and 5'-AMP, like 2',3'-cAMP, exerted antiproliferative effects that were abolished by antagonism of A(2B) receptors with MRS-1754. In conclusion, VSMCs from conduit arteries metabolize 2',3'-cAMP to AMPs, which are metabolized to adenosine. In rat and human aortic VSMCs, both 2'-AMP and 3'-AMP are involved in this process, whereas, in human coronary VSMCs, 2',3'-cAMP is mainly converted to 2'-AMP. Because adenosine inhibits VSMC proliferation via A(2B) receptors, local vascular production of 2',3'-cAMP may protect conduit arteries from atherosclerosis.  相似文献   

4.
G N Bennett  G R Gough  P T Gilham 《Biochemistry》1976,15(21):4623-4628
A new procedure for the synthesis of the pyrophosphate bond has been employed in the preparation of nucleoside dipyrophosphates from nucleoside 3',5'-diphosphates. The method makes use of a powerful phosphorylating agent generated in a mixture of cyanoethyl phosphate, dicyclohexylcarbodiimide, and mesitylenesulfonyl chloride in order to avoid possible intramolecular reactions between the two phosphate groups on the sugar ring. That such reactions can readily occur was shown by the facile cyclization of deoxyguanosine 3',5'-diphosphate to P1,P2-deoxyguanosine 3',5'-cyclic pyrophosphate in the presence of dicyclohexylcarbodiimide alone. The phosphorylation reagent was initially tested in the conversion of deoxyguanosine 3',5'-diphosphate to the corresponding 3',5'-dipyrophosphate and was then used to phosphorylate 2'-O-(alpha-methoxyethyl)guanosine 3',5'-diphosphate, which had been prepared from 2'-O-(alpha-methoxyethyl)guanosine. In the latter case, the addition of the two beta phosphate groups was accomplished in 40% yield. Removal of the methoxyethyl group from the phosphorylated product gave guanosine 3',5'-dipyrophosphate, which was shown to be identical with guanosine tetraphosphate prepared enzymatically from a mixture of GDP and ATP. A modification of published procedures was also necessary to effect the synthesis of guanosine bis(methylenediphosphonate). Guanosine was treated with methylenediphosphonic acid and dicyclohexylcarbodiimide in the absence of added base. The product consisted of a mixture of guanosine 2',5' - and 3',5'-bis(methylenediphosphonate), which was resolved by anion-exchange chromatography. The 2',5' and 3',5' isomers are interconvertible at low pH, with the ultimate formation of an equilibrium mixture having a composition ratio of 2:3. The predominant constituent of this mixture has been unequivocally identified as the 3',5' isomer by synthesis from 2'-O-tetrahydropyranylguanosine.  相似文献   

5.
Cytosolic 5'-nucleotidase II catalyzes the dephosphorylation of 6-hydroxypurine nucleoside 5'-monophosphates and regulates the IMP and GMP pools within the cell. It possesses phosphotransferase activity and thereby also catalyzes the reverse reaction. Both reactions are allosterically activated by adenine-based nucleotides and 2,3-bisphosphoglycerate. We have solved structures of cytosolic 5'-nucleotidase II as native protein (2.2 Angstrom) and in complex with adenosine (1.5 Angstrom) and beryllium trifluoride (2.15 Angstrom) The tetrameric enzyme is structurally similar to enzymes of the haloacid dehalogenase (HAD) superfamily, including mitochondrial 5'(3')-deoxyribonucleotidase and cytosolic 5'-nucleotidase III but possesses additional regulatory regions that contain two allosteric effector sites. At effector site 1 located near a subunit interface we modeled diadenosine tetraphosphate with one adenosine moiety in each subunit. This efficiently glues the tetramer subunits together in pairs. The model shows why diadenosine tetraphosphate but not diadenosine triphosphate activates the enzyme and supports a role for cN-II during apoptosis when the level of diadenosine tetraphosphate increases. We have also modeled 2,3-bisphosphoglycerate in effector site 1 using one phosphate site from each subunit. By comparing the structure of cytosolic 5'-nucleotidase II with that of mitochondrial 5'(3')-deoxyribonucleotidase in complex with dGMP, we identified residues involved in substrate recognition.  相似文献   

6.
The 2':3'-cyclic nucleotide phosphodiesterase:3'-nucleotidase of Haemophilus influenzae was purified from a periplasmic preparation by affinity chromatographic techniques. The enzyme-catalysed hydrolysis of 2':3'-cyclic AMP to adenosine without accumulation of the intermediate substrate 3'-AMP was demonstrated by high performance liquid chromatography. Competitive inhibition of the enzyme by a variety of nucleosides and mononucleotides indicated the presence of either purine or pyrimidine bases to be essential for selective interactions with the enzyme, and confirmed the need for a 3'-position phosphate for the functioning of mononucleotides as substrates for the enzyme. The enzyme had a molecular weight of 79 000, was stable at low temperatures and was thermally denatured at temperatures above 50 degrees C.  相似文献   

7.
Angiotensin-converting enzyme and 5'-nucleotidase line the luminal surface of pulmonary microvascular endothelium and participate in the synthesis and/or degradation of potent vasoactive substances. We applied Michaelis-Menten kinetics in simultaneous estimations of apparent constants Km and Amax (product of Vmax and microvascular plasma volume) of these two enzymes for the substrates 3H-labeled benzoyl-Phe-Ala-Pro and 14C-labeled 5'-AMP, respectively, in vivo. Values of angiotensin-converting enzyme for benzoyl-Phe-Ala-Pro (Km = 10-11 microM; Amax = 12-13 mumol X min-1) were somewhat higher than published estimates in vitro and changed predictably in response to the known enzyme inhibitor captopril. Kinetic values of 5'-nucleotidase for 5'-AMP (Km = 3-4 microM; Amax = 3-4 mumol/min) were substantially lower than those reported in vitro but also responded predictably to the competitive inhibitor of 5'-nucleotidase, adenosine 5'-[alpha, beta-methylene]diphosphate. These data offer in vivo estimates of enzyme kinetics that are useful in revealing enzyme behavior in their normal physiological environment and provide means of evaluating the action of pharmacological, physiological, and pathological modulators of enzyme activity, in vivo.  相似文献   

8.
Activation of ppGpp-3'-pyrophosphohydrolase by a supernatant factor and ATP   总被引:2,自引:0,他引:2  
The breakdown of guanosine 5'-diphosphate, 3'-diphosphate (ppGpp) into GDP and PPi is catalyzed by a Mn2+-dependent 3'-pyrophosphohydrolase, the translation product of the spoT gene. The escherichia coli enzyme is normally found to be associated with the "crude" ribosome fraction. It is reported here that the guanosine 5'-diphosphate, 3'-diphosphate 3'-pyrophosphohydrolase activity in this fraction is activated by ATP in the presence of a relatively heat-stable, low molecular weight, supernatant factor (BS100). This stimulation is not due to a removal of reaction products such as by the phosphorylation of GDP to GTP or by the hydrolysis of PPi. Hydrolysis of ATP is probably required because neither adenosine 5'-(3-thio)triphosphate nor adenosine 5'-(beta, gamma-imido)triphosphate can substitute for ATP. Levallorphan, a morphine analog, which had been shown to inhibit in vivo ppGpp degradation, inhibits specifically the stimulation of ppGpp hydrolysis by ATP and the supernatant factor. The possible relationship of this system and the in vivo energy-dependent control of ppGpp degradation is discussed.  相似文献   

9.
A detailed understanding of adenosine metabolism of vascular smooth muscle cells (VSMC) is highly desirable to critically evaluate possible autocrine effects of adenosine in this cell species. Therefore, this study quantified intra- and extracellular adenosine flux rates, the transmembrane concentration gradient, and the adenosine surface concentration in porcine VSMC and, for comparison, aortic endothelial cells (PAEC). Cell-covered microcarrier beads packed in a chromatography column were superfused with a HEPES buffer. With the use of specific inhibitors of adenosine kinase (iodotubericidine, 10 microM), adenosine deaminase [erythro-9-(2-hydroxy-3-nonyl)-adenine, 5 microM], ecto-5'-nucleotidase (alpha,beta-methylene-adenosine 5'-diphosphate, 50 microM), and adenosine membrane transport (n-nitrobenzylthioinosine, 1 microM), total production rates of 12.3 +/- 2.7 and 7.5 +/- 1.3 pmol x min(-1) x microl cell volume(-1) were obtained for VSMC and PAEC, respectively. Despite prevailing intracellular adenosine production (76 and 70% of total production, respectively), transmembrane concentration gradients under control conditions were directed toward the cytosol as a result of rapid intracellular adenosine rephosphorylation and continuous extracellular hydrolysis from 5'-AMP. Surface concentrations were approximately 18 nM in VSMC and PAEC under control conditions and increased to approximately 60 nM during partial inhibition of adenosine metabolism. Simultaneously, the transmembrane adenosine concentration gradient was reversed. We conclude that adenosine flux rates in VSMC and PAEC are quantitatively similar and that VSMC may influence the interstitial adenosine concentration under basal steady-state conditions.  相似文献   

10.
A procedure has been developed for the cytochemical localization of 5'-nucleotidase in isolated, unfixed, rat liver microsomes. Membranes were incubated with adenosine 5'-phosphate (5'-AMP) and Pb(NO3)2 and then isolated on sucrose density gradients: all the phosphate released was recovered with the membranes by this procedure. Adenosine 2'-phosphate (2'-AMP) and adenosine 3', 5'-cyclic phosphate (3',5'-AMP) were shown to be competitive inhibitors, but not substrates, for purified 5'-nucleotidase and were employed to determine the specificity of the cytochemical reaction. It was found that the incubation conditions for the cytochemical assay did not affect the specificity of 5'-nucleotidase. Microsomes incubated as controls with Pb2+, or Pb2+ and 2'-AMP or 3',5'-AMP were of the same density, although slightly denser than microsomes incubated without Pb2+, and were unassociated with lead precipitate when examined by electron microscopy; microsomes incubated with Pb2+ and 5'-AMP were much denser and were stained heterogeneously with lead phosphate when examined by electron microscopy. Precipitates formed artificially from Pb2+ and inorganic phosphate did not resemble the reaction product. Microsomes were, therefore, separated on sucrose gradients and the subfractions were examined cytochemically. Lead precipitates were associated with the majority of rough-surfaced vesicles, and the reaction product was distributed heterogeneously in all fractions. Vesicles which stained like the membranes of the bile canaliculi in isolated plasma membranes were observed in the lightest subfraction. The reaction product was localized on the outside surface of the microsomal membranes, and was solubilized by low concentrations of ethylenediaminetetraacetic acid. It is concluded that 5'-nucleotidase is present in the endoplasmic reticulum and that the microsome fraction contains, in addition, vesicles derived from the plasma membrane.  相似文献   

11.
Two different Mg2+-dependent adenosine 5'-triphosphate-hydrolyzing activities were detected in membranes of Vibrio costicola, a novel 5'-nucleotidase and an N,N'-dicyclohexylcarbodiimide-sensitive adenosine triphosphatase. The former and the latter had different requirements for Mg2+ and were selectively assayed in the membranes by using, respectively, 20 and 2 mM Mg2+. The two enzymes were extracted with a combination of Triton X-100 and octylglucoside, separated on a diethylaminoethyl cellulose column, and purified on glycerol gradients. The purified 5'-nucleotidase consisted of one major polypeptide of 70,000 daltons when analyzed on polyacrylamide gels in the presence of sodium dodecyl sulfate. The purified 5'-nucleotidase was similar in substrate specificities, divalent cation specificities, and pH profiles to the membrane-bound N,N'-dicyclohexylcarbodiimide-insensitive nucleotide-phosphohydrolyzing activity. The enzyme hydrolyzed nucleoside 5'-tri, 5'-di, and 5'-monophosphates at comparable rates. Inorganic pyrophosphate, p-nitrophenyl phosphate, glucose 6-phosphate, beta-glycerophosphate, adenosine 5'-diphosphate glucose, adenosine 3'-monophosphate, and cyclic adenosine 3',5'-monophosphate were not hydrolyzed, either im membranes or by the purified 5'-nucleotides. Actions of NaCl and KCl on the activity of the 5'-nucleotidase were studied. The enzyme was activated by both NaCl and KCl; the activation profiles however, were different for the membrane-bound and purified 5'-nucleotidase. The purified enzyme, unlike the membrane-bound enzyme, was markedly stimulated by high concentrations of NaCl (up to 3 M).  相似文献   

12.
Specific binding of [3H]AMP to rat hepatocytes and their plasma membranes was studied. It was shown that the time course of this binding reached a maximum within the first 15 seconds. An equilibrium binding study revealed the presence of a single class of binding sites with Kd of 20 microM both in hepatocytes and in plasma membranes. The [3H]AMP binding sites were inactivated by treatment with trypsin as well as by heating. 5'-Phosphorylated derivatives of adenosine (ATP, ADP) effectively competed with [3H]AMP for the binding sites, while adenosine, beta-glycerophosphate and 3'-AMP were inactive. The binding of [3H]AMP increased by 400% in the presence of concanavalin A, a specific inhibitor of plasma membrane 5'-nucleotidase. It was concluded that the catalytic center of 5'-nucleotidase is a receptor for adenine nucleotides.  相似文献   

13.
A procedure is presented for the rapid purification of a 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) from potato tubers, involving ammonium sulphate fractionation and chromatography on phosphocellulose, DEAE-cellulose and Sephadex G-75. Application of this procedure results in a 6000-fold purification of the 5'-nucleotidase and the final preparations are virtually homogeneous, yielding only one protein band on electrophorsis in polyacrylamide gels in non-dissociating or dissociating conditions. The 5'-nucleotidase has a molecular weight of 50 000 from gel filtration experiments. Sodium dodecylsulphate-polyacrylamide gel electrophoresis of the purified 5'-nucleotidase reveals one major band of molecular weight 25 000. The 5'-nucleotidase is competitively inhibited by cyclic nucleotides, having micromolar Ki values for cyclic AMP and cyclic GMP at pH 5.0 and pH 8.0. The enzyme has a pH optimum of 5.0 with 5'-GMP as substrate. While 5'-AMP and 3'-AMP are hydrolyzed at comparable rates at pH 5.0, at pH 8.0 the rate of hydrolysis of 3'-AMP is only 4% of that with 5'-AMP. ADP, ATP and 2'-AMP are very poor substrates for the enzyme. The nucleotidase has micromolar Km values for nucleoside 5'-monophosphates other than 5'-NMP. A wide variety of divalent cations activate the 5'-nucleotidase.  相似文献   

14.
Although multiple biochemical pathways produce adenosine, studies suggest that the 2',3'-cAMP-adenosine pathway (2',3'-cAMP→2'-AMP/3'-AMP→adenosine) contributes to adenosine production in some cells/tissues/organs. To determine whether the 2',3'-cAMP-adenosine pathway exists in vivo in the brain, we delivered to the brain (gray matter and white matter separately) via the inflow perfusate of a microdialysis probe either 2',3'-cAMP, 3',5'-cAMP, 2'-AMP, 3'-AMP, or 5'-AMP and measured the recovered metabolites in the microdialysis outflow perfusate with mass spectrometry. In both gray and white matter, 2',3'-cAMP increased 2'-AMP, 3'-AMP and adenosine, and 3',5'-cAMP increased 5'-AMP and adenosine. In both brain regions, 2'-AMP, 3-AMP and 5'-AMP were converted to adenosine. Microdialysis experiments in 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase) wild-type mice demonstrated that traumatic brain injury (controlled cortical impact model) activated the brain 2',3'-cAMP-adenosine pathway; similar experiments in CNPase knockout mice indicated that CNPase was involved in the metabolism of endogenous 2',3'-cAMP to 2'-AMP and to adenosine. In CSF from traumatic brain injury patients, 2',3'-cAMP was significantly increased in the initial 12 h after injury and strongly correlated with CSF levels of 2'-AMP, 3'-AMP, adenosine and inosine. We conclude that in vivo, 2',3'-cAMP is converted to 2'-AMP/3'-AMP, and these AMPs are metabolized to adenosine. This pathway exists endogenously in both mice and humans.  相似文献   

15.
Because adenosine plays a role in the regulation of glomerular filtration rate and of the release of renin, we examined the possibility of a local source for this mediator. We found that rat cultured glomerular mesangial cells converted 5'-AMP into adenosine. The properties of the enzyme involved in the reaction were those of an ecto-5' nucleotidase: (1) the products of the reaction were generated in the extracellular fluid although no 5'-nucleotidase was released by the cells into the medium; (2) identical activities were found for cultured cells in situ and sonicated cells; (3) the diazonium salt of sulfanilic acid which is a nonpenetrating reagent inhibited up to 75% of the enzyme activity. Ecto-5'-nucleotidase activity of intact cells obeyed Michaelis-Menten kinetics. Apparent Km for 5'-AMP was 0.32 mM. 5'-UMP was a strictly competitive inhibitor. ADP exerted a very powerful inhibitory effect and behaved also as a competitive inhibitor. ATP was inhibitory both by increasing Km and by decreasing Vmax. Ecto-5'-nucleotidase was active in the absence of divalent cations. However, Mg2+, Ca2+, Co2+ and Mn2+ were stimulatory. Zn2+ and Cu2+ suppressed the activity. Concanavalin A, a plant lectin, was markedly inhibitory, suggesting that a glycoprotein moiety was necessary to express enzyme activity. Ecto-5'-nucleotidase activity was not modified during phagocytosis of serum-treated zymosan by mesangial cells. Rat cultured glomerular epithelial cells exhibited a 5'-nucleotidase activity which was 4 times lower than that of the mesangial cells in primary culture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
1. Renaturation of a 3'-nucleotidase from the surface membrane of Leishmania donovani promastigotes was achieved following polyacrylamide gel electrophoresis (PAGE) in the presence of sodium dodecyl sulfate (SDS). 2. Enzyme activity was detected in situ in gels, following SDS removal, by incubating the gels in reaction mixtures containing 3'-AMP or 3'-UMP as substrate followed by staining for the inorganic phosphate (Pi) reaction product with malachite green-molybic acid solution. 3. Conditions for the removal of SDS by diffusion and for the renaturation of enzyme activity are described including evidence for the detergent requirement, which is best satisfied by 3[(3-cholamidopropyl)-dimethylammonio]2-hydroxy-1-propane sulfonate (CHAPSO). 4. Results indicate that the 3'-nucleotidase migrates under these conditions as a polypeptide with an Mr of 43,000.  相似文献   

17.
I R Beacham  D Haas    E Yagil 《Journal of bacteriology》1977,129(2):1034-1044
Mutants in which the expression of periplasmic enzymes by whole cells is reduced (termed "cryptic") are also found to show greatly reduced uptake of labeled adenosine 5'-monophosphate (5'-AMP), providing a rapid assay for crypticity. The crypticity of 3'- and 5'-nucleotidase has been examined as a function of substrate concentration. The Km for 3'- or 5'-AMP increases in the cryptic mutants when whole cells are used as the enzyme source. The Vmax is not altered. Electrophoretic analysis of protein prepared from cell envelopes showed that three cryptic mutants have a polypeptide absent from the outer membrane and a relatively high proportion of a polypeptide in the inner membrane. Analysis of the molar ratios of constituent sugars of the lipopolysaccharides showed no differences between three cryptic mutants and the parent strain. One cryptic mutant (3--41), however, has altered sensitivity to phage T4. By selection for phage resistance, derivatives of the cryptic mutants that are deoxycholate sensitive have been obtained. These mutants are no longer cryptic. We suggest that cryptic mutants have an altered outer membrane, with decreased permeability to 3'- and 5'-AMP, as a result of an altered polypeptide.  相似文献   

18.
Many organs express the extracellular 3',5'-cAMP-adenosine pathway (conversion of extracellular 3',5'-cAMP to 5'-AMP and 5'-AMP to adenosine). Some organs release 2',3'-cAMP (isomer of 3',5'-cAMP) and convert extracellular 2',3'-cAMP to 2'- and 3'-AMP and convert these AMPs to adenosine (extracellular 2',3'-cAMP-adenosine pathway). As astrocytes and microglia are important participants in the response to brain injury and adenosine is an endogenous neuroprotectant, we investigated whether these extracellular cAMP-adenosine pathways exist in these cell types. 2',3'-, 3',5'-cAMP, 5'-, 3'-, and 2'-AMP were incubated with mouse primary astrocytes or primary microglia for 1 h and purine metabolites were measured in the medium by mass spectrometry. There was little evidence of a 3',5'-cAMP-adenosine pathway in either astrocytes or microglia. In contrast, both cell types converted 2',3'-cAMP to 2'- and 3'-AMP (with 2'-AMP being the predominant product). Although both cell types converted 2'- and 3'-AMP to adenosine, microglia were five- and sevenfold, respectively, more efficient than astrocytes in this regard. Inhibitor studies indicated that the conversion of 2',3'-cAMP to 2'-AMP was mediated by a different ecto-enzyme than that involved in the metabolism of 2',3'-cAMP to 3'-AMP and that although CD73 mediates the conversion of 5'-AMP to adenosine, an alternative ecto-enzyme metabolizes 2'- or 3'-AMP to adenosine.  相似文献   

19.
1. Isolated nerve terminals (T-sacs and synaptosomes) prepared from the purely cholinergic Torpedo electric organ have been studied for their ability to incorporate and metabolise [2-3H] adenosine and to degrade 5'-AMP to adenosine. 2. A temperature-dependent, saturable uptake system for adenosine was found with kinetic properties similar to nucleoside transport systems in other cells. The uptake system in Torpedo nerve terminals was inhibited by 2'-deoxyadenosine, a known inhibitor of adenosine transport. 3. Intraterminal adenosine is rapidly metabolised to a number of products including AMP, ADP and ATP. 4. Isolated nerve terminals contain considerable 5'-nucleotidase activity, most of which resides on the outer face of the external membrane. The Km of the enzyme is congruent to 5 micron and it is inhibited by a phosphonate analogue of ADP, alpha-beta-methylene-ADP. It is suggested that this 5'-nucleotidase plays an important role in the production of adenosine from a nucleotide pool in the synaptic cleft.  相似文献   

20.
The kinetics of "P"-site-mediated inhibition of adenylyl cyclase was studied with the detergent-solubilized enzyme from rat brain. Mn2(+)-activated adenylyl cyclase exhibited typical noncompetitive inhibition by 2'-d3'-AMP or 2',5'-dideoxyadenosine (2',5'-ddAdo). However, enzyme that was preactivated with guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) or proteolytically with ninhibin (+ GTP gamma S) exhibited apparently uncompetitive inhibition with either 2'-d3'-AMP or 2',5'-ddAdo and with either MgATP or MgApp(NH)p (adenosine 5'-(beta gamma-imino)triphosphate) as substrate. Inhibition increased with increasing substrate concentration, consistent with distinct domains for catalysis and the P-site and the formation of a 2'-d3'-AMP.C.MgATP complex. This conclusion was supported by the kinetics of product inhibition. For both cAMP and inorganic pyrophosphate (MgPPi) inhibition was mixed, suggesting that product release is likely random sequential. Although MgPPi enhanced inhibition in the presence of P-site agonist, it did not affect the dissociation constant for P-site agonist. The uncompetitive character of P-site-mediated inhibition and the independence of inhibition by MgPPi and P-site agonist imply that the P-site binding domain is distinct from the substrate binding domain. Given the structural requirements for catalysis and for P-site-mediated inhibition, these domains would be expected to be homologous. Sensitivity to P-site-mediated inhibition was also dependent on the structure of ATP, with the following IC50 values for 2'-d3'-AMP: ATP approximately 2'-dATP (approximately 1 microM); adenosine 5'-O-(3-thiotriphosphate) (approximately 5 microM); App(NH)p (approximately 30 microM); adenosine 5'-(beta gamma-methylene)triphosphate (approximately 300 microM). The differing effectiveness of the ATP analogs to support P-site inhibition was not due to their binding at the P-site. This effect of substrate was also observed with the platelet enzyme and was independent of the means by which the enzyme was activated, whether by Mn2+ or proteolytically by ninhibin/GTP gamma S, suggesting it is a general characteristic of P-site-mediated inhibition. The data suggest a structure for activated adenylyl cyclase such that one nucleotide binding domain, selective for ATP vis-à-vis other ATP analogs, allosterically modulates a proximate P-site domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号