首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 526 毫秒
1.
The BZLF1 protein of Epstein-Barr virus (EBV) is a key immediate-early protein which has been shown to disrupt virus latency in EBV-infected B cells. We have generated a monoclonal antibody, BZ1, to BZLF1 which reacts in immunohistology, immunoblotting, and immunoprecipitation and which recognizes both the active, dimeric form and the inactive, monomeric form of the protein. Biopsies of oral hairy leukoplakia, an AIDS-associated lesion characterized by high-level EBV replication, were examined by immunohistochemistry using the BZ1 monoclonal antibody. A differentiation-associated pattern of BZLF1 expression was observed, BZ1 reacting with nuclei of the upper spinous layer of the lesion. This finding suggests that the BZLF1 promoter may be regulated by the degree of squamous differentiation. A comparison of in situ hybridization to EBV DNA and viral capsid antigen staining with BZ1 reactivity suggested that BZLF1 expression precedes rampant virus replication. The inability to detect EBV in the lower epithelial layers of oral hairy leukoplakia raises questions concerning the nature of EBV latency and persistence in stratified squamous epithelium.  相似文献   

2.
Lytic Epstein-Barr virus (EBV) replication occurs in differentiated, but not undifferentiated, epithelial cells. Retinoic acid (RA) induces epithelial cell differentiation. The conversion of retinol into its active form, retinoic acid, requires retinol dehydrogenase enzymes. Here we show that AGS gastric carcinoma cells containing the lytic form of EBV infection have enhanced expression of a gene (DHRS9) encoding an enzyme that mediates conversion of retinol into RA. DHRS9 expression is also increased following induction of lytic viral infection in EBV-positive Burkitt lymphoma cells. We demonstrate that the EBV immediate-early protein, BZLF1, activates the DHRS9 promoter through a direct DNA binding mechanism. Furthermore, BZLF1 expression in AGS cells is sufficient to activate DHRS9 gene expression and increases the ability of retinol to induce the RA-responsive gene, CYP26A1. Production of RA during the lytic form of EBV infection may enhance viral replication by promoting keratinocyte differentiation.  相似文献   

3.
Epstein-Barr virus (EBV) BGLF4 is a viral protein kinase that is expressed in the lytic phase of infection and is packaged in virions. We report here that BGLF4 is a tegument protein that dissociates from the virion in a phosphorylation-dependent process. We also present evidence that BGLF4 interacts with and phosphorylates BZLF1, a key viral regulator of lytic infection. These conclusions are based on the following observations. (i) In in vitro tegument release assays, a significant fraction of BGLF4 was released from virions in the presence of physiological NaCl concentrations. (ii) Addition of physiological concentrations of ATP and MgCl(2) to virions enhanced BGLF4 release, but phosphatase treatment of virions significantly reduced BGLF4 release. (iii) A recombinant protein containing a domain of BZLF1 was specifically phosphorylated by purified recombinant BGLF4 in vitro, and BGLF4 altered BZLF1 posttranslational modification in vivo. (iv) BZLF1 was specifically coimmunoprecipitated with BGLF4 in 12-O-tetradecanoylphorbol-13-acetate-treated B95-8 cells and in COS-1 cells transiently expressing both of these viral proteins. (v) BGLF4 and BZLF1 were colocalized in intranuclear globular structures, resembling the viral replication compartment, in Akata cells treated with anti-human immunoglobulin G. Our results suggest that BGLF4 functions not only in lytically infected cells by phosphorylating viral and cellular targets but also immediately after viral penetration like other herpesvirus tegument proteins.  相似文献   

4.
5.
6.
Epstein-Barr virus (EBV) infects cells in latent or lytic forms, but the role of lytic infection in EBV-induced lymphomas is unclear. Here, we have used a new humanized mouse model, in which both human fetal CD34(+) hematopoietic stem cells and thymus/liver tissue are transplanted, to compare EBV pathogenesis and lymphoma formation following infection with a lytic replication-defective BZLF1-deleted (Z-KO) virus or a lytically active BZLF1(+) control. Both the control and Z-KO viruses established long-term viral latency in all infected animals. The infection appeared well controlled in some animals, but others eventually developed CD20(+) diffuse large B cell lymphomas (DLBCL). Animals infected with the control virus developed tumors more frequently than Z-KO virus-infected animals. Specific immune responses against EBV-infected B cells were generated in mice infected with either the control virus or the Z-KO virus. In both cases, forms of viral latency (type I and type IIB) were observed that are less immunogenic than the highly transforming form (type III) commonly found in tumors of immunocompromised hosts, suggesting that immune pressure contributed to the outcome of the infection. These results point to an important role for lytic EBV infection in the development of B cell lymphomas in the context of an active host immune response.  相似文献   

7.
Epstein-Barr virus (EBV) in vivo is known to establish persistent infection in resting, circulating memory B cells and to productively replicate in plasma cells. Until now, the molecular mechanism of how EBV switches from latency to lytic replication in vivo was not known. Here, we report that the plasma cell differentiation factor, XBP-1s, activates the expression of the master regulator of EBV lytic activation, BZLF1. Using reporter assays, we observed that XBP-1s was able to transactivate the BZLF1 promoter, Zp, in a plasma cell line and other lymphoid cell lines but, interestingly, not in epithelial cell lines. We have identified an XBP-1s binding site on the ZID/ZII region of Zp, which when abolished by site-directed mutagenesis led to abrogation of XBP-1s binding and promoter activation. Using the chromatin immunoprecipitation assay, we observed direct binding of XBP-1s to endogenous Zp in an EBV-infected plasma cell line. Finally, in the same cell line, we observed that overexpression of XBP-1s resulted in increased expression of BZLF1, while knockdown of XBP-1s with short hairpin RNA drastically reduces BZLF1 expression. We suggest that EBV harnesses the B-cell terminal differentiation pathway via XBP-1s as a physiological signal to reactivate and begin viral replication. We are currently investigating other signals, such as the endoplasmic reticulum stress response proteins, which act upstream of XBP-1s, to identify other interacting factors that initiate and/or amplify the lytic switch.  相似文献   

8.
9.
10.
The incidence of (EBV-related) malignancies in HIV-infected subjects has declined since the introduction of highly active antiretroviral therapy (HAART). To investigate the effect of HAART on EBV infection, we performed a longitudinal analysis of the T cell response to both a latent and a lytic Ag and EBV viral load in 10 subjects from early in HIV infection up to 5 years after HAART. All individuals responded to HAART by a decline in HIV viral load, a restoration of total CD4+ T cell numbers, and a decline in T cell immune activation. Despite this, EBV load remained unaltered, even after 5 years of therapy, although a decline in both CD4+ and CD8+ T cells specific for the lytic EBV protein BZLF1 suggested a decreased EBV reactivation rate. In contrast, latent EBV Ag EBNA1-specific CD4+ and CD8+ T cell responses were restored after 5 years of treatment to levels comparable to healthy individuals. In two individuals who were treated by HAART late during HIV progression, a lymphoma developed shortly after initiation of HAART, despite restoration of EBV-specific CD4+ and CD8+ T cells. In conclusion, long-term HAART does not alter the EBV DNA load, but does lead to a restoration of EBNA1-specific T cell responses, which might allow better control of EBV-infected cells when applied early enough during HIV infection.  相似文献   

11.
12.
Binding of the BZLF1 viral transactivator to Epstein-Barr virus (EBV) oriLyt has been reported to be essential for viral DNA replication. We have constructed a recombinant virus (E2-oriLyt-R) in which the oriLyt BZLF1-binding sites (ZRE) were exchanged against papilloma E2-binding sites. A fusion protein between the BZLF1 protein-transactivating domain and the E2 protein-binding domain was able to reactivate lytic replication in E2-oriLyt-R. However, BZLF1 alone could also induce E2-oriLyt-R, albeit with much lower efficiency. ZRE are therefore important but not absolutely essential cis elements for lytic replication. This shows the importance of recombinants to evaluate viral functions.  相似文献   

13.
Soluble extracellular proteins usually do not enter the endogenous human leukocyte antigen (HLA) I-dependent presentation pathway of antigen-presenting cells, strictly impeding their applicability for the re-stimulation of protein-specific CD8(+) cytotoxic T lymphocytes (CTL). Here we present for the Epstein-Barr virus (EBV) BZLF1 a novel strategy that facilitates protein translocation into antigen-presenting cells by its solubilisation in high molar urea and subsequent pulsing of cells in presence of low molar urea. Stimulation of PBMC from HLA-matched EBV-seropositive individuals with urea-treated BZLF1 but not untreated BZLF1 induces an efficient reactivation of BZLF1-specific CTL. Urea-treated BZLF1 (uBZLF1) enters antigen-presenting cells in a temperature-dependent manner by clathrin-mediated endocytosis and is processed by the proteasome into peptides that are bound to nascent HLA I molecules. Dendritic cells and monocytes but also B cells can cross-present uBZLF1 in vitro. The strategy described here has potential for use in the development of improved technologies for the monitoring of protein-specific CTL.  相似文献   

14.
The propagation of herpesviruses has long been viewed as a temporally regulated sequential process that results from the consecutive expression of specific viral transactivators. As a key step in this process, lytic viral DNA replication is considered as a checkpoint that controls the expression of the late structural viral genes. In a novel genetic approach, we show that both hypotheses do not hold true for the Epstein-Barr virus (EBV). The study of viral mutants of EBV in which the early genes BZLF1 and BRLF1 are deleted allowed a precise assignment of the function of these proteins. Both transactivators were absolutely essential for viral DNA replication. Both BZLF1 and BRLF1 were required for full expression of the EBV proteins expressed during the lytic program, although the respective influence of these molecules on the expression of various viral target genes varied greatly. In replication-defective viral mutants, neither early gene expression nor DNA replication was a prerequisite for late gene expression. This work shows that BRLF1 and BZLF1 harbor distinct but complementary functions that influence all stages of viral production.  相似文献   

15.
16.
17.
18.
Induction of the viral BZLF1 gene has previously been shown to be one of the first steps in the reactivation of Epstein-Barr virus (EBV). Using an EBV oriP episomal vector system, we have reconstituted the regulation of the promoter for BZLF1 on stably transfected episomes, mapped promoter elements required for that regulation, and investigated mechanisms that may control the switch between latency and the lytic cycle. Changes in histone acetylation at the promoter for the BZLF1 gene appear to be a key part of the reactivation mechanism of this herpesvirus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号