首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A reliable reversed-phase high-performance liquid chromatographic method has been developed for the determination of bromocriptine (BCT) in plasma and eye tissues. The BCT and propranolol, added as an internal standard (I.S.), were extracted by a liquid–liquid technique followed by an aqueous back-extraction, allowing injection of an aqueous solvent into a 4-μm Nova-Pak C18 column (150×3.9 mm I.D.). The mobile phase was a mixture of 30 parts of acetonitrile and 70 parts of 0.2% triethylamine (pH 3) at a flow-rate of 1 ml/min. Fluorescence detection was at an excitation wavelength of 330 nm and an emission wavelength of 405 nm. The retention times of I.S. and BCT were 4.1 and 11.6 min, respectively. The calibration curve was linear over the concentration range 0.2–10 μg/l for plasma (r>0.999) and vitreous humour (r>0.997) and 1–50 μg/l for aqueous humour (r>0.985). The limit of quantification was 0.2 μg/l for plasma and vitreous humour using a 1-ml sample and was 1 μg/l for aqueous humour using a 0.2-ml sample. The quality control samples were reproducible with acceptable accuracy and precision. The within-day recovery (n=3) was 100–102% for plasma, 91–106% for aqueous humour and 96–111% for vitreous humour. The between-day recovery (n=9) was 90–114% for plasma, 83–115% for aqueous humour and 90–105% for vitreous humour. The within-day precision (n=3) and the between-day precision (n=9) were 1.7–7.0% and 8.1–13.6%, respectively. No interferences from endogenous substances were observed. Taken together, the above simple, sensitive and reproducible high-performance liquid chromatography assay method was suitable for the determination of BCT in plasma and eye tissues following ocular application of BCT for the therapy of myopia.  相似文献   

2.
A column-switching high-performance liquid chromatography (HPLC) method is described for the determination of asiaticoside in rat plasma and bile using column-switching and ultraviolet (UV) absorbance detection. Plasma was simply deproteinated with acetonitrile prior to injection and bile was directly injected onto the HPLC system consisting of a clean-up column, a concentrating column, and an analytical column, which were connected with two six-port switching valves. Detection of asiaticoside was accurate and repeatable, with a limit of quantification of 0.125 μg/ml in plasma and 1 μg/ml in bile. The calibration curves were linear in a concentration range of 0.125–2.5 μg/ml and 1–20 μg/ml for asiaticoside in rat plasma and bile, respectively. This method has been successfully applied to determine the level of asiaticoside in rat plasma and bile samples from pharmacokinetics and biliary excretion studies.  相似文献   

3.
Methods for the determination of celecoxib in human plasma and rat microdialysis samples using liquid chromatography tandem mass spectrometry are described. Celecoxib and an internal standard were extracted from plasma by solid-phase extraction with C18 cartridges. Thereafter compounds were separated on a short narrow bore RP C18 column (30×2 mm). Microdialysis samples did not require extraction and were injected directly using a narrow bore RP C18 column (70×2 mm). The detection was by a PE Sciex API 3000 mass spectrometer equipped with a turbo ion spray interface. The compounds were detected in the negative ion mode using the mass transitions m/z 380→316 and m/z 366→302 for celecoxib and internal standard, respectively. The assay was validated for human plasma over a concentration range of 0.25–250 ng/ml using 0.2 ml of sample. The assay for microdialysis samples (50 μl) was validated over a concentration range of 0.5–20 ng/ml. The method was utilised to determine pharmacokinetics of celecoxib in human plasma and in rat spinal cord perfusate.  相似文献   

4.
A solid-phase extraction (SPE) method for sample clean-up followed by a reversed-phase HPLC procedure for the assay of alinastina (pINN) in biological fluids is reported. The effects of the sample pH, composition of the washing and elution solvents and the nature of the SPE cartridge on recovery were evaluated. The selectivity of SPE was examined using spiked rat urine and plasma samples and the CH and PH cartridges gave rise to the cleanest extracts. The recoveries obtained in spiked rat urine and plasma samples were 91.2±2.7 and 99.9±2.8%, respectively. The proposed SPE method coupled off-line with a reserved-phase HPLC system with fluorimetric detection was applied to the quantitation of alinastine in real rat urine samples. The analytical method was also applied and validated for the determination of alinastine in dog plasma. The recovery from spiked dog plasma samples using the PH cartridge was around 65%. The within-day and between-day precisions were 7 and 12%, respectively. The detection and quantitation limits in dog plasma were 0.024 and 0.078 μg/ml, respectively.  相似文献   

5.
A selective semi-automated solid-phase extraction (SPE) of the non-steroidal anti-inflammatory drugs diclofenac sodium, indomethacin and phenylbutazone from urine prior to high-performance liquid chromatography was investigated. The drugs were recovered from urine buffered at pH 5.0 using C18 Bond-Elut cartridges as solid sorbent material and mixtures of methanol–aqueous buffer or acetonitrile–aqueous buffer as washing and elution solvents. The extracts were chromatographed on a reversed-phase ODS column using 10 mM acetate buffer (pH 4.0)–acetonitrile (58:42, v/v) as the mobile phase, and the effluent from the column was monitored at 210 nm with ultraviolet detection. Absolute recoveries of the anti-inflammatory drugs within the range 0.02–1.0 μg/ml were about 85% for diclofenac and indomethacin, and 50% for phenylbutazone without any interference from endogenous compounds of the urine. The within-day and between-day repeatabilities were in all cases less than 5% and 10%, respectively. Limits of detection were 0.007 μg/ml for diclofenac sodium and indomethacin and 0.035 μg/ml for phenylbutazone, whereas limits of quantitation were 0.02 μg/ml for diclofenac and indomethacin and 0.1 μg/ml for phenylbutazone.  相似文献   

6.
The quantitative determination of tocainide, a new antiarrhythmic agent, by high-performance liquid chromatography (HPLC) is reported. The drug and a chemically similar internal standard were extracted from blood plasma with acetonitrile under salting-out conditions obtained by saturation of the aqueous medium with sodium chloride—sodium carbonate. The organic extract, without evaporation, was treated with borate buffer (pH 8.2) and fluorescamine. The resulting derivatives were chromatographed on an ODS reversed-phase column using a methanol—phosphate buffer (pH 7.0) mixture as mobile phase and were detected fluorometrically by monitoring the emission at 485 nm, with excitation at 395 nm. The intra-assay coefficients of variation were 3.0 and 4.3% for ten replicate 0.25 and 1.00 μg/ml samples, respectively, and the inter-assay coefficient of variation was 3.6% for ten replicate 1.00 μg/ml samples. The procedure is simple, rapid, sensitive, and specific. Several other drugs and drug metabolites also were derivatized with fluorescamine and chromatographed successfully. Pre-column derivatization with fluorescamine followed by HPLC with fluorometric detection may have significant advantages in drug analysis.  相似文献   

7.
Solid-phase microextraction (SPME) was investigated as a sample preparation method for assaying the neuroleptic drug clozapine in human plasma. A mixture of human plasma, water, loxapine (as internal standard) and aqueous NaOH was extracted with a 100-μm polydimethylsiloxane (PDMS) fiber (Supelco). Desorption of the fiber was performed in the injection port of a gas chromatograph at 260°C (HP 5890; 30 m×0.53 mm I.D., 1 μm film capillary; nitrogen–phosphorous selective detection). Fibers were used repeatedly in up to about 75 analyses. The recovery was found to be 3% for clozapine from plasma after 30 min of extraction. However, in spite of the low recovery, the analyte was well separated and the calibration was linear between 100 and 1000 ng/ml. The within-day and between-day precision was consistently about 8 to 15% at concentrations of 200 ng/ml to 1000 ng/ml. No interfering drug was found. The limit of detection was 30 ng/ml. The sample volume was 250 μl. The influence of the concentration of proteins, triglycerides and salt, i.e., changes in the matrix on the peak areas and peak-area ratios was studied. The method is not impaired by physiological changes in the composition of the matrix. Good agreement was found with a liquid–liquid extraction–gas–liquid chromatography (LLE–GLC) standard method and an on-line column-switching high-performance liquid chromatography (HPLC) method for patients’ samples and spiked samples, respectively. It is concluded that the method can be used in the therapeutic drug monitoring of clozapine because the therapeutic window of clozapine is from 350 to 600 ng/ml.  相似文献   

8.
A sensitive and specific high-performance liquid chromatographic method with fluorescence detection (excitation wavelength: 280 nm; emission wavelength: 360 nm) was developed and validated for the determination of vinorelbine in plasma and blood samples. The sample pretreatment procedure involved two liquid–liquid extraction steps. Vinblastine served as the internal standard. The system uses a Spherisorb cyano analytical column (250×4.6 mm I.D.) packed with 5 μm diameter particles as the stationary phase and a mobile phase of acetonitrile–80 mM ammonium acetate (50:50, v/v) adjusted to pH 2.5 with hydrochloric acid. The assay showed linearity from 1 to 100 ng/ml in plasma and from 2.5 to 100 ng/ml in blood. The limits of quantitation were 1 ng/ml and 2.5 ng/ml, respectively. Precision expressed as RSD was in the range 3.9 to 20% (limit of quantitation). Accuracy ranged from 92 to 120%. Extraction recoveries from plasma and blood averaged 101 and 75%, respectively. This method was used to follow the time course of the concentration of vinorelbine in human plasma and blood samples after a 10-min infusion period of 20 mg/m2 of this drug in patients with metastatic cancer.  相似文献   

9.
A gas chromatographic–mass spectrometric isotope dilution method was developed for analysis of ascorbate on 10 μl samples of plasma. This assay was reproducible (standard deviation of less than 4%) and gave values for plasma ascorbate content within 8% of our previously published gas chromatographic–mass spectrometric method. Non-specific sample preparation allowed other analytes to be determined on the same sample by adjusting data acquisition parameters and adding the appropriate internal standard. Analysis on 28 subjects fell within the expected range for plasma ascorbate 68±29 μm (11.9±5.0 μg/ml) and established a normal range for plasma threonate of 28.1±2.4 μm (3.8±0.4 μg/ml).  相似文献   

10.
Sensitive high-performance liquid chromatographic assays have been developed for the quantification of stavudine (2′,3′-didehydro-3′-deoxythymidine, d4T) in human plasma and urine. The methods are linear over the concentration ranges 0.025–25 and 2–150 μg/ml in plasma and urine, respectively. An aliquot of 200 μl of plasma was extracted with solid-phase extraction using Oasis® cartridges, while urine samples were simply diluted 1/100 with HPLC water. The analytical column, mobile phase, instrumentation and chromatographic conditions are the same for both methods. The methods have been validated separately, and stability tests under various conditions have been performed. The detection limit is 12 ng/ml in plasma for a sample size of 200 μl. The bioanalytical assay has been used in a pharmacokinetic study of pregnant women and their newborns.  相似文献   

11.
A simple reversed-phase high-performance liquid chromatographic method has been developed for the simultaneous determination of theophylline, ciprofloxacin and enoxacin in plasma and saliva. The biological fluid samples were extracted with methylene chloride-isopropyl alcohol prior to isocratic chromatography on a Waters C18 μBondapak column. Ultraviolet detection was carried out at 268 nm. The assay in linear for ciprofloxacin and enoxacin (0.05–10 μg/ml), and theophylline (0.1–20 μ/ml). The assay can be used to investigate the interaction of these two fluoroquinolones with theophylline.  相似文献   

12.
5-Fluorouracil (5-FU) is an antineoplastic agent widely employed in the treatment of many types of cancer. Recent studies have proved the need for individual adjustment of 5-FU dosage based on pharmacokinetics. A simple and sensitive high-performance liquid chromatographic method for the determination of 5-FU in plasma and their preliminary clinical pharmacokinetics is described. After sample acidification with 20 μl of orthophosphoric acid (5%), the drug is extracted from plasma using n-propanol–diethyl ether (16:84). The organic layer is evaporated to dryness, the residue dissolved in 100 μl of mobile phase and 20 μl of this mixture is injected into a LiChrospher 100RP-18 (5 μm, 250×4.0 mm) analytical column. Mobile phase consisted of potassium dihydrogenphosphate (0.05 M, adjusted to pH 3). The limit of quantitation was 2 ng/ml. The method showed good precision: the within-day relative standard deviation (RSD) for 5-FU (10–20 000 ng/ml) was 3.75% (2.57–5.93); the between-day RSD for 5-FU, in the previously described range, was 5.74% (4.35–7.20). The method presented here is accurate, precise and sensitive and it has been successfully applied for 5-FU pharmacokinetic investigation and therapeutic drug monitoring.  相似文献   

13.
A rapid, selective and accurate high-performance liquid chromatography–tandem mass spectrometry assay for the quantification of sanfetrinem in human plasma has been developed and validated. The performance of manual and automated sample preparation was assessed; 50 μl of plasma sample was deproteinized with acetonitrile, followed by dilution with water and injection onto the LC system. Chromatographic separation was achieved on a Phenomenex Luna C18(2), 50×2.0 (5 μm) column with a mobile phase consisting of water–acetonitrile with 0.1% formic acid followed by detection with a Perkin-Elmer API3000 mass spectrometer in multiple reaction monitoring mode. The lower limit of quantification was improved by five times compared to the UV method previously reported. A range of concentration from 10 ng/ml to 5 μg/ml was covered. The method was applied to the quantification of sanfetrinem in human plasma samples from healthy volunteers participating in a clinical study.  相似文献   

14.
A rapid high-performance liquid chromatographic method was developed using a short silica column (30 mm×4.6 mm) with an aqueous methanol mobile phase consisting of methanol–water–NH4H2PO4 (94:5.96:0.04) adjusted to a final apparent pH of 5.0 and pumped at a flow-rate of 1 ml/min. Ultraviolet detection was carried out at a wavelength of 280 nm, and serum samples were prepared for HPLC analysis by extraction into dichloromethane after basification. Lamotrigine was eluted at 0.96 min. Within-day variation of the method was 4.46% at 0.75 μg/ml and 2.37% at 6.0 μg/ml, and day-to-day variation was 9.10% at 0.75 μg/ml and 7.28% at 6.0 μg/ml.  相似文献   

15.
As a part of a pilot clinical study, a high-performance reversed-phase liquid chromatography analysis was developed to quantify temozolomide in plasma and urine of patients undergoing a chemotherapy cycle with temozolomide. All samples were immediately stabilized with 1 M HCl (1 + 10 of biological sample), frozen and stored at −20°C prior to analysis. The clean-up procedure involved a solid-phase extraction (SPE) of clinical sample (100 μl) on a 100-mg C18-endcapped cartridge. Matrix components were eliminated with 750 μl of 0.5% acetic acid (AcOH). Temozolomide was subsequently eluted with 1250 μl of methanol (MeOH). The resulting eluate was evaporated under nitrogen at RT and reconstituted in 200 μl of 0.5% AcOH and subjected to HPLC analysis on an ODS-column (MeOH-0.5% AcOH, 10:90) with UV detection at 330 nm. The calibration curves were linear over the concentration range 0.4–20 μg/ml and 2–150 μg/ml for plasma and urine, respectively. THe extraction recovery of temozolomide was 86–90% from plasma and 103–105% from urine over the range of concentrations considered. The stability of temozolomide was studied in vitro in buffered solutions at RT, and in plasma and urine at 37°C. An acidic pH (<5–6) shoul be maintained throughout the collection, the processing and the analysis of the sample to preserve the integrity of the drug. The method reported here was validated for use in a clinical study of temozolomide for the treatment of metastatic melanoma and high grade glioma.  相似文献   

16.
The use of marker compounds for estimating drug metabolic capacity or pharmacokinetic parameters is common in the biological sciences. Often small laboratory animals are used and thus sample size is a limiting concern. In this report, we describe an assay we developed for measuring the concentration of acetaminophen and its conjugated metabolites in low-volume serum samples. Acetaminophen and metabolites were removed from 10 μl serum samples by a single-step 6% (v/v) perchloric acid deproteination using theophylline as internal standard. Samples were separated in a pH 2.2 sodium sulfate–acetonitrile mobile phase at a flow-rate of 1.5 ml/min on a 15 cm octadecylsilyl column at room temperature. Analytes were detected at a wavelength of 254 nm. The resulting chromatograms showed no interfering peaks from endogenous serum components. The concentration ranges measured were 1.56–200 μg/ml for acetaminophen and acetaminophen sulfate and 3.91–500 μg/ml for acetaminophen glucuronide. The assay was linear in the range of concentrations analyzed. The intra-day and inter-day coefficient of variation ranged from 0.4 to 8.2% and 0.2 to 12.3% for acetaminophen, 0.5 to 12.9% and 0.3 to 16.1% for acetaminophen glucuronide, and 0.4 to 8.1% and 0.2 to 14.3% for acetaminophen sulfate, respectively. Results from the experiments show that acetaminophen and its conjugated metabolites can easily and reproducibly be measured in low-volume serum samples and thus may offer an additional method to measure these compounds when the volume of biological samples may be limited.  相似文献   

17.
A sensitive high-performance liquid chromatographic method using fluorescence detection has been developed for sotalol determination in small plasma samples of children and newborns with limited blood volume. In sample sizes of 100 μl of plasma, sotalol was extracted using an internal standard and solid-phase extraction columns. Chromatographic separation was performed on a Spherisorb C6 column of 150×4.6 mm I.D. and 5 μm particle size at ambient temperature. The mobile phase consisted of acetonitrile–15 mM potassium phosphate buffer (pH 3.0) (70:30, v/v). The excitation wavelength was set at 235 nm, emission at 300 nm. The flow-rate was 1 ml/min. Sotalol and the internal standard atenolol showed recoveries of 107±8.9 and 97±8.1%, respectively. The linearity range for sotalol was between 0.07 and 5.75 μg/ml, the limit of quantitation 0.09 μg/ml. Precision values expressed as percent relative standard deviation of intra-assay varied between 0.6 and 13.6%, that of inter-assay between 2.4 and 14.4%. Accuracy varied between 86.1 and 109.8% (intra-assay) and 95.4 and 103.3% (inter-assay). Other clinically used antiarrhythmic drugs did not interfere. As an application of the assay, sotalol plasma concentrations in a 6-year-old child with supraventricular tachycardia treated with oral sotalol (3.2 mg/kg per day) are reported.  相似文献   

18.
A sensitive and specific HPLC method has been developed for the assay of vigabatrin in human plasma and urine. The assay involves derivatization with 4-chloro-7-nitrobenzofurazan, solid-phase extraction on a silica column and isocratic reversed-phase chromatography with fluorescence detection. Aspartam was used as an internal standard. The assay was linear over the concentration range of 0.2–20.0 μg/ml for plasma and 1.0–15.0 μg/ml for urine with a lower limit of detection of 0.1 μg/ml using 0.1 ml of starting volume of the sample. Both the within-day and day-to-day reproducibilities and accuracies were less than 5.46% and 1.6%, respectively. After a single oral dose of 500 mg of vigabatrin, the plasma concentration and the cumulative urinary excretion of the drug were determined.  相似文献   

19.
A reversed-phase, high-performance liquid chromatographic method using UV detection is described for the assay of the major metabolite of phentolamine in plasma and urine before or after enzymatic hydrolysis. Plasma is deproteinized with methanol. The sensitivity limit is 200 ng/ml using 150-μl samples. Urine is either diluted with water or purified after enzymatic hydrolysis. Concentrations down to 2–3 μg/ml could be quantified with acceptable precision. This method was applied to plasma and urine samples from subjects given phentolamine.  相似文献   

20.
Validation of two HPLC assays for the quantitation of carboplatin in human plasma ultrafiltrate is described. Both assay methods employed a YMC ODS-AQ 3.9×150 mm (3 μm) column for the chromatographic separation. The first method utilized direct UV detection, the second method utilized UV detection following post-column derivatization with sodium bisulfite. Structural analogues of carboplatin were synthesized and used as internal standards for the assays. With direct UV detection, sample clean-up using solid-phase extraction on amino cartridges was required prior to injection, with extraction recoveries ranging from 80 to 90%. This extraction procedure was not necessary with the post-column reaction method, which employed a more selective analytical wavelength. Unfortunately, instability of the post-column reagent was a problem and led to greater variability in predicted concentration values. For standard curves, a weighted (1/y2) regression approach was used for plots of peak area or peak height ratio (carboplatin/internal standard) vs. carboplatin concentration. The limit of detection of both assays was 0.025 μg/ml and both were validated for carboplatin concentrations from 0.05 to 40 μg/ml. Accuracy and precision data were generated using three batches of validation samples, each batch consisting of a standard curve and five sets of quality control samples. Stability of carboplatin in blood, plasma, plasma ultrafiltrate, and reconstituted extracts was evaluated. The assay methods were employed for the pharmacokinetic analysis of blood samples drawn from a pediatric patient that received a 400 mg/m2 dose of carboplatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号