首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Currently, there is much debate on the genetic architecture of quantitative traits in wild populations. Is trait variation influenced by many genes of small effect or by a few genes of major effect? Where is additive genetic variation located in the genome? Do the same loci cause similar phenotypic variation in different populations? Great tits (Parus major) have been studied extensively in long‐term studies across Europe and consequently are considered an ecological ‘model organism’. Recently, genomic resources have been developed for the great tit, including a custom SNP chip and genetic linkage map. In this study, we used a suite of approaches to investigate the genetic architecture of eight quantitative traits in two long‐term study populations of great tits—one in the Netherlands and the other in the United Kingdom. Overall, we found little evidence for the presence of genes of large effects in either population. Instead, traits appeared to be influenced by many genes of small effect, with conservative estimates of the number of contributing loci ranging from 31 to 310. Despite concordance between population‐specific heritabilities, we found no evidence for the presence of loci having similar effects in both populations. While population‐specific genetic architectures are possible, an undetected shared architecture cannot be rejected because of limited power to map loci of small and moderate effects. This study is one of few examples of genetic architecture analysis in replicated wild populations and highlights some of the challenges and limitations researchers will face when attempting similar molecular quantitative genetic studies in free‐living populations.  相似文献   

2.
Piertney SB  Webster LM 《Genetica》2010,138(4):419-432
Over the past two decades the fields of molecular ecology and population genetics have been dominated by the use of putatively neutral DNA markers, primarily to resolve spatio-temporal patterns of genetic variation to inform our understanding of population structure, gene flow and pedigree. Recent emphasis in comparative functional genomics, however, has fuelled a resurgence of interest in functionally important genetic variation that underpins phenotypic traits of adaptive or ecological significance. It may prove a major challenge to transfer genomics information from classical model species to examine functional diversity in non-model species in natural populations, but already multiple gene-targeted candidate loci with major effect on phenotype and fitness have been identified. Here we briefly describe some of the research strategies used for isolating and characterising functional genetic diversity at candidate gene-targeted loci, and illustrate the efficacy of some of these approaches using our own studies on red grouse (Lagopus lagopus scoticus). We then review how candidate gene markers have been used to: (1) quantify genetic diversity among populations to identify those depauperate in genetic diversity and requiring specific management action; (2) identify the strength and mode of selection operating on individuals within natural populations; and (3) understand direct mechanistic links between allelic variation at single genes and variance in individual fitness.  相似文献   

3.
Genetic markers provide potentially sensitive indicators of changes in environmental conditions because the genetic constitution of populations is normally altered well before populations become extinct. Genetic indicators in populations include overall genetic diversity, genetic changes in traits measured at the phenotypic level, and evolution at specific loci under selection. While overall genetic diversity has rarely been successfully related to environmental conditions, genetically based changes in traits have now been linked to the presence of toxins and both local and global temperature shifts. Candidate loci for monitoring stressors are emerging from information on how specific genes influence traits, and from screens of random loci across environmental gradients. Drosophila research suggests that chromosomal regions under recent intense selection can be identified from patterns of molecular variation and a high frequency of transposable element insertions. Allele frequency changes at candidate loci have been linked to pesticides, pollutants and climate change. Nevertheless, there are challenges in interpreting allele frequencies in populations, particularly when a large number of loci control a trait and when interactions between alleles influence trait expression. To meet these challenges, population samples should be collected for longitudinal studies, and experimental programmes should be undertaken to link variation at candidate genes to ecological processes.  相似文献   

4.
Analysis of the genetic variation of an endangered population is an important component for the success of conservation. Animals from two local Romanian pig breeds, the Mangalitsa and Bazna, were analysed for variation at a number of genetic loci using PCR-based DNA tests. Polymorphism was assessed at loci which 1) are known to cause phenotypic variation, 2) are potentially involved in trait differences or 3) are putative candidate genes. The traits considered are disease resistance, growth, coat colour, meat quality and prolificacy. Even though the populations are small and the markers are limited to specific genes, we found significant differences in five of the ten characterised loci. In some cases the observed allele frequencies were interesting in relation to gene function and the phenotype of the breed. These breeds are part of a conservation programme in Romania and marker information may be useful in preserving a representative gene pool in the populations. The use of polymorphisms in type 1 (gene) markers may be a useful complement to analysis based on anonymous markers.  相似文献   

5.
BACKGROUND: The model plant Arabidopsis thaliana (Arabidopsis) shows a wide range of genetic and trait variation among wild accessions. Because of its unparalleled biological and genomic resources, the potential of Arabidopsis for molecular genetic analysis of this natural variation has increased dramatically in recent years. SCOPE: Advanced genomics has accelerated molecular phylogenetic analysis and gene identification by quantitative trait loci (QTL) mapping and/or association mapping in Arabidopsis. In particular, QTL mapping utilizing natural accessions is now becoming a major strategy of gene isolation, offering an alternative to artificial mutant lines. Furthermore, the genomic information is used by researchers to uncover the signature of natural selection acting on the genes that contribute to phenotypic variation. The evolutionary significance of such genes has been evaluated in traits such as disease resistance and flowering time. However, although molecular hallmarks of selection have been found for the genes in question, a corresponding ecological scenario of adaptive evolution has been difficult to prove. Ecological strategies, including reciprocal transplant experiments and competition experiments, and utilizing near-isogenic lines of alleles of interest will be a powerful tool to measure the relative fitness of phenotypic and/or allelic variants. CONCLUSIONS: As the plant model organism, Arabidopsis provides a wealth of molecular background information for evolutionary genetics. Because genetic diversity between and within Arabidopsis populations is much higher than anticipated, combining this background information with ecological approaches might well establish Arabidopsis as a model organism for plant evolutionary ecology.  相似文献   

6.
Two commonly used techniques for estimating the effect of genes on traits in wild populations are the candidate gene approach and quantitative genetic analyses. However, whether these two approaches measure the same underlying processes remains unresolved. Here, we use these two methods to test whether they are alternative or complementary approaches to understanding genetic variation in the timing of reproduction - a key trait involved in adaptation to climate change - in wild tit populations. Our analyses of the candidate gene Clock show weak correlates with timing variables in blue tits, but no association in great tits, confirming earlier results. Quantitative genetic analyses revealed very low levels of both direct (female) and indirect (male) additive genetic variation in timing traits for both species, in contrast to previous studies on these traits, and much lower than generally assumed. Hence, neither method suggests strong genetic effects on the timing of breeding in birds, and further work should seek to assess the generality of these conclusions. We discuss how differences in the genetic control of traits, species life-history and confounding environmental variables may determine how useful integrating these two techniques is to understand the phenotypic variation in wild populations.  相似文献   

7.
Phenotypic plasticity allows organisms to alter their phenotype in direct response to changes in the environment. Despite growing recognition of plasticity's role in ecology and evolution, few studies have probed plasticity's molecular bases—especially using natural populations. We investigated the genetic basis of phenotypic plasticity in natural populations of spadefoot toads (Spea multiplicata). Spea tadpoles normally develop into an “omnivore” morph that is favored in long‐lasting, low‐density ponds. However, if tadpoles consume freshwater shrimp or other tadpoles, they can alternatively develop (via plasticity) into a “carnivore” morph that is favored in ephemeral, high‐density ponds. By combining natural variation in pond ecology and morph production with population genetic approaches, we identified candidate loci associated with each morph (carnivores vs. omnivores) and loci associated with adaptive phenotypic plasticity (adaptive vs. maladaptive morph choice). Our candidate morph loci mapped to two genes, whereas our candidate plasticity loci mapped to 14 genes. In both cases, the identified genes tended to have functions related to their putative role in spadefoot tadpole biology. Our results thereby form the basis for future studies into the molecular mechanisms that mediate plasticity in spadefoots. More generally, these results illustrate how diverse loci might mediate adaptive plasticity.  相似文献   

8.
9.
Local adaptation and phenotypic differences among populations have been reported in many species, though most studies focus on either neutral or adaptive genetic differentiation. With the discovery of DNA methylation, questions have arisen about its contribution to individual variation in and among natural populations. Previous studies have identified differences in methylation among populations of organisms, although most to date have been in plants and model animal species. Here we obtained eyed eggs from eight populations of Chinook salmon (Oncorhynchus tshawytscha) and assayed DNA methylation at 23 genes involved in development, immune function, stress response, and metabolism using a gene‐targeted PCR‐based assay for next‐generation sequencing. Evidence for population differences in methylation was found at eight out of 23 gene loci after controlling for developmental timing in each individual. However, we found no correlation between freshwater environmental parameters and methylation variation among populations at those eight genes. A weak correlation was identified between pairwise DNA methylation dissimilarity among populations and pairwise F ST based on 15 microsatellite loci, indicating weak effects of genetic drift or geographic distance on methylation. The weak correlation was primarily driven by two genes, GTIIBS and Nkef. However, single‐gene Mantel tests comparing methylation and pairwise F ST were not significant after Bonferroni correction. Thus, population differences in DNA methylation are more likely related to unmeasured oceanic environmental conditions, local adaptation, and/or genetic drift. DNA methylation is an additional mechanism that contributes to among population variation, with potential influences on organism phenotype, adaptive potential, and population resilience.  相似文献   

10.
The genetic control of seed glucosinolate content in oilseed rape was investigated using two intervarietal backcross populations. Four QTLs segregating in the population derived from a Brassica napus L. 'Victor' x Brassica napus L. 'Tapidor' cross, together accounting for 76% of the phenotypic variation, were mapped. Three of these loci also appeared to control the accumulation of seed glucosinolates in a Brassica napus L. 'Bienvenu' x 'Tapidor' cross, and accounted for 86% of the phenotypic variation. The three QTLs common to both populations mapped to homoeologous regions of the B. napus genome, suggesting that seed glucosinolate accumulation is controlled by duplicate genes. It was possible to extend the comparative analysis of QTLs controlling seed glucosinolate accumulation by aligning the published genetic maps generated by several research groups. This comparative mapping demonstrated that high-glucosinolate varieties often carry low-glucosinolate alleles at one or more of the loci controlling seed glucosinolate accumulation.  相似文献   

11.
Extensive genetic and genomic studies of the relationship between alcohol drinking preference and withdrawal severity have been performed using animal models. Data from multiple such publications and public data resources have been incorporated in the GeneWeaver database with >60,000 gene sets including 285 alcohol withdrawal and preference-related gene sets. Among these are evidence for positional candidates regulating these behaviors in overlapping quantitative trait loci (QTL) mapped in distinct mouse populations. Combinatorial integration of functional genomics experimental results revealed a single QTL positional candidate gene in one of the loci common to both preference and withdrawal. Functional validation studies in Ap3m2 knockout mice confirmed these relationships. Genetic validation involves confirming the existence of segregating polymorphisms that could account for the phenotypic effect. By exploiting recent advances in mouse genotyping, sequence, epigenetics, and phylogeny resources, we confirmed that Ap3m2 resides in an appropriately segregating genomic region. We have demonstrated genetic and alcohol-induced regulation of Ap3m2 expression. Although sequence analysis revealed no polymorphisms in the Ap3m2-coding region that could account for all phenotypic differences, there are several upstream SNPs that could. We have identified one of these to be an H3K4me3 site that exhibits strain differences in methylation. Thus, by making cross-species functional genomics readily computable we identified a common QTL candidate for two related bio-behavioral processes via functional evidence and demonstrate sufficiency of the genetic locus as a source of variation underlying two traits.  相似文献   

12.
Hybrid zones of ecologically divergent populations are ideal systems to study the interaction between natural selection and gene flow during the initial stages of speciation. Here, we perform an amplified fragment length polymorphism (AFLP) genome scan in parallel hybrid zones between divergent ecotypes of the marine snail Littorina saxatilis, which is considered a model case for the study of ecological speciation. Ridged‐Banded (RB) and Smooth‐Unbanded (SU) ecotypes are adapted to different shore levels and microhabitats, although they present a sympatric distribution at the mid‐shore where they meet and mate (partially assortatively). We used shell morphology, outlier and nonoutlier AFLP loci from RB, SU and hybrid specimens captured in sympatry to determine the level of phenotypic and genetic introgression. We found different levels of introgression at parallel hybrid zones and nonoutlier loci showed more gene flow with greater phenotypic introgression. These results were independent from the phylogeography of the studied populations, but not from the local ecological conditions. Genetic variation at outlier loci was highly correlated with phenotypic variation. In addition, we used the relationship between genetic and phenotypic variation to estimate the heritability of morphological traits and to identify potential Quantitative Trait Loci to be confirmed in future crosses. These results suggest that ecology (exogenous selection) plays an important role in this hybrid zone. Thus, ecologically based divergent natural selection is responsible, simultaneously, for both ecotype divergence and hybridization. On the other hand, genetic introgression occurs only at neutral loci (nonoutliers). In the future, genome‐wide studies and controlled crosses would give more valuable information about this process of speciation in the face of gene flow.  相似文献   

13.
Climate is one of the most important drivers for adaptive evolution in forest trees. Climatic selection contributes greatly to local adaptation and intraspecific differentiation, but this kind of selection could also have promoted interspecific divergence through ecological speciation. To test this hypothesis, we examined intra‐ and interspecific genetic variation at 25 climate‐related candidate genes and 12 reference loci in two closely related pine species, Pinus massoniana Lamb. and Pinus hwangshanensis Hisa, using population genetic and landscape genetic approaches. These two species occur in Southeast China but have contrasting ecological preferences in terms of several environmental variables, notably altitude, although hybrids form where their distributions overlap. One or more robust tests detected signals of recent and/or ancient selection at two‐thirds (17) of the 25 candidate genes, at varying evolutionary timescales, but only three of the 12 reference loci. The signals of recent selection were species specific, but signals of ancient selection were mostly shared by the two species likely because of the shared evolutionary history. FST outlier analysis identified six SNPs in five climate‐related candidate genes under divergent selection between the two species. In addition, a total of 24 candidate SNPs representing nine candidate genes showed significant correlation with altitudinal divergence in the two species based on the covariance matrix of population history derived from reference SNPs. Genetic differentiation between these two species was higher at the candidate genes than at the reference loci. Moreover, analysis using the isolation‐with‐migration model indicated that gene flow between the species has been more restricted for climate‐related candidate genes than the reference loci, in both directions. Taken together, our results suggest that species‐specific and divergent climatic selection at the candidate genes might have counteracted interspecific gene flow and played a key role in the ecological divergence of these two closely related pine species.  相似文献   

14.
15.
Over the last 20 years, studies of Caenorhabditis elegans natural diversity have demonstrated the power of quantitative genetic approaches to reveal the evolutionary, ecological, and genetic factors that shape traits. These studies complement the use of the laboratory-adapted strain N2 and enable additional discoveries not possible using only one genetic background. In this chapter, we describe how to perform quantitative genetic studies in Caenorhabditis, with an emphasis on C. elegans. These approaches use correlations between genotype and phenotype across populations of genetically diverse individuals to discover the genetic causes of phenotypic variation. We present methods that use linkage, near-isogenic lines, association, and bulk-segregant mapping, and we describe the advantages and disadvantages of each approach. The power of C. elegans quantitative genetic mapping is best shown in the ability to connect phenotypic differences to specific genes and variants. We will present methods to narrow genomic regions to candidate genes and then tests to identify the gene or variant involved in a quantitative trait. The same features that make C. elegans a preeminent experimental model animal contribute to its exceptional value as a tool to understand natural phenotypic variation.  相似文献   

16.
Most animals depend on olfaction for survival and procreation. Odor-guided behavior is a quantitative trait, with phenotypic variation due to multiple segregating quantitative trait loci (QTL). Despite its profound biological importance, the genetic basis of naturally occurring variation in olfactory behavior remains unexplored. Here, we mapped a single Drosophila QTL affecting variation in avoidance response to benzaldehyde, using a population of recombinant inbred lines. Deficiency complementation mapping resolved this region into one female- and one male-specific QTL. Subsequent quantitative complementation tests to all available mutations of positional candidate genes showed that the female-specific QTL failed to complement a P-element insertional mutation, l(3)04276. The P-element insertion was in the intron of a novel gene, Vanaso, which contains a putative guanylate binding protein domain, is highly polymorphic, and is expressed in the third antennal segment, the major olfactory organ of Drosophila. No expression was detected in the fly brain, suggesting that Vanaso plays a role in peripheral chemosensory processes rather than in central integration of olfactory information. QTL mapping followed by quantitative complementation tests to deficiencies and mutations is an effective strategy for gene discovery that allows characterization of effects of recessive lethal genes on adult phenotypes and here enabled identification of a candidate gene that contributes to sex-specific quantitative variation in olfactory behavior.  相似文献   

17.
The accessibility of new genomic resources, high‐throughput molecular technologies and analytical approaches such as genome scans have made finding genes contributing to fitness variation in natural populations an increasingly feasible task. Once candidate genes are identified, we argue that it is necessary to take a mechanistic approach and work up through the levels of biological organization to fully understand the impacts of genetic variation at these candidate genes. We demonstrate how this approach provides testable hypotheses about the causal links among levels of biological organization, and assists in designing relevant experiments to test the effects of genetic variation on phenotype, whole‐organism performance capabilities and fitness. We review some of the research programs that have incorporated mechanistic approaches when examining naturally occurring genetic and phenotypic variation and use these examples to highlight the value of developing a comprehensive understanding of the relationship between genotype and fitness. We give suggestions to guide future research aimed at uncovering and understanding the genetic basis of adaptation and argue that further integration of mechanistic approaches will help molecular ecologists better understand the evolution of natural populations.  相似文献   

18.
Fish migrations are energetically costly, especially when moving between freshwater and saltwater, but are a viable strategy for Pacific salmon and trout (Oncorhynchus spp.) due to the advantageous resources available at various life stages. Anadromous steelhead (O. mykiss) migrate vast distances and exhibit variation for adult migration phenotypes that have a genetic basis at candidate genes known as greb1L and rock1. We examined the distribution of genetic variation at 13 candidate markers spanning greb1L, intergenic, and rock1 regions versus 226 neutral markers for 113 populations (n = 9,471) of steelhead from inland and coastal lineages in the Columbia River. Patterns of population structure with neutral markers reflected genetic similarity by geographic region as demonstrated in previous studies, but candidate markers clustered populations by genetic variation associated with adult migration timing. Mature alleles for late migration had the highest frequency overall in steelhead populations throughout the Columbia River, with only 9 of 113 populations that had a higher frequency of premature alleles for early migration. While a single haplotype block was evident for the coastal lineage, we identified multiple haplotype blocks for the inland lineage. The inland lineage had one haplotype block that corresponded to candidate markers within the greb1L gene and immediately upstream in the intergenic region, and the second block only contained candidate markers from the intergenic region. Haplotype frequencies had similar patterns of geographic distribution as single markers, but there were distinct differences in frequency between the two haplotype blocks for the inland lineage. This may represent multiple recombination events that differed between lineages where phenotypic differences exist between freshwater entry versus arrival timing as indicated by Micheletti et al. (2018a). Redundancy analyses were used to model environmental effects on allelic frequencies of candidate markers, and significant variables were migration distance, temperature, isothermality, and annual precipitation. This study improves our understanding of the spatial distribution of genetic variation underlying adult migration timing in steelhead as well as associated environmental factors and has direct conservation and management implications.  相似文献   

19.
The molecular population genetics of regulatory genes   总被引:19,自引:0,他引:19  
Regulatory loci, which may encode both trans acting proteins as well as cis acting promoter regions, are crucial components of an organism's genetic architecture. Although evolution of these regulatory loci is believed to underlie the evolution of numerous adaptive traits, there is little information on natural variation of these genes. Recent molecular population genetic studies, however, have provided insights into the extent of natural variation at regulatory genes, the evolutionary forces that shape them and the phenotypic effects of molecular regulatory variants. These recent analyses suggest that it may be possible to study the molecular evolutionary ecology of regulatory diversification by examining both the extent and patterning of regulatory gene diversity, the phenotypic effects of molecular variation at these loci and their ecological consequences.  相似文献   

20.

Key message

A key candidate gene, GRMZM2G110141, which could be used in marker-assisted selection in maize breeding programs, was detected among the 16 genetic loci associated with waterlogging tolerance identified through genome-wide association study.

Abstract

Waterlogging stress seriously affects the growth and development of upland crops such as maize (Zea mays L.). However, the genetic basis of waterlogging tolerance in crop plants is largely unknown. Here, we identified genetic loci for waterlogging tolerance-related traits by conducting a genome-wide association study using maize phenotypes evaluated in the greenhouse under waterlogging stress and normal conditions. A total of 110 trait-single nucleotide polymorphism associations spanning 16 genomic regions were identified; single associations explained 2.88–10.67% of the phenotypic variance. Among the genomic regions identified, 14 co-localized with previously detected waterlogging tolerance-related quantitative trail loci. Furthermore, 33 candidate genes involved in a wide range of stress-response pathways were predicted. We resequenced a key candidate gene (GRMZM2G110141) in 138 randomly selected inbred lines and found that variations in the 5?-UTR and in the mRNA abundance of this gene under waterlogging conditions were significantly associated with leaf injury. Furthermore, we detected favorable alleles of this gene and validated the favorable alleles in two different recombinant inbred line populations. These alleles enhanced waterlogging tolerance in segregating populations, strongly suggesting that GRMZM2G110141 is a key waterlogging tolerance gene. The set of waterlogging tolerance-related genomic regions and associated markers identified here could be valuable for isolating waterlogging tolerance genes and improving this trait in maize.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号