首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We synthesized a new europium complex [Eu(ecbpd)3(Phen)] with bis(β‐diketone) ligand containing a carbazole group, in which ecbpd and Phen are dehydro‐3,3′‐(9‐ethyl‐9H‐carbazole‐3,6‐diyl)bis(1‐phenylpropane‐1,3‐dione) and 1,10‐phenanthroline, respectively. Its UV/vis and photoluminescent spectra, quantum yield, luminescence lifetime, electrochemistry, thermal stability and electroluminescent performances were studied. This europium complex showed low efficiency luminescence, which is probably due to the mismatching energy levels of its ligand and Eu3+, as well as the double Eu3+ core resonance.  相似文献   

2.
The photochemistry of two 2-acyloxycarbazoles, 2-acetyl- and 2-benzoyloxycarbazole, in different solvents has been studied. Irradiation of the 2-acyloxycarbazoles in organic media at 254 or 313 nm yields the [1,3]-migrated photoproducts, 1-acyl-2-hydroxycarbazole, 3-acyl-2-hydroxycarbazole and 2-hydroxycarbazole. The effects of the solvent, the atmosphere and the intensity of the light source on the photochemistry of 2-acyloxycarbazole have been studied. Laser flash photolysis as well as photosensitization experiments were performed in order to determine the photoreactive excited state. Electronic spectra (absorption, fluorescence and phosphorescence emission spectra) of the 2-acyloxycarbazoles have been recorded in homogeneous media at 298 K and in solid matrices at 77 K. The dynamic properties of the lowest singlet excited state in terms of fluorescence lifetime and fluorescence quantum yield have been measured in different organic solvents at room temperature. The photo-Fries rearrangement as a mild and clean one-pot reaction for the preparation of an advanced intermediate precursor in the total synthesis of carbazole alkaloids is described.  相似文献   

3.
We report the synthesis and characterization of four cyclometalated iridium complexes based on carbazole and arylamine modified 2-phenylpyridine. The carbazole and arylamine groups are linked to 2-phenyl pyridine backbone to enhance the energy harvesting and transfer from host to guest materials. The electrochemical and photophysical properties of the complexes are studied and electroluminescent devices are fabricated. The results show that the complexes with ligands containing carbazole moieties have desirable phosphorescent properties. The device with complex 3 doped PVK (poly (vinylcarbazole)) as emission layer achieves maximum luminous efficiency of 6.56 cd A−1 and maximum brightness of 14448 cd m−2.  相似文献   

4.
The photophysical properties (absorption, emission, and excitation spectra; luminescence quantum yields; luminescence decay lifetimes ) of K13[Eu(SiW11O39)2] and K15[Eu(BW11O39)2] in aqueous solution and in the solid state are reported. Both complexes exhibit broad and very intense O → W charge transfer bands in the U.V. region and weak and narrow f → f Eu3+ bands in the visible. At 77 K the luminescence emission of both complexes, which consists of 5DO7FJ bands split by the local crystal field, can be pumped very efficiently via both the O → W CT and the f → f Eu3+ levels, whereas at 298 K only pumping via the f → f Eu3+ is efficient. The values of the luminescence decay lifetimes in H2O and D2O solution are quite similar, showing that no water molecule is coordinated to the central Eu3+ ion. The high resolution emission spectra are discussed in an attempt to define the coordination symmetry of Eu3+.  相似文献   

5.
Li WX  Chai WJ  Liu Y  Li YJ  Ren T  Zhang J  Ao BY 《Luminescence》2012,27(5):431-436
A series of rare earth complexes [(TbxTmy)L5(ClO4)2](ClO4)·3H2O (x:y = 1.000:0.000, 0.999:0.001, 0.995:0.005, 0.990:0.010, 0.950:0.050, 0.900:0.100, 0.800:0.200, 0.700:0.300; L = C6H5CH2SOCH2COC6H5) (Tb(III) luminescence ion; Tm(III) doped inert ion) were synthesized and characterized by elemental analysis, infrared spectra (IR) and 1H‐NMR. The photophysical properties of these complexes were studied in detail using ultraviolet absorption spectra, fluorescent spectra and lifetimes. The fluorescence spectra of complexes indicated that the fluorescence emission intensity was significantly enhanced by Tm(III). The complexes showed the best luminescence properties when the mole ratio Tb(III):Tm(III) was 0.990:0.010. The fluorescence intensity could be increased to 390%. Additionally, phosphorescence spectra and the luminescence mechanisms are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The photochemical and photophysical behaviour of two dendrimers consisting of a benzophenone core and branches that contain four (4) and eight (5) naphthalene units at the periphery has been investigated in CH(2)Cl(2) solution (298 K) and in CH(2)Cl(2)/CHCl(3) 1:1 v/v rigid matrix (77 K). For comparison purposes, the photophysical properties of dimethoxybenzophenone (1), 2-methylnaphthalene (2) and of a dendron containing four naphthalene units (3) have also been studied. In both dendrimers 4 and 5, excitation of the peripheral naphthalene units is followed by fast (1.1 x 10(9) s(-1) at 298 K, > 2.5 x 10(9) s(-1) at 77 K for 5; 2.9 x 10(8) s(-1) at 298 K, 7 x 10(5) s(-1) at 77 K for 5) singlet-singlet energy transfer to the benzophenone core. On a longer time scale (>1 x 10(6) s(-1) at 298 K, >6 x 10(3) s(-1) at 77 K for 4; 3.1 x 10(7) s(-1) at 298 K, ca. 3 x 10(2) s(-1) at 77 K for 5) a back energy transfer process takes place from the triplet state of the benzophenone core to the triplet state of the peripheral naphthalene units. Selective excitation of the benzophenone unit is followed by intersystem crossing and triplet-triplet energy transfer to the peripheral naphthalene units. In hydrogen donating solvents, the benzophenone core is protected from degradation by the presence of the naphthalene units. In solutions containing Tb(CF(3)SO(3))(3), sensitization of the green Tb(3+) luminescence is observed on excitation of both the peripheral naphthalene units and the benzophenone core of 5. Upon excitation of the naphthalene absorption band (266 nm) with a laser source, intradendrimer triplet-triplet annihilation of naphthalene excited states leads to delayed naphthalene fluorescence (lambda(max)= 335 nm), that can also be obtained upon excitation at 355 nm (benzophenone absorption band). The results obtained show that preorganization of photoactive units in a dendritic structure can be exploited for a variety of useful functions, including photosensitized emission, protection from undesired photoreactions, and energy up-conversion.  相似文献   

7.
Malkin VM  Rapoport VL 《Biofizika》2008,53(5):734-739
Luminescence and excitation luminescence spectra of water solutions of polythymidylic acid at room temperature were studied. Three luminescence bands at different excitation wavelengths were observed: at 338 nm, which was known earlier, and two new bands, at 320 and 350 nm. The study of excitation luminescence spectra that have not been studied earlier led us to interpret the band at 320 nm as a band of chromophores that do not interact, the band at 338 nm as a band of photochemically most active densely packed stacking dimers (absorption band exciton splitting approximately 4000 cm(-1)), and the band at 350 nm as a band of photochemically inactive big stacking aggregates (n > or = 10, exciton splitting approximately 8000 cm(-1)). Changes in optical density at 270 nm of poly-T water solutions after consecutive irradiations with UV light at 297+302 and 248 nm were studied. The causes of incomplete reversibility are discussed.  相似文献   

8.
The absorption, emission and excitation luminescence spectra of CpCp have been studied in comparison with the same of Cp at 77K in the glass mixture (ethyleneglycol: water, 1:1, v/v). It is shown, that the CpCp fluorescence is of dual nature: eximer and exciton. The exciton absorption spectrum with split band (3000 cm-1) has been calculated by means of the fluorescence exciton spectrum. It corresponds to the "conservative" part of the CD spectrum.  相似文献   

9.
Lanthanides ion complexes have been intensively investigated as light emitting materials due to their interesting photophysical properties, such as narrow line luminescence with a long lifetime, large Stokes shift and high luminescence quantum efficiency. Here we report the synthesis, structural and photophysical properties of a new Tb(III) complex. This complex showed strong photoemission of green light both in solution and in the solid state as well as the characteristic emission lines of the Tb(III) ion. The electroluminescence properties of the complex were also studied and we obtained bright green light emission through the use of a co-deposited structure. The fabricated device showed a typical diode behavior with a low threshold bias voltage (around 10 V).  相似文献   

10.
The complexes [M(L(1))(2)(NO(3))] and [M(L(2))(NO(3))(2)](M = Pr, Er; L(1)= the tetradentate ligand dihydrobis-[3-(2-pyridyl)pyrazolyl]borate; L(2)= the hexadentate ligand hydrotris-[3-(2-pyridyl)pyrazolyl]borate) were prepared and their structural and photophysical properties studied. All complexes are 10-coordinate. Crystallographic analysis of [M(L(1))(2)(NO(3))](M = Pr, Er) showed that for the smaller Er(iii) ions steric congestion at the metal centre results in two of the Er-N(pyridyl) distances being particularly long, which does not occur with the larger Pr(iii) ion that is better able to accommodate 10-fold coordination. On UV irradiation, both Pr(iii) complexes show, in the visible region of their luminescence spectra, transitions originating from both the (3)P(0) level (at ca. 21,000 cm(-1)) and the (1)D(2) level (at ca. 17,000 cm(-1)), a consequence of the fact that the lowest triplet state of the coordinated pyrazolylborate ligands lies at ca. 24,000 cm(-1) in each case so is high enough in energy to populate both levels. This contrasts with Pr(iii) complexes based on diketonate ligands in which the lower triplet energies of the ligands result in emission from the (1)D(2) level only. At longer wavelengths, near-infrared luminescence arising from the (1)D(2) emissive level is observed with lifetimes (in both the solid state and solution) being in the range 50-110 ns. For both Er(iii) complexes, luminescence at 1530 nm occurs following UV excitation of ligand-centred transitions. In CH(2)Cl(2) both complexes gave dual-exponential luminescence, with the major component having a lifetime characteristic of an intact Er(iii) complex (approximately 1.5 micros) and the minor component being much shorter lived (0.2-0.5 micros), suggestive of a species in which a ligand is partially detached and the metal is solvated, with the two forms interconverting slowly. This behaviour is consistent with the steric congestion and long M-N(pyridyl) bonds that were observed in [Er(L(1))(2)(NO(3))]. In the solid state both Er(iii) complexes gave very weak luminescence, which could be fitted to a single exponential decay with a lifetime similar to the longer-lived of the solution components.  相似文献   

11.
The electronic absorption and luminescence spectra, photoreactivity, and the electrochemical properties of a series of aromatic electron acceptors based on the 4,4′-bipyridinium, 1,2-bis(4-pyridinium)ethylene, and 2,7-diazapyrenium cations have been investigated. All these species exhibit distinctive absorption spectra and some of them show fluorescence and phosphorescence bands. The compounds based on the 1,2-bis(4-pyridinium)ethylene unit provide the interesting possibility of studying the E-Z photoisomerization of the vinylic double bond. The photophysical and photochemical properties have been also interpreted on the basis of quantum chemical calculations. All the examined compounds exhibit reduction processes at mild negative potentials that reveal their electron accepting character. We found that the photophysical, photochemical and electrochemical properties of such compounds are not only determined by the structure of the N-heterocyclic central moiety, but are also remarkably affected by the peripheral substituents linked to the quaternarized nitrogen atoms.  相似文献   

12.
V.A. Sineshchekov  F.F. Litvin 《BBA》1977,462(2):450-466
Red luminescence of purple membranes from Halobacterium halobium cells in suspension, dry film or freeze-dried preparations was studied and its emission, excitation and polarization spectra are reported. The emission spectra have three bands at 665–670, 720–730 and at 780–790 nm. The position (maximum at 580 nm) and shape of the excitation spectra are close to those of the absorption spectra. The spectra depend on experimental conditions, in particular on pH of the medium. Acidification increases the long wavelength part of the emission spectra and shifts the main excitation maximum 50–60 nm to the longer wavelength side. Low-temperature light-induced changes of the absorption, emission and excitation spectra are presented. Several absorbing and emitting species of bacteriorhodopsin are responsible for the observed spectral changes. The bacteriorhodopsin photoconversion rate constant was estimated to be about 1 · 1011 s?1 at ? 196°C from the quantum yields of the luminescence (1 · 10?3) and photoreaction (1 · 10?1). The temperature dependence of the luminescence quantum yield points to the existence of two or three quenching processes with different activation energies. High degree of luminescence polarization (about 45–47%) throughout the absorption and fluorescence spectra and its temperature independence show that there is no energy transfer between bacteriorhodopsin molecules and no chromophore rotation during the excitation lifetime. In carotenoid-containing membranes, energy migration from the bulk of carotenoids to bacteriorhodopsin was not found either. Bacteriorhodopsin phosphorescence was not observed in the 500–1100 nm region and the emission is believed to be fluorescence by nature.  相似文献   

13.
In this paper, we synthesize a series of cyclometalated ligands and their corresponding Ir(III) complexes using pentane-2,4-dione as the auxiliary ligand. We discuss the photophysical properties of these Ir(III) complexes in detail, including their UV-Vis absorption spectra, photoluminescence spectra in solid and liquid states, luminescence decay lifetimes, and luminescence quantum yields. The correlation between self-quenching effect and molecular structure is also investigated. It is found that these Ir(III) complexes are solid-emitting ones due to their reduced self-quenching in solid state. Theoretical calculation and experimental data reveal that the following two reasons should be responsible for the reduced self-quenching in solid state: (1) pentane-2,4-dione, phenyl, and triphenylamine moieties serve as inert shields for the excited state Ir(III) complexes; (2) the radiative decay process in these Ir(III) complexes is accelerated by the introduction of electron-donors, and thus partly immune from self-quenching caused by intermolecular action.  相似文献   

14.
(1) In photosystem I (PS I) particles in the presence of dithionite and intense background illumination at 290 K, an external magnetic field (0–0.22 T) induced an increase, ΔF, of the low chlorophyll a emission yield, F (ΔFF ? 1–1.5%). Half the effect was obtained at about 35–60 mT and saturation occurred for magnetic fields higher than about 0.15 T. In the absence of dithionite, no field-induced increase was observed. Cooling to 77 K decreased ΔF at 685 nm, but not at 735 nm, to zero. Measuring the emission spectra of F and ΔF, using continuous excitation light, at 82, 167 and 278 K indicated that the spectra of F and ΔF have about the same maximum at about 730, 725 and 700 nm, respectively. However, the spectra of ΔF show more long-wavelength emission than the corresponding spectra of F. (2) Only in the presence of dithionite and with (or after) background illumination, was a luminescence (delayed fluorescence) component observed at 735 nm, after a 15 ns laser flash (530 nm), that decayed in about 0.1 μs at room temperature and in approx. 0.2 μs at 77 K. A magnetic field of 0.22 T caused an appreciable increase in luminescence intensity after 250 ns, probably mainly caused by an increase in decay time. The emission spectra of the magnetic field-induced increase of luminescence, ΔL, at 82, 167 and 278 K coincided within experimental error with those of ΔF mentioned above. The temperature dependence of ΔF and ΔL was found to be nearly the same, both at 685 and at 735 nm. (3) Analogously to the proposal concerning the 0.15 μs luminescence in photosystem II (Sonneveld, A., Duysens, L.N.M. and Moerdijk, A. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 5889–5893), we propose that recombination of the oxidized primary donor P-700+ and the reduced acceptor A?, probably A?1, of PS I causes the observed fast luminescence. The effect of an external magnetic field on this emission may be explained by the radical pair mechanism. The field-induced increase of the 0.1–0.2 μs luminescence seems to be at least in large part responsible for the observed increase of the total (prompt + delayed) emission measured during continuous illumination in the presence of a magnetic field.  相似文献   

15.
The luminescence and absorption properties of [Re(bpy)(CO)4](PF6) and [Re(phen)(CO)4](PF6) are consistent with representation of the lowest excited states as nominally 3LC with an admixture of 1CT character. Using high resolution spectroscopic techniques at cryogenic temperatures, such as luminescence line narrowing spectroscopy or spectroscopy in single crystals, the vibrational sideband information which is normally lost in the ‘natural’ solution environment can be observed in the luminescence and absorption spectra. Mixing between the 3LC and 1CT excitation (3%) has previously been reported in [Re(bpy)(CO)4](PF6), resulting in metal-ligand sidebands at 184 and 198 cm−1 in the absorption spectrum and a short luminescence lifetime (33.0 μs). In the luminescence spectra (line narrowed) the metal-ligand sidebands are observed at 194 cm−1. Weak mixing ( 1%) of the 1CT excitation (32 100 cm−1) with the 3LC excitation (22 100 cm−1) in [Re(phen)(CO)4](PF6) gives rise to the observation of metal-ligand vibrational sidebands in the luminescence spectrum (204 cm−1) and a luminescence lifetime of τ= 295±5 μs at 20 K. A spin-orbit mixing matrix element of 3LC|Hso|1CT for [Re(phen)(CO)4](PF6) of 65 cm−1 is calculated, compared to 261 cm−1 in [Re(bpy)(CO)4](PF6).  相似文献   

16.
稀土近红外发光材料具有独特的光物理性质,如发光谱带窄、较大的Stock位移、荧光寿命长可达毫秒级等,在医学诊断和成像、免疫分析等热门领域具有重大的应用前景。但由于跃迁选择定则,稀土离子本身的吸收系数较小,需要用特定的生色团对其进行敏化,以增强其发光性能。在众多生色团中,卟啉化合物由于其激发态能级与近红外发光的稀土离子能级较为匹配,可以较好的敏化稀土离子,获得较高的近红外发光效率,因此,近年来受到了极大的关注。本文总结了近年来近红外发光卟啉稀土配合物在生命科学领域中的应用研究进展,并对其发展前景进行了展望。  相似文献   

17.
A novel Zn(2+) fluorescence probe, 2-[(N-ethyl carbazole)-3-sulfonyl ethylenediamine]-1-N,N-bis(2-methypyrbidy), was designed and synthesized via simple steps, and its structure was confirmed by IR and (1)H NMR. The probe gives significant fluorescence enhancement immediately following Zn(2+) addition at neutral pH and exhibits improved selectivity for Zn(2+) compared to the other metal ions in aqueous solution. The spectra and fluorescence quantum yield of the synthesized compound were carefully investigated by UV-vis absorption and fluorescence spectra in various solvents.  相似文献   

18.
The carbazole ring is the basic structure present in the fluorescence derivatization reagents 9-chlorocarbonylcarbazole and 9-carbazolylacetic acid. The fluorescence behaviour of these carbazole derivatives was studied in solvents with different polarities (cyclohexane, ethanol, acetonitrile, water) and at different pH values (4.5 and 8.8). The influence of the low polarity environment afforded by 2-hydroxypropyl-beta-cyclodextrin (HPbeta-CD) is also described. The behaviour of the fluorescent reagents is compared to the model molecules carbazole and 9-methylcarbazole. For all derivatives studied, a bathochromic shift in the fluorescence emission maxima was observed when the solvent polarity was increased. A bathochromic shift was observed in dioxane solutions, which can be ascribed to the peculiar behaviour of this solvent. The changes in the fluorescence intensity in the case of 9-carbazolylacetic acid can be related to the ionization of the carboxylic acid group. Inclusion into the cavity of HPbeta-CD allows emission spectra to be obtained close to those obtained in ethanolic solutions with a remarkable enhancement in the fluorescence intensity, depending on the chemical structure of the carbazole derivative included.  相似文献   

19.
Phenylethynylchromones bearing different donor groups at the phenyl moiety have been prepared and their photophysical and electrogenerated chemiluminescence (ECL) properties have been studied with respect to their structural features. Intriguingly, the presence and variation of donor groups do not much influence the absorption spectra, which can be compared with the spectrum of unsubstituted chromone, whereas the photoluminescence (PL) spectra show pronounced changes. Density functional theory (DFT) calculations indicate enhancement of HOMO energy levels upon increasing the donor strength. The photophysical properties have also been studied in various solvents, and the PL spectra in particular show the anticipated trend. The introduction of pi-extension imparts ECL to the new molecules and the electronic coupling between the donor and the acceptor moieties through C-C triple bond influences ECL emission maxima. Weaker donors impart excimer ECL while stronger donors impart monomeric intramolecular charge transfer (ICT) ECL.  相似文献   

20.
A systematic study was undertaken of luminescent aqueous solutions of homeopathic preparation of sodium chloride at a dilution from D1 to D30, produced by "Weleda" company (Moscow) was carried out. It was shown that intensity of luminescence versus the degree of dilution is a non-monotonous function with several maxima, the main maximum corresponds to 13-14 decimal dilution. The dynamics of spectra was registered for several weeks. A systematic study of water samples (D1-D30) exposed to a similar procedure of potentization but without salt addition was also performed. The difference in the luminescence spectra of water of different stages of potentization was shown. The motility of infusoria Spirostoma ambiquum in solutions being examined was studied. A significant negative correlation between the infusoria motility and luminescence intensity was registered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号