首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Olive ridley turtles, although widely distributed globally and in Indian coastal waters, have undergone declines in recent years due to anthropogenic factors, particularly fishery‐related mortality. Assessment of genetic variability in existing populations is critical to the development of effective conservation strategies. Here we describe the development of six highly polymorphic microsatellite loci from a simple sequence repeat‐enriched genomic DNA library of olive ridley turtle. Characterization of five of these loci using 83 individual olive ridley turtles revealed eight to 24 alleles per locus, high observed and expected heterozygosity values and broad cross‐species amplifications. The sixth microsatellite was found to be monomorphic in the olive ridley samples but was polymorphic in two related marine turtle species. These microsatellites thus provide efficient genetic markers to understand the population structure, phylogeography and species relationships of olive ridley and other marine turtle species.  相似文献   

2.
Olive ridleys, one of the widely distributed marine turtle species has undergone declines in recent years due to multiple anthropogenic factors warranting conservation efforts for which assessment of genetic variability in existing populations become critical. Here we describe development of ten new microsatellite markers from a short sequence repeat-enriched partial genomic DNA library, which are found to be highly informative for genetic studies. Eight of these markers when tested on 83 olive ridley turtles revealed high allelic diversity (4–27 alleles per marker), and high observed and expected heterozygosity estimates that ranged from 0.29 to 0.82 and 0.62 to 0.94, respectively. Two microsatellites were monomorphic in the tested olive ridley samples, but were found to be informative/polymorphic when tested on related marine turtle species. More importantly, nine of the new markers showed robust cross-species amplifications in three related species Dermochelys coriacea, Chelonia mydas and Eretmochelys imbricata. Thus, this study describes ten new microsatellite markers and also demonstrates their potential as efficient genetic markers in studies related to parentage analysis, population structure, phylogeography and species relationships of olive ridleys and other marine turtle species.  相似文献   

3.
Changes in activity related oxygen consumption were measured in leatherback and olive ridley sea turtle hatchlings over their first month after emergence from the nest. Leatherbacks emerged with 75-90 KJ of energy in the residual yolk for growth and activity whereas olive ridleys emerged with 45 KJ. In leatherbacks (n=8), resting mass-specific oxygen consumption rates decreased by 53% over the first post-hatching month (0.34+0.03 mL O(2) h(-1) g(-1) to 0.16+0.01 mL O(2) h(-1) g(-1), respectively), while for ridleys (n=8) the fall was 35% (0.20+0.03 mL O(2) h(-1) g(-1) to 0.13+0.01 mL O(2) h(-1) g(-1), respectively). Olive ridley factorial aerobic scope doubled (1.93+0.30 to 3.97+0.51) over the first month but there was no significant increase in leatherback factorial aerobic scope (1.39+0.21 to 1.60+0.13). Leatherback hatchlings gained on average 20% initial body mass (7.68+1.66 g) over the first week, with 70 to 80% of this increase due to water accumulation. Olive ridleys gained 14% (1.83+0.16 g) in initial mass over the first week of age. We propose that the differences in aerobic scope and energy reserves are related to differences in early life ecological stratagems of these species.  相似文献   

4.
Multiple paternity in the olive ridley sea turtle (Lepidochelys olivacea) population nesting in Suriname was demonstrated using two microsatellite loci, viz., Ei8 and Cm84. The large number of offspring sampled per clutch (70 on average, ranging from 15 to 103) and the number of alleles found at the two loci (18 and eight alleles, respectively) enabled unambiguous assessment of the occurrence of multiple paternity. In two out of 10 clutches analysed, the offspring had been sired by at least two males, which was confirmed at both loci. In both clutches, unequal paternity occurred: 73% and 92% of the offspring had been sired by the primary male. The probability of detecting multiple paternity was 0.903, and therefore there is a small chance that multiple paternity occurred but remained undetected in some of the eight clutches that appeared to be singly sired. Analysis of 703 offspring revealed a high mutation rate for locus Ei8 (micro = 2.3 x 10(-2)) with all 33 mutations occurring in maternal alleles. In particular, one allele of 274 bp mutated at a high frequency in a clutch to which the mother contributed the allele, but in another clutch where the father contributed the same allele, no such mutations were observed. Inferred allele-specific mutation rates for Ei8 and expected numbers of mutations per clutch confirmed that maternal alleles for Ei8 are more likely to mutate in the olive ridley sea turtle than paternal alleles. Possible explanations are discussed.  相似文献   

5.
Historically, the olive ridley arribada at Playa Nancite, Costa Rica, was one of the largest olive ridley arribadas in the eastern Pacific with 70,000 nesting females in a year. Recently the Nancite arribada drastically declined. We hypothesized that the population decline at Playa Nancite could have been due to low hatching success as a result of the high density of nests on the beach, such that recruitment to the population was insufficient to balance losses. To test this hypothesis, we examined density-dependent effects on hatching success and their underlying mechanisms by experimentally manipulating nest densities in experimental plots on the nesting beach. We set up four nest-density treatments in five experimental blocks. We measured effects of density on hatching success, CO(2) and O(2) concentrations and temperature both within nests and in sand adjacent to nests frequently during incubation. Experimental nest densities affected hatching success with the highest density having the lowest hatching success. Higher nest density led to lower O(2) levels and higher CO(2) levels in the nest with greater changes in the latter part of the incubation. Highest temperatures occurred in high-density areas. Temperatures were lower in sand surrounding the nest than in the nest. Effects of density on temperature, CO(2) and O(2) were confirmed at a naturally high-density nesting beach, Playa La Flor, Nicaragua. Long-term failure in production of hatchlings due to historic high densities may have contributed to the decline of arribadas on Playa Nancite. Thus, density-dependent population control would have operated at the embryonic life stage in this population of olive ridley turtles.  相似文献   

6.
Studies of metabolism are central to the understanding of the ecology, behavior, and evolution of reptiles. This study focuses on one phase of the sea turtle life cycle, hatchling dispersal, and gives insight into energetic constraints that dispersal imposes on hatchlings. Hatchling dispersal is an energetically expensive phase in the life cycle of the olive ridley turtle Lepidochelys olivacea. Field metabolic rates (FMRs), determined using the doubly labeled water (DLW) method, for L. olivacea hatchlings digging out of their nest chamber, crawling at the sand surface, and swimming were five, four, and seven times, respectively, the resting metabolic rate (RMR). The cost of swimming was 1.5 and 1.8 times the cost of the digging and crawling phases, respectively, and we estimated that if L. olivacea hatchlings swim at frenzy levels, they can rely on yolk reserves to supply energy for only 3-6 d once they reach the ocean. We compared our RMR and FMR values by establishing an interspecific RMR mass-scaling relationship for a wide range of species in the order Testudines and found a scaling exponent of 1.06. This study demonstrates the feasibility of using the DLW method to estimate energetic costs of free-living sea turtle hatchlings and emphasizes the need for metabolic studies in various life-history stages.  相似文献   

7.
A stranded Kemp's ridley sea turtle (Lepidochelys kempii) was rescued and treated at the National Aquarium in Baltimore (Maryland, USA) for inappetence and epidermal appendicular and plastral lesions. After 4 mo of care, the turtle developed a swollen left elbow joint. Within 1 mo of initial swelling, osteolytic lesions developed in the proximal radius and ulna. The elbow joint was surgically debrided, flushed, and cultured. The incision dehisced 10 days after surgery. Mycobacterium chelonae was cultured from the left elbow joint and from a skin nodule of the dorsum of the right front flipper. The turtle was euthanized due to apparent systemic infection with M. chelonae. Mycobacterium chelonae was isolated from cultures taken at necropsy of the lung, liver, spleen, kidney, and pericardium. Osteoarthritic infections with M. chelonae have not been reported in reptiles. Additionally, primary osteoarthritic diseases of synovial joints are uncommon in reptilian species. Due to the paucity of reports of mycobacterial diseases in sea turtles, the continued documentation of these cases will increase knowledge and understanding in caring for these endangered animals.  相似文献   

8.
9.
Adrenocortical responsiveness to turning stress was examined in wild, reproductively-active olive ridley sea turtles (Lepidochelys olivacea) in relation to their mass nesting (arribada) behavior. We hypothesized that the high sensitivity threshold (HST) observed in ovipositing sea turtles is associated with a diminished sensitivity of the hypothalamo-pituitary-adrenal (HPA) axis to stressful stimuli in arribada females. We tested this hypothesis by determining whether arribada females exhibited an increased activation threshold of the HPA axis to an imposed stressor (turning stress). Mean basal corticosterone (B) and glucose levels were below 1.0 ng/ml and 60 mg/dl, respectively. Basal B remained unchanged throughout a 24-hr period in basking females. Most animals responded to turning stress with elevated mean B levels (up to 6.5 ng/ml after 6 hr) and no increase in circulating glucose. Nearly 50% of females (and none of the males) were refractory to the stimulation. Males exhibited the most rapid response, with B levels significantly elevated by 20 min over basal levels. Among females, arribada and solitary nesters exhibited a slower rate of response than basking, non-nesting animals. These results demonstrate that olive ridleys exhibit stress-induced changes in circulating B which are slower than those observed in most reptilian and in mammalian, avian, and piscine species. Furthermore, the presence of refractory females and the relatively slower increase in B in arribada and solitary nesters indicate a hyporesponsiveness of the HPA axis to turning stress in nesting olive ridleys. The hyporesponsiveness may be part of a mechanism to facilitate arribada nesting. J. Exp. Zool. 284:652-662, 1999.  相似文献   

10.
Orissa, on the east coast of India, is one of the three mass nesting sites in the world for olive ridley turtles (Lepidochelys olivacea). This population is currently under threat as a result of fishery-related mortality; more than 100 000 olive ridleys have been counted dead in the last 10 years in Orissa. In general, the globally distributed olive ridley turtle has received significantly less conservation attention than its congener, the Kemp's ridley turtle (L. kempi), because the latter is recognized as a distinct species consisting of a single endangered population. Our study of mitochondrial DNA haplotypes suggests that the ridley population on the east coast of India is panmictic, but distinct from all other populations including Sri Lanka. About 96% of the Indian population consisted of a distinct 'K' clade with haplotypes not found in any other population. Nested clade analysis and conventional analysis both supported range expansions and/or long-distance colonization from the Indian Ocean clades to other oceanic basins, which suggested that these are the ancestral source for contemporary global populations of olive ridley turtles. These data support the distinctiveness of the Indian Ocean ridleys, suggesting that conservation prioritization should be based on appropriate data and not solely on species designations.  相似文献   

11.
Endangered species are grouped into genetically discrete populations to direct conservation efforts. Mitochondrial control region (mtCR) haplotypes are used to elucidate deep divergences between populations, as compared to nuclear microsatellites that can detect recent structuring. When prior populations are unknown, it is useful to subject microsatellite data to clustering and/or ordination population inference. Olive ridley sea turtles (Lepidochelys olivacea) are the most abundant sea turtle, yet few studies have characterized olive ridley population structure. Recently, clustering results of olive ridleys in the Eastern Tropical Pacific Ocean suggested weak structuring (FST = 0.02) between Mexico and Central America. We analyzed mtCR haplotypes, new microsatellite genotypes from Costa Rica, and preexisting microsatellite genotypes from olive ridleys across the Eastern Tropical Pacific, to further explore population structuring in this region. We subjected inferred populations to multiple analyses to explore the mechanisms behind their structuring. We found 10 mtCR haplotypes from 60 turtles nesting at three sites in Costa Rica, but did not detect divergence between Costa Rican sites, or between Central America and Mexico. In Costa Rica, clustering suggested one population with no structuring, but ordination suggested four cryptic clusters with moderate structuring (FST = 0.08, p < .001). Across the Eastern Tropical Pacific, ordination suggested nine cryptic clusters with moderate structuring (FST = 0.103, p < .001) that largely corresponded to Mexican and Central American populations. All ordination clusters displayed significant internal relatedness relative to global relatedness (p < .001) and contained numerous sibling pairs. This suggests that broadly dispersed family lineages have proliferated in Eastern Tropical Pacific olive ridleys and corroborates previous work showing basin‐wide connectivity and shallow population structure in this region. The existence of broadly dispersed kin in Eastern Tropical Pacific olive ridleys has implications for management of olive ridleys in this region, and adds to our understanding of sea turtle ecology and life history, particularly in light of the natal‐homing paradigm.  相似文献   

12.
13.
In mouse and chick embryos, the SOX9 gene is down-regulated in genetic females whereas in genetic males it remains in the Sertoli cells. We studied the distribution of SOX9 protein in developing genital ridges of embryos of the sea turtle Lepidochelys olivacea incubated at male- or female-promoting temperatures, using the antibody for detection. At stages 22-24, cells in medullary cords show SOX9 positive nuclei, while coelomic epithelial cells appear negative. At stage 25 however, most medullary cells are SOX9 negative and at the female-promoting temperature, and from stage 26 onwards, SOX9 protein is not detected. At the male-promoting temperature, medullary cords remain SOX9-positive at all stages. These results suggest that SOX9 is up-regulated in Sertoli cells irrespective of primary sex-determining switch. Sex is irreversibly determined at stage 24 or 26 at the male- or female-promoting temperature, respectively (Merchant-Larios et al.,'97). The present results suggest that there is a correlation between SOX9 expression and sex determination in the olive ridley. At the male-promoting temperature, Sertoli cells expressing SOX9 become committed at stage 24 and male sex is determined, whereas at the female-promoting temperature, SOX9 is down-regulated at stage 26 and female sex is determined. J. Exp. Zool. 284:705-710, 1999.  相似文献   

14.
The hawksbill sea turtle (Eretmochelys imbricata) is a critically endangered species at a risk of extinction. Preservation of the genomic and cellular information of endangered animals is important for future genetic and biological studies. Here, we report the efficient establishment of primary fibroblast cultures from skin tissue of the hawksbill sea turtle. We succeeded in establishing 19 primary cultures from 20 hawksbill sea turtle individuals (a success rate of 95%). These cells exhibited a fibroblast-like morphology and grew optimally at a temperature of 26°C, but experienced a loss of viability when cultured at 37°C. Chromosomal analysis using the primary cells derived here revealed that hawksbill sea turtles have a 2n?=?56 karyotype. Furthermore, we showed that our primary cell cultures are free of several fish-related viruses, and this finding is important for preservation purposes. To our knowledge, this report is the first to describe primary cell cultures established from normal tissues of the hawksbill sea turtle. The results will contribute to the preservation of biodiversity, especially for the sea turtles that are critically endangered owing to human activities.  相似文献   

15.
Marine turtles are large reptiles that compensate for high juvenile mortality by producing hundreds of hatchlings during a long reproductive lifespan. Most hatchlings are taken by predators during their migration to, and while resident in, the open ocean. Their survival depends upon crypticity, minimizing movement to avoid detection, and foraging efficiently to grow to a size too difficult for predators to either handle or swallow. While these behavioral antipredator tactics are known, changes in morphology accompanying growth may also improve survival prospects. These have been only superficially described in the literature. Here, we compare the similarities and differences in presumed morphological defenses of growing loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii) posthatchlings, related species that differ in growth rate, timing of habitat shift (the return from oceanic to neritic locations), and size at maturity. In both species, vertebral spination and carapace widening increase disproportionally as small turtles grow, but later in ontogeny, the spines regress, sooner in ridley than in loggerhead turtles. Carapace widening occurs in both species but loggerheads are always longer than they are wide whereas in Kemp's ridley turtles, the carapace becomes as wide as long. Our analysis indicates that these changes are unrelated to when each species shifts habitat but are related to turtle size. We hypothesize that the spines function in small turtles as an early defense against gape‐limited predators, but changes in body shape function throughout ontogeny—initially to make small turtles too wide to swallow and later by presenting an almost flat and hardened surface that large predators (such as a sharks) are unable to grasp. The extremely wide carapace of the Kemp's ridley may compensate for its smaller adult size (and presumed greater vulnerability) than the loggerhead. J. Morphol. 276:929–940, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
1. The Rathke's gland secretions of loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempi) sea turtles contain 20 and 10 mg of protein/ml, respectively. The proteins of each species were separated by gel filtration into two major fractions, one (35%) in the excluded volume, and one (50%) with a molecular mass of approximately 55 kDA. 2. The 55 kDa fraction from each species' secretions exhibits a single band on SDS-PAGE (Mr approximately equal to 55,000) and a single amino-terminal sequence. 3. The amino acid compositions of the two 55 kDa proteins are similar, and the first 15 residues of their amino terminus are identical. Both proteins contain glucosamine. 4. Analyses of the amino acid and amino sugar composition of the high molecular weight fractions from the two turtle species also indicate similarities; there are distinct differences between them and their 55 kDa proteins.  相似文献   

17.
Molecular studies of sea turtles have shown that the frequency of multiple paternity (MP) varies between species, and between rookeries of the same species. This study uses nuclear microsatellite markers to compare the incidence of MP in two neighbouring olive ridley rookeries on the Pacific coast of Costa Rica, with contrasting nesting behaviours -- the 'arribada' population nesting at Ostional and the solitary nesters of Playa Hermosa. Using two highly polymorphic microsatellite markers, we tested 13 nests from each location and found a significant difference (P < 0.001) between the level of MP of the arribada rookery (92%- the highest found for marine turtles) and that of the solitary nesting rookery (30%). Additional analyses based on six microsatellite loci revealed no genetic differentiation between nesting females from the two locations, or between nesting females and attendant males from the Ostional breeding area. Sixty-nine per cent of the nests with MP were fathered by a minimum of three different males, and three nests showed evidence of at least four fathers. The results suggest that the differences observed in levels of MP between arribada and solitary rookeries are due to an effect of abundance of individuals on the mating system. This is supported by a regression analysis combining other paternity studies on sea turtles which shows that levels of MP increase with increasing abundance of nesting females.  相似文献   

18.
The Kemp's ridley sea turtle (Lepidochelys kempi) is restricted to the warm temperate zone of the North Atlantic Ocean, whereas the olive ridley turtle (L. olivacea) is globally distributed in warm-temperate and tropical seas, including nesting colonies in the North Atlantic that nearly overlap the range of L. kempi. To explain this lopsided distribution, Pritchard (1969) proposed a scenario in which an ancestral taxon was divided into Atlantic and Pacific forms (L. kempi and L. olivacea, respectively) by the Central American land bridge. According to this model, the olive ridley subsequently occupied the Pacific and Indian Oceans and recently colonized the Atlantic Ocean via southern Africa. To assess this biogeographic model, a 470 bp sequence of the mtDNA control region was compared among 89 ridley turtles, including the sole L. kempi nesting population and 7 nesting locations across the range of L. olivacea. These data confirm a fundamental partition between L. olivacea and L. kempi (p=0.052-0.069), shallow separations within L. olivacea (p=0.002-0.031), and strong geographic partitioning of mtDNA lineages. The most divergent L. olivacea haplotype is observed in the Indo-West Pacific region, as are the central haplotypes in a parsimony network, implicating this region as the source of the most recent radiation of olive ridley lineages. The most common olive ridley haplotype in Atlantic samples is distinguished from an Indo-West Pacific haplotype by a single nucleotide substitution, and East Pacific samples are distingushed from the same haplotype by two nucleotide substitutions. These shallow separations are consistent with the recent invasion of the Atlantic postulated by Pritchard (1969), and indicate that the East Pacific nesting colonies were also recently colonized from the Indo-West Pacific region. Molecular clock estimates place these invasions within the last 300,000 years. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Tractable conservation measures for long-lived species require the intersection between protection of biologically relevant life history stages and a socioeconomically feasible setting. To protect breeding adults, we require knowledge of animal movements, how movement relates to political boundaries, and our confidence in spatial analyses of movement. We used satellite tracking and a switching state-space model to determine the internesting movements of olive ridley sea turtles (Lepidochelys olivacea) (n = 18) in Central Africa during two breeding seasons (2007-08, 2008-09). These movements were analyzed in relation to current park boundaries and a proposed transboundary park between Gabon and the Republic of Congo, both created to reduce unintentional bycatch of sea turtles in marine fisheries. We additionally determined confidence intervals surrounding home range calculations. Turtles remained largely within a 30 km radius from the original nesting site before departing for distant foraging grounds. Only 44.6 percent of high-density areas were found within the current park but the proposed transboundary park would incorporate 97.6 percent of high-density areas. Though tagged individuals originated in Gabon, turtles were found in Congolese waters during greater than half of the internesting period (53.7 percent), highlighting the need for international cooperation and offering scientific support for a proposed transboundary park. This is the first comprehensive study on the internesting movements of solitary nesting olive ridley sea turtles, and it suggests the opportunity for tractable conservation measures for female nesting olive ridleys at this and other solitary nesting sites around the world. We draw from our results a framework for cost-effective protection of long-lived species using satellite telemetry as a primary tool.  相似文献   

20.
Water flux rates and osmotic responses of Kemp's Ridley sea turtles (Lepidochelys kempi) acutely exposed to fresh water were quantified. Salt-water adapted turtles were exposed to fresh water for 4 d before being returned to salt water. During the initial salt water phase, absolute and relative water flux rates were 1.2+/-0.1 l d(-1) and 123.0+/-6.8 ml kg(-1) d(-1), respectively. When turtles were exposed to fresh water, rates increased by approximately 30%. Upon return to salt water, rates decreased to original levels. Plasma osmolality, Na(+), K(+), and Cl(-) decreased during exposure to fresh water, and subsequently increased during the return to salt water. The Na(+):K(+) ratio was elevated during the fresh water phase and subsequently decreased upon return to salt water. Aldosterone and corticosterone were not altered during exposure to fresh water. Elevated water flux rates during fresh water exposure reflected an increase in water consumption, resulting in a decrease in ionic and osmotic concentrations. The lack of a change in adrenocorticoids to acute fresh water exposure suggests that adrenal responsiveness to an hypo-osmotic environment may be delayed in marine turtles when compared to marine mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号