首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zeng  Xiaoyan  An  Hedi  Yu  Fei  Wang  Kai  Zheng  Lanlan  Zhou  Wei  Bao  Yiwen  Yang  Jie  Shen  Nan  Huang  Dongya 《Neurochemical research》2021,46(5):1239-1251

As a novel discovered regulated cell death pattern, ferroptosis has been associated with the development of Parkinson’s disease (PD) and has attracted widespread attention. Nevertheless, the relationship between ferroptosis and PD pathogenesis is still unclear. This study aims to investigate the effect of iron overload on dopaminergic (DA) neurons and its correlation with ferroptosis. Here we use nerve growth factor (NGF) induced PC12 cells which are derived from pheochromocytoma of the rat adrenal to establish a classical PD in vitro model. We found significantly decreased cell viability in NGF-PC12 cell under ammonium ferric citrate (FAC) administration. Moreover, excessive intracellular iron ions induced the increase of (reactive oxygen species) ROS release as well as the decrease of mitochondrial membrane potential in PC12-NGF cells. In addition, we also found that overloaded iron can activate cell apoptosis and ferroptosis pathways, which led to cell death. Furthermore, MPP-induced PD cells were characterized by mitochondrial shrinkage, decreased expression of glutathione peroxidase 4 (Gpx4) and ferritin heavy chain (FTH1), and increased divalent metal transporter (DMT1) and transferrin receptor 1 (TfR1) expression level. In contrast, Lip-1 and DFO increased the expression level of GPX4 and FTH1 compared to MPP-induced PD cell. In conclusion, we indicated that overloaded intracellular iron contributes to neurons death via apoptosis and ferroptosis pathways, while DFO, an iron chelator, can inhibit ferroptosis in order to protect the neurons in vitro.

  相似文献   

2.
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized in part by the deterioration of dopaminergic neurons which leads to motor impairment. Although there is no cure for PD, the motor symptoms can be treated using dopamine replacement therapies including the dopamine precursor L-DOPA, which has been in use since the 1960s. However, neurodegeneration in PD is not limited to dopaminergic neurons, and many patients experience non-motor symptoms including cognitive impairment or neuropsychiatric disturbances, for which there are limited treatment options. Moreover, there are currently no treatments able to alter the progression of neurodegeneration. There are many therapeutic strategies being investigated for PD, including alternatives to L-DOPA for the treatment of motor impairment, symptomatic treatments for non-motor symptoms, and neuroprotective or disease-modifying agents. G protein-coupled receptors (GPCRs), which include the dopamine receptors, are highly druggable cell surface proteins which can regulate numerous intracellular signaling pathways and thereby modulate the function of neuronal circuits affected by PD. This review will describe the treatment strategies being investigated for PD that target GPCRs and their downstream signaling mechanisms. First, we discuss new developments in dopaminergic agents for alleviating PD motor impairment, the role of dopamine receptors in L-DOPA induced dyskinesia, as well as agents targeting non-dopamine GPCRs which could augment or replace traditional dopaminergic treatments. We then discuss GPCRs as prospective treatments for neuropsychiatric and cognitive symptoms in PD. Finally, we discuss the evidence pertaining to ghrelin receptors, β-adrenergic receptors, angiotensin receptors and glucagon-like peptide 1 receptors, which have been proposed as disease modifying targets with potential neuroprotective effects in PD.  相似文献   

3.

Objective

Interleukin (IL)-22 has been reported to be involved in the development of autoimmune diseases. This study aimed to analyze the expression and potential role of IL-22 in the pathogenesis of Behcet’s disease (BD).

Methods

The levels of IL-22 in patient sera or supernatants of cultured peripheral blood mononuclear cells (PBMCs) and CD4+T cells were detected by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was used to evaluate the frequency of IL-22–producing CD4+ T cells. IL-22 mRNA from erythema nodosum skin lesions was examined using real time quantitative RT-PCR.

Results

BD patients with active uveitis showed a significantly higher expression of IL-22 in the supernatants of stimulated PBMCs and CD4+T cells compared with BD patients without active uveitis and normal controls. An increased frequency of IL-22-producing CD4+T cells was also found in BD patients with active uveitis. IL-22 mRNA expression was elevated in erythema nodosum skin lesions. In BD patients, a high IL-22 level in the supernatant of stimulated PBMCs correlated with the presence of retinal vasculitis and erythema nodosum.

Conclusions

IL-22 was associated with disease activity in BD and correlated with the presence of small vessel inflammation, suggesting that it may be involved in its pathogenesis.  相似文献   

4.
Ibrahim  K. S.  El-Sayed  E. M. 《Neurophysiology》2020,52(2):169-175
Neurophysiology - Parkinson’s disease (PD) is a heterogeneous neurodegenerative disorder, characterized by depletion of dopamine resulted from the death of dopaminergic neurons in the...  相似文献   

5.
The significantly higher incidence of Alzheimer's disease (AD) in women than in men has been attributed to loss of estrogen and a variety of related mechanisms at the molecular, cellular, and hormonal levels, which subsequently elucidate neuroprotective roles of estrogen against AD-related pathology. Recent studies have proposed that beneficial effects of estrogen on AD are directly linked to its ability to reduce amyloid-β peptides and tau aggregates, two hallmark lesions of AD. Despite high expectations, large clinical trials with postmenopausal women indicated that the beneficial effects of estrogen therapies were insignificant and, in fact, elicited adverse effects. Here, we review the current status of AD prevention and treatment using estrogens focusing on recent understandings of their biochemical links to AD pathophysiology. This review also discusses development of selective ligands that specifically target either estrogen receptor α (ERα) or ERβ isoforms, which are potentially promising strategies for safe and efficient treatment of AD.  相似文献   

6.
The aim of this study was to determine the paraoxonase (PON) and arylesterase (ARE) enzyme activity levels in Behcet’s disease (BD) and to investigate whether they are associated with the disease activity. Twenty-six patients (study group) with active BD and 28 healthy controls (control group) were included in this study. While the patients who had at least one of the symptoms related to genital ulcer, skin lesions, active uveitis, arthritis, thrombophlebitis, or central nervous system involvement in addition to oral ulcers were considered as the active group, the patients who did not show clinical symptoms in the last one month due to the medical treatment were considered as the inactive group in the clinical evaluation of patients with BD. The PON and ARE levels were found to be significantly lower in the study group than the control group (p < 0.05). The PON levels of the active and inactive groups were 96.23 ± 57.84 and 112.2 ± 65.14, respectively. The ARE levels of the active and inactive groups were 30.49 ± 5.81 and 30.85 ± 6.40, respectively. No significant correlations were found between clinical findings and the activity levels of PON and ARE in the active patient group (p > 0.05). The activities of the antioxidant PON and ARE enzymes are reduced in BD. Therefore, it may be useful to add antioxidant therapy to the conventional treatment of the disease.  相似文献   

7.
Zhang  Yidan  Zhao  Yuan  Zhang  Jian  Yang  Guofeng 《Neurochemical research》2020,45(11):2560-2572

Alzheimer’s disease (AD) is a common neurodegenerative disease of progressive dementia which is characterized pathologically by extracellular neuritic plaques containing aggregated amyloid beta (Aβ) and intracellular hyperphosphorylated tau protein tangles in cerebrum. It has been confirmed that microglia-specific nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome-mediated chronic neuroinflammation plays a crucial role in the pathogenesis of AD. Stimulated by Aβ deposition, NLRP3 assembles and activates within microglia in the AD brain, leading to caspase-1 activation along with downstream interleukin (IL)-1β secretion, and subsequent inflammatory events. Activation of the NLRP3 inflammasome mediates microglia to exhibit inflammatory M1 phenotype, with high expression of caspase-1 and IL-1β. This leads to Aβ deposition and neuronal loss in the amyloid precursor protein (APP)/human presenilin-1 (PS1) mouse model of AD. However, NLRP3 or caspase-1 deletion in APP/PS1 mice promotes microglia to transform to an anti-inflammatory M2 phenotype, with decreased secretion of caspase-1 and IL-1β. It also results in improved cognition, enhanced Aβ clearance, and a lower cerebral inflammatory response. This result suggests that the NLRP3 inflammasome may be an appropriate target for reducing neuroinflammation and alleviating pathological processes in AD. In the present review, we summarize the generally accepted regulatory mechanisms of NLRP3 inflammasome activation, and explore its role in neuroinflammation. Furthermore, we speculate on the possible roles of microglia-specific NLRP3 activation in AD pathogenesis and consider potential therapeutic interventions targeting the NLRP3 inflammasome in AD.

  相似文献   

8.
9.
Gastric intestinal metaplasia (IM) is a highly prevalent preneoplastic lesion; however, the molecular mechanisms regulating its development remain unclear. We have previously shown that a population of cells expressing the intestinal stem cell (ISC) marker LGR5 increases remarkably in IM. In this study, we further investigated the molecular characteristics of these LGR5+ cells in IM by examining the expression profile of several ISC markers. Notably, we found that ISC markers—including OLFM4 and EPHB2—are positively associated with the CDX2 expression in non-tumorous gastric tissues. This finding was confirmed in stomach lesions with or without metaplasia, which demonstrated that OLFM4 and EPHB2 expression gradually increased with metaplastic progression. Moreover, RNA in situ hybridization revealed that LGR5+ cells coexpress several ISC markers and remained confined to the base of metaplastic glands, reminiscent to that of normal intestinal crypts, whereas those in normal antral glands expressed none of these markers. Furthermore, a large number of ISC marker-expressing cells were diffusely distributed in gastric adenomas, suggesting that these markers may facilitate gastric tumorigenesis. In addition, Barrett’s esophagus (BE)—which is histologically similar to intestinal metaplasia—exhibited a similar distribution of ISC markers, indicating the presence of a stem cell population with intestinal differentiation potential. In conclusion, we identified that LGR5+ cells in gastric IM and BE coexpress ISC markers, and exhibit the same expression profile as those found in normal intestinal crypts. Taken together, these results implicate an intestinal-like stem cell population in the pathogenesis of IM, and provide an important basis for understanding the development and maintenance of this disease.  相似文献   

10.
11.
Mesenchymal cells transdifferentiation and extracellular matrix deposition are involved in the fibrotic process of Crohn’s disease (CD). Mesenchymal smooth muscle cells (SMCs) de-differentiation, driven by Platelet-derived growth factor (PDGF) that counteracts Transforming growth factor (TGF-β) has been studied in vascular muscle. The role of SMCs in intestinal fibrogenesis is still not clearly elucidated. Aim of the study was to evaluate the possible myogenic contribution to CD fibrotic process through the comparative analysis of histological, morphometric and molecular alterations occurring in human smooth muscle. Full thickness specimens were obtained from CD (non-involved and stenotic tracts) and healthy (control) ileum. Tissues were processed for histological and immunohistochemical (IHC) analyses and SMCs were isolated from the muscularis propria for morphofunctional and molecular (qPCR) analyses. CD stenotic ileum showed a significant increased thickness of all layers compared to CD non-involved and control ileum. IHC revealed an overexpression of α-smooth muscle actin and collagens I-III throughout all intestinal layers only in stenotic tracts. The two growth factors, PDGF and TGF-β, showed a progressive increase in expression in the muscle layer from CD non-involved to stenotic tracts. Freshly isolated SMCs presented alterations in CD non-involved tracts that progressively increased in the stenotic tracts consisting in a statistical increase in mRNA encoding for PDGF-β and collagen III, paralleled to a decrease in TGF-β and Tribbles-like protein-3 mRNA, and altered morphofunctional parameters consisting in progressive decreases in cell length and contraction to acetylcholine. These findings indicate that intrinsic myogenic alterations occur in CD ileum, that they likely precede stricture formation, and might represent suitable new targets for anti-fibrotic interventions.Key words: Fibrosis, Crohn’s disease, ileal smooth muscle cells, stricture formation, PDGF, TGF-β  相似文献   

12.

Background

The intestine is one of the first affected organs in Parkinson’s disease (PD). PD subjects show abnormal staining for Escherichia coli and α-synuclein in the colon.

Methods

We recruited 52 PD patients and 36 healthy cohabitants. We measured serum markers and quantified the numbers of 19 fecal bacterial groups/genera/species by quantitative RT-PCR of 16S or 23S rRNA. Although the six most predominant bacterial groups/genera/species covered on average 71.3% of total intestinal bacteria, our analysis was not comprehensive compared to metagenome analysis or 16S rRNA amplicon sequencing.

Results

In PD, the number of Lactobacillus was higher, while the sum of analyzed bacteria, Clostridium coccoides group, and Bacteroides fragilis group were lower than controls. Additionally, the sum of putative hydrogen-producing bacteria was lower in PD. A linear regression model to predict disease durations demonstrated that C. coccoides group and Lactobacillus gasseri subgroup had the largest negative and positive coefficients, respectively. As a linear regression model to predict stool frequencies showed that these bacteria were not associated with constipation, changes in these bacteria were unlikely to represent worsening of constipation in the course of progression of PD. In PD, the serum lipopolysaccharide (LPS)-binding protein levels were lower than controls, while the levels of serum diamine oxidase, a marker for intestinal mucosal integrity, remained unchanged in PD.

Conclusions

The permeability to LPS is likely to be increased without compromising the integrity of intestinal mucosa in PD. The increased intestinal permeability in PD may make the patients susceptible to intestinal dysbiosis. Conversely, intestinal dysbiosis may lead to the increased intestinal permeability. One or both of the two mechanisms may be operational in development and progression of PD.  相似文献   

13.
Post-mortem examinations play an important role in Johne’s disease programmes in Norway. The results of such examinations of samples of viscera from 2997 goats carried out during the 5-year period 1972–1976 are given. The investigations show that the demonstration of macroscopical changes in mesenteric lymph nodes and small intestine has only limited value as a guideline in the post-mortem diagnosis of Johne’s disease in goats. Often macroscopical changes were not seen or they were non-specific. Caseous and/or calcified foci in mesenteric lymph nodes in infected animals were demonstrated quite often whilst observed intestinal changes were strikingly few. Corrugation of the mucosa was rare. However, in sections of macroscopically unchanged intestine marked epithelioid cell infiltrations and abundant acid-fast bacilli were not uncommon. In sporadic cases productive inflammation with tubercle formation was seen in lymph nodes in infected animals. Bacteriological culture was by far the most reliable post-mortem diagnostic method. By this method 92% of the infected goats were detected. The corresponding figures for histological examination and microscopy were 54% and 47%, respectively.  相似文献   

14.
Gut microbiota compositional alteration may have an association with immune dysfunction in patients with Behcet’s disease (BD). We conducted a fecal metagenomic analysis of BD patients. We analyzed fecal microbiota obtained from 12 patients with BD and 12 normal individuals by sequencing of 16S ribosomal RNA gene. We compared the relative abundance of bacterial taxa. Direct comparison of the relative abundance of bacterial taxa demonstrated that the genera Bifidobacterium and Eggerthella increased significantly and the genera Megamonas and Prevotella decreased significantly in BD patients compared with normal individuals. A linear discriminant analysis of bacterial taxa showed that the phylum Actinobacteria, including Bifidobacterium, and the family Lactobacillaceae exhibited larger positive effect sizes than other bacteria in patients with BD. The phylum Firmicutes and the class Clostridia had large effect sizes in normal individuals. There was no significant difference in annotated species numbers (as numbers of operational taxonomic unit; OTU) and bacterial diversity of each sample (alpha diversity) between BD patients and normal individuals. We next assigned each sample to a position using three axes by principal coordinates analysis of the OTU table. The two groups had a significant distance as beta diversity in the 3-axis space. Fecal sIgA concentrations increased significantly in BD patients but did not correlate with any bacterial taxonomic abundance. These data suggest that the compositional changes of gut microbes may be one type of dysbiosis (unfavorable microbiota alteration) in patients with BD. The dysbiosis may have an association with the pathophysiology of BD.  相似文献   

15.

In the recent past, huge emphasis has been given to the epigenetic alterations of the genes responsible for the cause of neurological disorders. Earlier, the scientists believed somatic changes and modifications in the genetic makeup of DNA to be the main cause of the neurodegenerative diseases. With the increase in understanding of the neural network and associated diseases, it was observed that alterations in the gene expression were not always originated by the change in the genetic sequence. For this reason, extensive research has been conducted to understand the role of epigenetics in the pathophysiology of several neurological disorders including Alzheimer’s disease, Parkinson’s disease and, Huntington’s disease. In a healthy person, the epigenetic modifications play a crucial role in maintaining the homeostasis of a cell by either up-regulating or down-regulating the genes. Therefore, improved understanding of these modifications may provide better insight about the diseases and may serve as potential therapeutic targets for their treatment. The present review describes various epigenetic modifications involved in the pathology of Parkinson’s Disease (PD) backed by multiple researches carried out to study the gene expression regulation related to the epigenetic alterations. Additionally, we will briefly go through the current scenario about the various treatment therapies including small molecules and multiple phytochemicals potent enough to reverse these alterations and the future directions for a better management of PD.

  相似文献   

16.
Receptor for advanced glycation end products (RAGE) is a receptor of the immunoglobulin super family that plays various important roles under physiological and pathological conditions. Compelling evidence suggests that RAGE acts as both an inflammatory intermediary and a critical inducer of oxidative stress, underlying RAGE-induced Alzheimer-like pathophysiological changes that drive the process of Alzheimer’s disease (AD). A critical role of RAGE in AD includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles, failure of synaptic transmission, and neuronal degeneration. The steady-state level of Aβ depends on the balance between production and clearance. RAGE plays an important role in the Aβ clearance. RAGE acts as an important transporter via regulating influx of circulating Aβ into brain, whereas the efflux of brain-derived Aβ into the circulation via BBB is implemented by LRP1. RAGE could be an important contributor to Aβ generation via enhancing the activity of β- and/or γ-secretases and activating inflammatory response and oxidative stress. However, sRAGE–Aβ interactions could inhibit Aβ neurotoxicity and promote Aβ clearance from brain. Meanwhile, RAGE could be a promoting factor for the synaptic dysfunction and neuronal circuit dysfunction which are both the material structure of cognition, and the physiological and pathological basis of cognition. In addition, RAGE could be a trigger for the pathogenesis of Aβ and tau hyper-phosphorylation which both participate in the process of cognitive impairment. Preclinical and clinical studies have supported that RAGE inhibitors could be useful in the treatment of AD. Thus, an effective measure to inhibit RAGE may be a novel drug target in AD.  相似文献   

17.
In Wilson’s disease (WND), biallelic ATP7B gene mutation is responsible for pathological copper accumulation in the liver, brain and other organs. It has been proposed that copper transporter 1 (CTR1) and the divalent metal transporter 1 (DMT1) translocate copper across the human intestinal epithelium, while Cu-ATPases: ATP7A and ATP7B serve as copper efflux pumps. In this study, we investigated the expression of CTR1, DMT1 and ATP7A in the intestines of both WND patients and healthy controls to examine whether any adaptive mechanisms to systemic copper overload function in the enterocytes. Duodenal biopsy samples were taken from 108 patients with Wilson’s disease and from 90 controls. CTR1, DMT1, ATP7A and ATP7B expression was assessed by polymerase chain reaction and Western blot. Duodenal CTR1 mRNA and protein expression was decreased in WND patients in comparison to control subjects, while ATP7A mRNA and protein production was increased. The variable expression of copper transporters may serve as a defense mechanism against systemic copper overload resulting from functional impairment of ATP7B.  相似文献   

18.
The neuroprotective effects of granulocyte colony-stimulating factor (G-CSF) were reported in several neurological disease models, including Parkinson’s disease (PD). In the present study, we investigated the therapeutic effect of G-CSF after the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD was established. G-CSF was subcutaneously administered into C57BL/6 mice that had undergone systemic MPTP injections. We found that G-CSF treatment markedly increased the number of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the G-CSF-treated group. Consistent with this finding, we found a significant increase in dopamine release under high K+ stimulation in the striatum of the G-CSF-treated animals compared to the MPTP-exposed mice. Finally, we observed a persistent recovery of locomotor function in the G-CSF-treated animals. These results suggest the potential therapeutic value of G-CSF in treating PD. However, our bromodeoxyuridine labeling experiment failed to identify any newly generated dopaminergic neurons in SNpc. This might indicate an indirect effect of G-CSF on cell proliferation. The underlying mechanism of G-CSF is under further investigation.  相似文献   

19.
Genome-wide association studies (GWAS) and candidate gene studies have identified the REL and PRKCQ genes as risk loci for various autoimmune diseases. The purpose of the present study was to investigate the association of the REL and PRKCQ genes with Behcet’s disease (BD) in a Chinese Han population. A case-control study was conducted on three single nucleotide polymorphisms (SNPs), rs13031237, rs702873, and rs842647 of the REL gene and three SNPs (rs4750316, rs11258747, and rs947474) of the PRKCQ gene using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in a total of 623 BD patients and 1,074 healthy controls. Multiple variables were assessed, including age, sex distribution, and extra-ocular findings. In the present study, the frequencies of rs842647 GG genotypes and rs842647 G alleles were significantly higher in patients than in controls and those of the rs842647 AG genotypes were lower in patients than in controls [GG genotype: Bonferroni corrected P-value for gender adjustment (Pca) = 0.0074, odds ratio (OR) = 1.63; G allele: Pca = 0.0072, OR = 1.57; AG genotype: Pca = 0.024, OR = 0.63, respectively]. No statistically significant differences in the frequencies of rs702873, rs13031237, rs4750316, rs11258747, and rs947474 between BD patients and controls were observed. Stratification analysis indicated that the REL rs842647 polymorphism was associated with BD patients with skin lesions. No significant association of the other five SNPs between BD patients with other extra-ocular findings, including genital ulcer, arthritis, and positive pathergy test results was found. The REL rs842647 polymorphism may be a susceptibility factor for BD pathogenesis and skin lesions, which indicate that c-Rel may be involved in the pathogenesis and skin lesions of BD through the NF-κB pathway.  相似文献   

20.

Purpose

It is well known that patients with Wilson’s disease (WD) suffer copper metabolism disorder. However, recent studies point to an additional iron metabolism disorder in WD patients. The purpose of our study was to examine susceptibility-weighted imaging (SWI) manifestations of WD in the brains of WD patients.

Methods

A total of 33 patients with WD and 18 normal controls underwent conventional MRI (Magnetic resonance imaging) and SWI. The phase values were measured on SWI-filtered phase images of the bilateral head of the caudate nuclei, globus pallidus, putamen, thalamus, substantia nigra, and red nucleus. Student’s t-tests were used to compare the phase values between WD groups and normal controls.

Results

The mean phase values for the bilateral head of the caudate nuclei, globus pallidus, putamen, thalamus, substantia nigra, and red nucleus were significantly lower than those in the control group (P < 0.001), and bilateral putamen was most strongly affected.

Conclusions

There is paramagnetic mineralization deposition in brain gray nuclei of WD patients and SWI is an effective method to evaluate these structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号