共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
《生命科学研究》2019,(6)
存在于骨髓中的间充质干细胞(bone marrow mesenchymal stem cells,BMSCs,也称为间充质基质细胞)可以被募集到肿瘤部位并构成肿瘤微环境。细胞代谢在癌症进展中起重要作用。在癌症微环境中间充质细胞和肿瘤细胞发生代谢方式的转变。然而,尚不清楚肿瘤细胞和BMSCs细胞的相互作用如何影响细胞代谢和肿瘤进展。在本研究中,通过将BMSCs和小鼠肺癌细胞LLC细胞共同注射到C57BL/6小鼠,构建了皮下瘤模型;随后在原位瘤分离BMSCs和LLC细胞,进行RNA测序,以获得肿瘤微环境下BMSCs和LLC细胞的转录组。结果显示BMSCs中上调的基因富集于代谢途径。进一步根据差异表达的分子构建相互作用网路,发现BMSCs网络中的核心预测途径是代谢途径、MAPK信号通路和HIF-1信号通路。然而,在肿瘤微环境中LLC细胞的代谢途径受到抑制。体内动物实验证实抑制糖酵解可以减少荷瘤小鼠肿瘤的生长。以上结果提示,BMSCs增加了糖酵解,通过反式Warburg效应促进癌细胞的生长,在肿瘤微环境下BMSCs的代谢重编程影响肿瘤细胞的转归。 相似文献
4.
Na Li Yu Yang Miao Ding Weidan Huang Huaguang Li Jing Ye Jing Xiao Xiliang Zha Haineng Xu 《Molecular biotechnology》2014,56(12):1079-1088
Cancer stem cells (CSCs) are a subset of cancer cells that play key roles in metastasis and cancer relapse. The elimination of CSCs is very important during cancer therapy. To develop drugs that target CSCs, the isolation and identification of putative CSCs are required. Some of the characteristics of CSCs are assessed by cell survival assays. In such experiments, the density of the cells seeded on the plates may affect the experimental results, leading to potentially inaccurate conclusions. In this study, a new assay to facilitate the characterization of CSCs has been developed by stable transfection of GFP, using the A549 lung cancer cell line as a model. A putative CSC line, A549 sphere cells, was obtained by culturing A549 cells in ultra-low dishes in serum-free medium. To ensure that the putative CSCs were grown under the same conditions as the A549–GFP cells and were not affected by the number of cells seeded, A549 sphere cells were mixed with GFP stably transfected A549 (A549–GFP) cells. The mixture was subjected to flow cytometry assay and inverted fluorescence microscopy to detect changes in the proportion of GFP-positive cells after treatment. A549 sphere cells had a slower proliferation rate and an improved chemoresistance. They also showed differentiation ability. This work suggests that mixing GFP stably transfected cancer cells with putative CSCs may facilitate the identification of CSCs, making it convenient for studies of targeted CSCs. 相似文献
5.
6.
7.
Ping Wang Quanli Gao Zhenhe Suo Else Munthe Steinar Solberg Liwei Ma Mengyu Wang Nomdo Anton Christiaan Westerdaal Gunnar Kvalheim Gustav Gaudernack 《PloS one》2013,8(3)
Lung cancer (LC) with its different subtypes is generally known as a therapy resistant cancer with the highest morbidity rate worldwide. Therapy resistance of a tumor is thought to be related to cancer stem cells (CSCs) within the tumors. There have been indications that the lung cancer is propagated and maintained by a small population of CSCs. To study this question we established a panel of 15 primary lung cancer cell lines (PLCCLs) from 20 fresh primary tumors using a robust serum-free culture system. We subsequently focused on identification of lung CSCs by studying these cell lines derived from 4 representative lung cancer subtypes such as small cell lung cancer (SCLC), large cell carcinoma (LCC), squamous cell carcinoma (SCC) and adenocarcinoma (AC). We identified a small population of cells strongly positive for CD44 (CD44high) and a main population which was either weakly positive or negative for CD44 (CD44low/−). Co-expression of CD90 further narrowed down the putative stem cell population in PLCCLs from SCLC and LCC as spheroid-forming cells were mainly found within the CD44highCD90+ sub-population. Moreover, these CD44highCD90+ cells revealed mesenchymal morphology, increased expression of mesenchymal markers N-Cadherin and Vimentin, increased mRNA levels of the embryonic stem cell related genes Nanog and Oct4 and increased resistance to irradiation compared to other sub-populations studied, suggesting the CD44highCD90+ population a good candidate for the lung CSCs. Both CD44highCD90+ and CD44highCD90− cells in the PLCCL derived from SCC formed spheroids, whereas the CD44low/− cells were lacking this potential. These results indicate that CD44highCD90+ sub-population may represent CSCs in SCLC and LCC, whereas in SCC lung cancer subtype, CSC potentials were found within the CD44high sub-population. 相似文献
8.
9.
10.
11.
肿瘤干细胞存在于多种类型肿瘤中,并与肿瘤的发生发展密切相关。肿瘤干细胞和胚胎干细胞在生物学特征上存在许多共同点,如自我更新,多潜能性分化等等。然而,肿瘤干细胞和胚胎干细胞又存在很大差异,主要表现在耐药性、致瘤力和转移活性上。肿瘤干细胞在临床研究中具有不可替代的重要性,然而其分子水平上的调节机制尚未被完整揭示。作为内源性非编码小RNA的一部分,miRNAs在细胞发生发展的调节过程中扮演着重要角色。大量研究表明,miRNAs参与肿瘤干细胞的调节,并参与肿瘤的发生与进展。探索miRNAs在肿瘤干细胞基因表达调控中的作用及作用机制,有助于肿瘤特异性生物学标志物及治疗靶点的确定。本文就miRNAs与肿瘤干细胞调节的相关研究进展进行综述。 相似文献
12.
13.
Manolo D’Arcangelo Matilde Todaro Jessica Salvini Antonina Benfante Maria Luisa Colorito Armida D’Incecco Lorenza Landi Tiziana Apuzzo Elisa Rossi Spartaco Sani Giorgio Stassi Federico Cappuzzo 《PloS one》2015,10(5)
Background
Cancer stem cells represent a population of immature tumor cells found in most solid tumors. Their peculiar features make them ideal models for studying drug resistance and sensitivity. In this study, we investigated whether cancer stem cells isolation and in vitro sensitivity assay are feasible in a clinical setting.Methods
Cancer stem cells were isolated from effusions or fresh cancer tissue of 23 patients who progressed after standard therapy failure. Specific culture conditions selected for immature tumor cells that express markers of stemness. These cells were exposed in vitro to chemotherapeutic and targeted agents.Results
Cancer stem cells were extracted from liver metastases in 6 cases (25%), lung nodules in 2 (8%), lymph node metastases in 3 (12.5%) and pleural/peritoneal/pericardial effusion in 13 (54%). Cancer stem cells were successfully isolated in 15 patients (63%), including 14 with lung cancer (93.3%). A sensitivity assay was successfully performed in 7 patients (30.4%), with a median of 15 drugs/combinations tested (range 5-28) and a median time required for results of 51 days (range 37-95).Conclusion
The approach used for the STELLA trial allowed isolation of cancer stem cells in a consistent proportion of patients. The low percentage of cases completing the full procedure and the long median time for obtaining results highlights the need for a more efficient procedure.Trial Registration
ClinalTrials.gov NCT01483001 相似文献14.
《Cell cycle (Georgetown, Tex.)》2013,12(4):412-413
Both stem cells and cancer cells are thought to be capable of unlimited proliferation. Paradoxically, however, some cancers seem to contain stem-like cells (cancer stem cells). To help resolve this paradox, we investigated whether established malignant cell lines, which have been maintained over years in culture, contain a subpopulation of stem cells. We have shown that four cancer cell lines contain a small side population (SP), which, in many normal tissues, is enriched for stem cells of the tissue. We have also shown that SP cells in C6 glioma cell line, but not non-SP cells, can generate both SP and non-SP cells in culture and are largely responsible for the in vivo malignancy of this cell line. We propose that many cancer cell lines contain a minor subpopulation of stem cells that is enriched in a SP, can be maintained indefinitely in culture, and is crucial for their malignancy. 相似文献
15.
Cells of different organs at different ages have an intrinsic set of kinetics that dictates their behavior. Transformation into cancer cells will inherit these kinetics that determine initial cell and tumor population progression dynamics. Subject to genetic mutation and epigenetic alterations, cancer cell kinetics can change, and favorable alterations that increase cellular fitness will manifest themselves and accelerate tumor progression. We set out to investigate the emerging intratumoral heterogeneity and to determine the evolutionary trajectories of the combination of cell-intrinsic kinetics that yield aggressive tumor growth. We develop a cellular automaton model that tracks the temporal evolution of the malignant subpopulation of so-called cancer stem cells(CSC), as these cells are exclusively able to initiate and sustain tumors. We explore orthogonal cell traits, including cell migration to facilitate invasion, spontaneous cell death due to genetic drift after accumulation of irreversible deleterious mutations, symmetric cancer stem cell division that increases the cancer stem cell pool, and telomere length and erosion as a mitotic counter for inherited non-stem cancer cell proliferation potential. Our study suggests that cell proliferation potential is the strongest modulator of tumor growth. Early increase in proliferation potential yields larger populations of non-stem cancer cells(CC) that compete with CSC and thus inhibit CSC division while a reduction in proliferation potential loosens such inhibition and facilitates frequent CSC division. The sub-population of cancer stem cells in itself becomes highly heterogeneous dictating population level dynamics that vary from long-term dormancy to aggressive progression. Our study suggests that the clonal diversity that is captured in single tumor biopsy samples represents only a small proportion of the total number of phenotypes. 相似文献
16.
Ming-Yii Huang Hsiang-Lin Tsai Joh-Jong Huang Jaw-Yuan Wang 《Translational oncology》2016,9(4):340-347
Colorectal cancer (CRC) is a major public health problem. Early CRC detection, pretherapeutic responsiveness prediction, and postoperative micrometastasis monitoring are the hallmarks for successful CRC treatment. Here, the methodologies used for detecting circulating tumor cells (CTCs) from CRC are reviewed. In addition to the traditional CRC biomarkers, the persistent presence of posttherapeutic CTCs indicates resistance to adjuvant chemotherapy and/or radiotherapy; hence, CTCs also play a decisive role in the subsequent relapse of CRC. Moreover, the genetic and phenotypic profiling of CTCs often differs from that of the primary tumor; this difference can be used to select the most effective targeted therapy. Consequently, studying CTCs can potentially individualize treatment strategies for patients with CRC. Therefore, CTC detection and characterization may be valuable tools for refining prognosis, and CTCs can be used in a real-time tumor biopsy for designing individually tailored therapy against CRC. 相似文献
17.
18.
Human pluripotent stem cells (hPSCs) are known to acquire genomic changes as they proliferate and differentiate. Despite concerns that these changes will compromise the safety of hPSC-derived cell therapy, there is currently scant evidence linking the known hPSC genomic abnormalities with malignancy. For the successful use of hPSCs for clinical applications, we will need to learn to distinguish between innocuous genomic aberrations and those that may cause tumors. To minimize any effects of acquired mutations on cell therapy, we strongly recommend that cells destined for transplant be monitored throughout their preparation using a high-resolution method such as SNP genotyping. 相似文献
19.