首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A number of regulatory peptides were investigated for their ability to elevate plasma cAMP. Pituitary adenylate cyclase activating peptide (PACAP)-27, PACAP-38, helodermin, helospectin I and II, vasoactive intestinal peptide (VIP), glucagon, parathyroid hormone (PTH), calcitonin and calcitonin gene-related peptide were among the peptides that were highly effective in raising plasma cAMP when given intravenously in equimolar doses to conscious mice. PACAP-27 and -38 were more effective than any of the other peptides. PACAP 16–38, secretin, gastrin-17, galanin, somatostatin, cholecystokinin-8s, pancreatic polypeptide, substance P, peptide YY and neuropeptide Y were inactive and also did not interfere with the PACAP-27-evoked rise in plasma cAMP levels. Repeated injections of PACAP-27 every 30 min caused a progressive reduction in the plasma cAMP response (measured 5 min after each injection). Forskolin, an activator of adenylate cyclase, dose-dependently raised the plasma concentration of cAMP and displayed a synergistic effect when given in a low dose concurrently with PTH or PACAP-38. The phosphodiesterase inhibitor rolipram dose-dependently raised the plasma concentration of cAMP. Combined treatment with PACAP-27 and a threshold dose of rolipram resulted in an exaggerated plasma cAMP response. Kidney hilus ligation suppressed the responses to PACAP-38, PTH, helodermin, helospectin, VIP, glucagon and calcitonin. Hepatectomy suppressed the response to glucagon but was without effect on the response to the other peptides. Pancreatectomy and spleenectomy reduced the response to VIP, but was without effect on the response to the other peptides. PACAP-27 stimulated cAMP efflux from the isolated rat tail vein. Hence, it cannot be excluded that blood vessels contribute to the peptide evoked plasma cAMP response in vivo.  相似文献   

2.
Vasoactive intestinal peptide (VIP) bound with high affinity (Kd 0.13 nmol/l) to receptors on the human glioma cell line U-343 MG Cl 2:6. The receptors bound the related peptides helodermin. PHM and secretin with 10, 400 and 5000 times lower affinity, respectively. Deamidated VIP (VIP-COOH) and [des-His1]VIP bound with 10 and 100 times lower affinity. The fragment VIP(7–28) displaced 25% of the receptor-bound 125I-VIP whereas VIP(16–28) and VIP(1–22-NH2) were inactive. The binding of 125I-VIP could be completely inhibited by 10 μmol/l of the antagonists [N-Ac-Tyr1,D-Phe2]GRF(1–29)-NH2, [pCl-D-Phe6,Leu17]VIP and VIP(10–28); in contrast, the antagonist L-8-K was inactive. Affinity labeling showed that VIP bound to proteins with Mr's of 75 kDa, 66 kDa and 50 kDa, respectively. Following binding, the peptide was rapidly internalized, and at steady-state only 20% of cell-associated 125I-VIP was bound to receptors on the cell surface. The internalized 125I-VIP was completely degraded to 125I-tyrosine which was released from the cells. Degradation of internalized 125I-VIP was significantly reduced by chloroquine phenantroline and pepstatin-A. Surface binding and internalization of 125I-VIP was increased 3 times by phenantroline, and pepstatin-A caused a 5 times increase in surface binding. Chloroquine reduced surface-bound 125I-VIP, but caused retention of internalized 125I-VIP.  相似文献   

3.
Abstract: In this study, the effects of three related peptides, pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), PACAP27, and vasoactive intestinal peptide (VIP), on cyclic AMP (cAMP) accumulation and intracellular Ca2+ concentration ([Ca2+]i) were compared in N1E-115 cells. PACAP38 and PACAP27 stimulated cAMP accumulation up to 60-fold with EC50 values of 0.54 and 0.067 n M , respectively. The effect of VIP on cAMP accumulation was less potent. The binding of 125I-PACAP27 to intact cells was inhibited by PACAP38 and PACAP27 (IC50 values of 0.44 and 0.55 n M , respectively) but not by VIP. In fura-2-loaded cells, both PACAP38 and PACAP27 increased [Ca2+]i with EC50 values around 10 n M . The interactions of these three peptides with ionomycin, a Ca2+ ionophore, and 4β-phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, were also determined. Ionomycin increased the cAMP accumulation caused by all three peptides. With low concentrations of PACAP38 or PACAP27, the effect of PMA was inhibitory, whereas at higher concentrations of PACAP (>1 n M ), the effect of PMA was stimulatory. Similar to other agents that elevate cAMP, PACAP38 was an effective stimulator of neurite outgrowth. These results show that (a) PACAP27 and PACAP38 stimulate cAMP accumulation and increase [Ca2+]i through the type I PACAP receptors in N1E-115 cells, (b) ionomycin enhances cAMP accumulation by all three peptides, and (c) activation of protein kinase C has a dose-dependent stimulatory or inhibitory effect on the PACAP38- or PACAP27-stimulated cAMP accumulation.  相似文献   

4.
R. LEMA-KISOKA, N. HAYEZ, I. LANGER, P. ROBBERECHT, E. SARIBAN AND C. DELPORTE. Characterization of functional VIP/PACAP receptors in the human erythroleukemic HEL cell line. PEPTIDES. The presence of VIP/PACAP receptors was investigated on the human erythroleukemic cell line HEL. Specific binding of [125I]-PACAP or [125I]-VIP on HEL cells or membranes was very low and did not allow to perform competition curves. At 37°C PACAP transiently increased cAMP levels in the presence of the non-specific phosphodiesterase inhibitor IBMX, suggesting rapid desensitization. Kinetic studies revealed that optimal conditions to measure the EC50 of PACAP(1–27) were 10 min at 20°C. Under those conditions, PACAP-related peptides increased cAMP levels with EC50 in agreement with the pharmacological profile of the VPAC1 receptor subtype: PACAP = VIP > [K15, R16, L27]VIP(1–7)/GRF(8–27) = [R16]ChSn (two VPAC1 agonists) HELODERMIN = secretin. RO 25–1553, a selective activator of VPAC2 receptor was inactive at 1 μM. Dose-response curves of VPAC1 agonist molecules (PACAP, VIP, [K15, R16, L27]VIP(1–7)/GRF(8–27), [R16]ChSn) were shifted to the right by the VPAC1 receptor antagonist [AcHis1, D-Phe2, Lys15, Leu17]VIP(3–7)/GRF(8–27), with a Ki of 3 ± 1 nM (n = 3). The presence of VPAC1 receptor mRNA was confirmed by RT-PCR. Preincubation with PACAP or PMA showed that VPAC1 receptors underwent homologous and heterologous desensitization.

This study provides the first evidence for the expression of functional VPAC1 receptors undergoing rapid desensitization in HEL cells.  相似文献   


5.
The effects of pituitary adenylate cyclase activating peptide (PACAP) on the blood pressure of the anesthetized rat and on the isolated rat tail artery were investigated and compared to those of vasoactive intestinal peptide (VIP). PACAP-38, PACAP-27 and the C-terminal fragment 16–38 caused a dose-dependent decrease in the systemic blood pressure. PACAP-27 and PACAP-38 were equipotent with VIP. The C-terminal fragment 16–38 was much less potent than VIP. The duration of action was longer for equimolar doses of PACAP-38 and PACAP-27 than for VIP and much longer than for PACAP 16–38. PACAP-27 and the phosphodiesterase inhibitor rolipram given in combination produced additive vasodepressive responses. In vitro PACAP-38, PACAP-27, VIP and PACAP 16–38 relaxed the phenylephrine-precontracted rat tail artery. PACAP-38 and PACAP-27 were equipotent with VIP. PACAP 16–38 was much less potent than the full-length peptides. The responses were resistant to atropine and propranolol. Addition of VIP 1 μM to preparations exposed to 1 μM PACAP-38 or -27 did not produce a further relaxation. VIP-like peptides, PACAP in particular, are known to activate adenylate cyclase and to elevate the plasma cyclic AMP (cAMP) concentration. cAMP was found to be a potent vasodepressor in the anaesthetized rat and a potent vasodilator of precontracted blood vessels. On the basis of these results it cannot be excluded that the vascular effects of PACAP are secondary to the effect of elevated levels of extracellular cAMP.  相似文献   

6.
Helospectin I and II, two closely related mammalian neuropeptides of the secretin/glucagons/vasoactive intestinal peptide (VIP) superfamily of peptides, are co-localized with VIP in nerve fibers surrounding vascular smooth muscle. However, the role if any, VIP receptors play in transducing the vasorelaxant effects of helospectin I and II in the intact peripheral microcirculation is uncertain. The purpose of this study was to determine whether helospectin I and II elicit vasodilation in the intact peripheral microcirculation and, if so, whether this response is mediated, in part, by VIP or pituitary adenylate cyclase activating peptide (PACAP) receptor engagement, and through local elaboration of cyclooxygenase products of arachidonic acid metabolism. Using intravital microscopy, we found that suffusion of helospectin I and II (each, 1.0 nmol) evoked potent vasodilation and of similar magnitude in the intact hamster cheek pouch microcirculation (P < 0.05). Suffusion of 0.1 nmol helospectin I and II had no significant effects on arteriolar diameter. Pretreatment with VIP(10-28), a VPAC1/VPAC2 receptor antagonist, or PACAP(6-38), a PAC1/VPAC2 receptor antagonist, had no significant effects on helospectin I- and II-induced responses. In addition, pretreatment with indomethacin had no significant effects on helospectin I- and II-induced vasodilation. Collectively, these data indicate that helospectin I and II evoke potent vasodilation in the intact peripheral microcirculation that is not transduced by VIP or PACAP receptors nor through cyclooxygenase products of arachidonic acid metabolism.  相似文献   

7.
The effect of VIP and its related peptides on cAMP production has been characterized: 1) in long term culture of normal human mammary epithelial cells (HMEC); 2) in immortalized and transformed ST cell lines established from normal HMEC after genomic insertion of the large T oncogene of SV40; 3) in the spontaneously immortalized HC-11 cells, a clone isolated from the mouse mammary epithelial cells COMMA-1D, described to exhibit normal morphogenesis in vivo and functional differentiation in vitro. Basal cAMP levels were increased 1.5- to 8.7-fold in mammary epithelial cells (p less than 0.001-0.05), with a potency EC50 = 0.02-0.6 nM VIP. The pharmacological specificity of the VIP receptors coupled to cAMP generation was established according to the following potency sequence: VIP greater than PACAP-38 greater than helodermin greater than PHM, PHV greater than helospectin 1 much greater than hpGRF, secretin in HMEC, VIP greater than PACAP-38 greater than helodermin greater than helospectin 1, PHM, PHV greater than hpGRF greater than secretin in S1T3 cells, and VIP, PHI, helodermin greater than PHV greater than rhGRF greater than secretin in HC-11 cells. Our data demonstrate the presence of functional, highly sensitive and specific VIP receptors in normal, immortalized and transformed mammary epithelial cells, suggesting a regulatory role for this neuropeptide on the growth, differentiation and function in normal and neoplastic breast tissue.  相似文献   

8.
Abstract: Cytochemical analysis demonstrated that a high percentage of human Y-79 retinoblastoma cells displayed a specific labeling by the biotinyl derivative of pituitary adenylate cyclase-activating polypeptide (PACAP), a novel neuropeptide of the secretin-vasoactive intestinal peptide (VIP) family of peptides. In cell membranes, the two molecular forms of PACAP, the one with 38 (PACAP 38) and the other with 27 (PACAP 27) amino acids, displaced the binding of 125I-PACAP 27 with IC50 values in the picomolar range and increased adenylyl cyclase activity by 100-fold with EC50 values of 27 and 180 p M , respectively. VIP, human peptide histidine-isoleucine, glucagon, and secretin were much less effective and potent in both receptor assays. The PACAP receptor antagonists PACAP 6–27 and PACAP 6–38 and an antiserum directed against the stimulatory G protein Gs inhibited the PACAP stimulation of adenylyl cyclase. In intact cells, both PACAPs and VIP failed to stimulate the phosphoinositide hydrolysis, whereas in cell membranes PACAP 38, but not the other peptides, produced a modest increase (40%) of inositol phosphate formation with an EC50 value of 22 n M . However, this effect was not antagonized by either PACAP 6–38 or PACAP 6–27. These data demonstrate the presence in human Y-79 retinoblastoma cells of specific PACAP receptors and provide further evidence that PACAP may act as a neurotransmitter/neuromodulator in mammalian retina.  相似文献   

9.
A receptor for vasoactive-intestinal-peptide (VIP)-related peptides was functionally characterized in a cell line derived from Xenopus melanophores using a recently described microtiter-plate-based bioassay. Activation of the melanophore VIP receptor by VIP or the peptides pituitary-adenylate-cyclase-activating polypeptide (PACAP 38), PACAP 27, and helodermin stimulated intracellular 3'-5' cyclic adenosine monophosphate (cAMP) accumulation and pigment dispersion in the cells. Helodermin, with an EC50 (concentration of peptide inducing half-maximal melanosome dispersion) of 46.5 pM, was the most potent activator of pigment dispersion, followed by PACAP 38 > VIP > PACAP 27. A similar order of potencies was observed for the peptides to induce cAMP accumulation. The responses to VIP agonists were selectively inhibited by the VIP antagonists PACAP-(6-27) and (N-Ac-Tyr(1)-D-Phe2)-growth-hormone-releasing factor[GRF](1-29)-NH2. Taken together, the results suggest that the melanophores express a VIP receptor that shares certain characteristics of, but also differs significantly from, other previously identified VIP receptors.  相似文献   

10.
To probe the importance of a proposed β-turn within residues S9-R12 of PACAP for recognition by VIP/PACAP receptors, compounds 1 and 2, two conformationally restricted analogues of PACAP27 incorporating respectively (S)- or (R)-IBTM as type II or II′ β-turn dipeptide mimetic at the Y10-S11 position, were synthesized. According to 1H NMR conformational analyses in aqueous solution and 30% TFE, both PACAP27 and the [S-IBTM10,11]PACAP27 analogue 1 adopt similar ordered structures. PACAP27 shows an N-terminal disordered region (residues H1-F6) and an -helical conformation within segment T7–L27. For residues S9–R12, our data seem more compatible with a segment of the -helix than with the β-turn previously proposed for this fragment. In compound 1 the -helix, also spanning T7–L27 residues, appears slightly distorted at the N-terminus relative to the native peptide. Although this distortion could lead to the marked decrease in binding affinity of this compound at the VIP/PACAP receptors, the lack of the Y10 side chain in analogues 1 and 2 could also significantly affect the binding of these compounds.  相似文献   

11.
Intracerebroventricular (ICV) injection of pituitary adenylate cyclase-activating polypeptide-38 (PACAP) or vasoactive intestinal peptide (VIP) inhibits feeding in chicks. However, the underlying anorexigenic mechanism(s) has not yet been investigated. The present study investigated whether these peptides influence the activity of corticotrophin-releasing factor (CRF) neural pathways in the brain of chicks. Firstly, we found that ICV injections of PACAP and VIP increased plasma corticosterone concentrations. The corticosterone-releasing effect of PACAP was completely attenuated by co-injection of astressin, a CRF receptor antagonist, but this effect was only partial for VIP. These results demonstrated that CRF neurons mediate the actions of PACAP and, to a lesser extent, VIP, and suggest that the signaling mechanisms differ between the two peptides. This difference may arise from the two peptides interacting with different receptors because the corticosterone-releasing effect of PACAP, but not VIP, was completely attenuated by co-injection of PACAP (6–38), a PACAP receptor antagonist. Finally, we examined the effect of ICV co-injection of astressin on the anorexigenic effects of PACAP and VIP and found that the effects of both peptides were attenuated by astressin. Overall, the present study suggests that the anorexigenic effects of PACAP and VIP are mediated by the activation of CRF neurons.  相似文献   

12.
Neuropeptides exert a variety of putative immunomodulatory actions. Despite the molecular cloning of multiple forms of receptors for several neuropeptides with putative immunomodulatory effects, including vasoactive intestinal peptide (VIP), the related peptide pituitary adenylate cyclase-activating peptide (PACAP), the opiate peptides, tachykinins, somatostatin and corticotropin-releasing factor, it has not been reported that any of the receptor genes are expressed at significant levels in cells of the immune system. The low level of expression of these receptors and lack of knowledge concerning receptor subtype has impeded progress in understanding how neuropeptides regulate immune function. For example, it is not understood why VIP produces immunomodulatory effects at concentrations far below its receptor-binding affinity. Receptors for VIP and PACAP have recently been cloned. We show here by Northern blot analysis that the VIP/PACAP1 receptor mRNA is present in total RNA prepared from mouse spleen B- and T-lymphocytes. The VIP/PACAP1 receptor mRNA was also present in human peripheral blood lymphocytes, and in a B-lymphocyte and a myelocytic cell line. The mRNA for a second form of the receptor, the VIP/PACAP2 receptor, was not expressed at detectable levels in normal cells, but was detected in several human T-cell lines and a murine mast cell line. The results indicate that VIP/PACAP1 and perhaps VIP/PACAP2 receptors mediate the diverse effects of VIP and PACAP on immune cells.  相似文献   

13.
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) are closely related peptides with wide distribution in the nervous system. The aim of the present study was to investigate functional characteristics and the influence of sex steroids on the vasodilatory effects of these two peptides in cerebral and coronary vessels from female New Zealand White (NZW) rabbits.

The localization and concentration of VIP and PACAP in cardiovascular tissue was evaluated using immunohistochemistry and radioimmunoassays. The vasodilatory effects of VIP and PACAP were investigated using myographs, allowing isometric tension recordings. In order to evaluate the influence of steroid hormones, the rabbits were ovariectomized and randomized to treatment for 4 weeks with 17β-estradiol (E2), Norethindrone Acetate (NETA), E2+NETA or placebo. Ring segments of the posterior cerebral artery, the right proximal coronary artery and the distal left coronary artery were examined.

The highest concentrations of VIP/PACAP were observed in cerebral and coronary arteries: 5.0/5.7 and 2.8/3.5 pmol/g, respectively. The peptides were localized in nerve fibres innervating the arteries. Both peptides produced dose-dependent vasodilatory responses in all vessels investigated. While the effects of PACAP were identical in cerebral and coronary arterial segments, the effects of VIP displayed significant differences (Emax, pI2, Hill-slope). Treatment with sex steroids induced no changes in the vascular effects of the two peptides.

These results indicate different mechanisms of action for the vasodilating effects of the two closely related peptides VIP and PACAP in different areas of the coronary and cerebrovascular tree. Treatment with female sex steroids does not seem to change these mechanisms.  相似文献   


14.
15.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and helospectin are two vasoactive intestinal polypeptide (VIP)-related neuropeptides that have recently been demonstrated in the mammalian gut; the aim of this study was to reveal their occurrence and localisation in the gastrointestinal tract, swimbladder, urinary bladder and the vagal innervation of the gut of teleosts, using immunohistochemical methods on whole-mounts and sections of these tissues from the Atlantic cod, Gadus morhua and the rainbow trout, Oncorhynchus mykiss. Both PACAP-like and helospectin-like peptides were present in the gut wall of the two species. Immunoreactive nerve fibres were found in all layers but were most frequent in the myenteric plexus and along the circular muscle fibres. Immunoreactivity was also demonstrated in nerves innervating the swimbladder wall, the urinary bladder and blood vessels to the gut. Immunoreactive nerve cell bodies were found in the myenteric plexus of the gut and in the muscularis mucosae of the swimbladder. In the vagus nerve, non-immunoreactive nerve cells were surrounded by PACAP-immunoreactive fibres. Double staining revealed the coexistence of PACAP-like and helospectin-like peptides with VIP in all visualized nerve fibres and in some endocrine cells. It is concluded that PACAP-like and helospectin-like peptides coexist with VIP in nerves innervating the gut of two teleost species. The distribution suggests that both PACAP and helospectin, like VIP, are involved in the control of gut motility and secretion.  相似文献   

16.
We used three putative vasoactive intestinal peptide (VIP) antagonists: 1) [4Cl-D-Phe6,Leu17]VIP, 2) [N-Ac-Tyr1,D-Phe2]GRF(1–29)-NH2, and 3) VIP(10–28) to assess the involvement of endogenous VIP in the regulation of thyroid hormone secretion and thyroid blood flow (BF). We measured thyroid BF in ketamine-pentobarbital-anesthetized rats using the microsphere technique. Increases in thyroid BF induced by VIP administration (30 pmol-1.5 nmol/100 g b.wt.) were not affected by any of the three compounds tested at doses 10–100 times higher than that of VIP. These compounds (3–15 nmol/100 g b.wt.) also failed to affect basal thyroid BF or hormone secretion. Increases in pancreatic and salivary gland BFs induced by VIP (30 pmol/100 g b.wt.) were also not affected by [4Cl-D-Phe6,Leu17]VIP or [N-Ac-Tyr1,D-Phe2]GRF(1–29)-NH2 (3 nmol/100 g b.wt.). These results indicate that the three compounds tested are not effective inhibitors of VIP receptors in the thyroid vasculature and, therefore, they cannot be used in the investigation of the functional significance of endogenous VIP in the regulation of thyroid BF.  相似文献   

17.
J C Szerb  M M Vohra 《Life sciences》1979,24(21):1983-1988
The concentration of normorphine causing a 50 per cent inhibition (IC50) of electrically induced twitches in the vas deferens from seven strains of mice varied over a 13-fold range, BALB/cKB being the most, C57BL/6J the least sensitive. There was no significant correlation between the IC50's of normorphine and met-enkephalin. In the sensitive BALB/cKB mice, both normorphine and met-enkephalin were more effective inhibiting contractions evoked by 0.1 Hz than by 0.01 or 1.2 Hz stimulation. This difference was not observed in the insensitive C57BL/6J mice. Naloxone was purely an antagonist against both normorphine and met-enkephalin in BALB/cKB mice but in low concentration it potentiated the inhibitory effect of both normorphine and met-enkephalin in C57BL/6J mice. Results suggest that qualitative differences in opiate receptors and differences in transmitter release mechanism contribute to the variable sensitivity to morphine of the vas deferens from different strains of mice.  相似文献   

18.
The effects of PACAPs on [Ca2+]i were compared to those of carbachol in human neuroblastoma NB-OK-1 cells. PACAP(1–27) and PACAP(1–38) increased [Ca2+]i in a biphasic manner: a transient rise and a secondary plateau. The transient phase reflected the mobilization of [Ca2+]i pool(s) via the inositol phosphate pathway. The modest sustained plateau required extracellular Ca2+. Carbachol also increased [Ca2+]i in a biphasic manner, but it mobilized intracellular Ca2+ pool(s) with a higher efficacy than PACAPs, then greatly increased Ca2+ entry, this being accompanied by a more marked and prolonged elevation of IP3 and IP4 than with PACAPs. It is likely that cAMP-mediated phosphorylations due to PACAPs facilitated desensitization at the PACAP receptor-phospholipase C level, so that there was less Ca2+ handling through PACAP receptors than with muscarinic M1 receptors.  相似文献   

19.
Bioactive properties of certain amphipathic peptides are amplified when self-associated with sterically stabilized micelles (SSM) composed of polyethylene glycol (PEG)-conjugated phospholipids. The purpose of this study was to determine the effects of amphipathic peptide molecular mass and PEG chain length on vasoreactivity evoked by vasoactive intestinal peptide (VIP), a 28-amino acid neuropeptide, and pituitary adenylate cyclase-activating peptide(1-38) (PACAP(1-38)), a 38-amino acid neuropeptide, associated with PEGylated phospholipid micelles in vivo. Both peptides were incubated for 2 h with SSM composed of PEG with molecular mass of 2000 or 5000 grafted onto distearoyl-phosphatidylethanolamine (DSPE-PEG2000 or DSPE-PEG5000) before use. We found that regardless of peptide molecular mass, PEG chain length had no significant effects on peptide-SSM interactions. Using intravital microscopy, VIP associated with DSPE-PEG5000 SSM or DSPE-PEG2000 SSM incubated at 25 degrees C evoked similar vasodilation in the intact hamster cheek pouch microcirculation. Likewise, PACAP(1-38)-induced vasodilation was PEG chain length-independent. However, SSM-associated PACAP(1-38) evoked significantly smaller vasodilation than that evoked by SSM-associated VIP (P < 0.05) at 25 degrees C. When the incubation temperature was increased to 37 degrees C, SSM-associated PACAP(1-38)-induced vasodilation was now similar to that of SSM-associated VIP. This response was associated with a corresponding increase in alpha-helix content of both peptides in the presence of phospholipids. Collectively, these data indicate that for a larger amphipathic peptide, such as PACAP(1-38), greater kinetic energy or longer incubation period is required to optimize peptide-SSM interactions and amplify peptide bioactivity in vivo.  相似文献   

20.
In the present study we characterize the optimal experimental conditions under which to investigate the cholinergic regulation of endogenous electrically evoked γ-aminobutyric acid (GABA) release from guinea pig cortical slices. Superfusion with the neuronal GABA reuptake inhibitor, SKF89976A (10 μM) caused cortical GABA release to be linearly correlated with the frequency of electrical stimulation (5, 10, 20 Hz). Electrically evoked GABA release (10 Hz) was tetrodotoxin-sensitive and Ca2+-dependent and was under GABAB autoreceptor control. Under these experimental conditions, acetylcholine (0.1–10 μM) and physostigmine (30 μM) decreased the electrically evoked GABA release while the M2 receptor antagonist AFDX-116 (0.01–0.1 μM) counteracted these effects. Similar results were also observed in a cortical synaptosomal preparation stimulated with K+ (10 mM). These findings demonstrate an inhibitory cholinergic regulation of electrically evoked GABA release via M2 receptors located on cortical GABAergic terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号