首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amyloid plaques, which are primarily composed of aggregated amyloid-beta (Aβ) peptide, are the neuropathological hallmarks of Alzheimer's disease (AD). Fluorescent markers containing 2-styrylpyridazin-3(2H)-ones were developed to detect intracellular aggregated Aβ peptides. Nine compounds exhibited a greater than 10-fold increase of in emission spectra before and after mixing with Aβ aggregates compared with before mixing. Among these compounds, compound 9n exhibited the highest affinity for Aβ aggregates (K(d)=1.84 μM) and selectively stained both aggregated intracellular Aβ and Aβ plaques in the transgenic AD model mice (APP/PS1). These preliminary results indicate that 2-styrylpyridazin-3(2H)-one derivatives are promising alternative fluorescence imaging agent for the study of AD.  相似文献   

2.
Alzheimer's disease (AD) is characterized by the deposition of amyloid plaques in the parenchyma and vasculature of the brain. Although previous analytical studies have provided much information about the composition and structure of synthetic amyloid-beta fibrils, there is, surprisingly, a dearth of data on intact amyloid plaques from AD brain. Therefore, to elucidate the structure and detailed composition of isolated amyloid plaque cores, we utilized a high-resolution, nondestructive technique, Raman microscopy. The data are of very high quality and contain detailed information about protein composition and conformation, about post-translational modification, and about the chemistry of metal binding sites. Remarkably, spectra obtained for senile plaque (SP) cores isolated from AD brain are essentially identical both within and among brains. The Raman data show for the first time that the SP cores are composed largely of amyloid-beta and confirm inferences from X-ray studies that the structure is beta-sheet with the additional possibility that this may be present as a parallel beta-helix. Raman bands characteristic of methionine sulfoxide show that extensive methionine oxidation has occurred in the intact plaques. The Raman spectra also demonstrate that Zn(II) and Cu(II) are coordinated to histidine residues in the SP cores, at the side chains' N(tau) and N(pi) atoms, respectively. Treatment of the senile plaques with the chelator ethylenediaminetetraacetate reverses Cu binding to SP histidines and leads to a broadening of amide features, indicating a "loosening" of the beta-structure. Our results indicate that Abeta in vivo is a metalloprotein, and the loosening of the structure following chelation treatment suggests a possible means for the solubilization of amyloid deposits. The results also reveal a direct chemical basis for oxidative damage caused by amyloid-beta protein in AD.  相似文献   

3.
Mixed aquo-N-methylimidazole complexes of Co(II) have been studied as a function of pH to gain a fuller understanding of the metal-binding site in Co(II)-carbonic anhydrase. The inherent affinity of N-methylimidazole for Co(II) has been calculated along with a species distribution for the stepwise addition of ligand to the metal ion. From these studies, it is apparent that the occurrence of Zn(II) rather than Co(II) in native carbonic anhydrase can be explained by the stronger affinity of Zn(II) for imidazole and the preference of Zn(II) for a tetrahedral geometry as offered by the enzyme. Octahedral Co(II) fails to ionize metal bound water. However, at high pH, Co(II)-N-methylimidazole complexes interact directly with the hydroxide ion, generating species with visible spectra very similar to that of Co(II)-carbonic anhydrase. Tentative structures have been proposed for these species.  相似文献   

4.
Targeting alzheimer amyloid plaques in vivo   总被引:8,自引:0,他引:8  
The only definitive diagnosis for Alzheimer disease (AD) at present is postmortem observation of neuritic plaques and neurofibrillary tangles in brain sections. Radiolabeled amyloid-beta peptide (Abeta), which has been shown to label neuritic plaques in vitro, therefore could provide a diagnostic tool if it also labels neuritic plaques in vivo following intravenous injection. In this study, we show that the permeability of Abeta at the blood-brain barrier can be increased by at least twofold through covalent modification with the naturally occurring polyamine, putrescine. We also show that, following intravenous injection, radiolabeled, putrescine-modified Abeta labels amyloid deposits in vivo in a transgenic mouse model of AD, as well as in vitro in human AD brain sections. This technology, when applied to humans, may be used to detect plaques in vivo, allowing early diagnosis of the disease and therapeutic intervention before cognitive decline occurs.  相似文献   

5.
Aberrant interactions of copper and zinc ions with the amyloid-beta peptide (Abeta) potentiate Alzheimer's disease (AD) by participating in the aggregation process of Abeta and in the generation of reactive oxygen species (ROS). The ROS production and the neurotoxicity of Abeta are associated with copper binding. Metallothionein-3 (Zn(7)MT-3), an intra- and extracellularly occurring metalloprotein, is highly expressed in the brain and downregulated in AD. This protein protects, by an unknown mechanism, cultured neurons from the toxicity of Abeta. Here, we show that a metal swap between Zn(7)MT-3 and soluble and aggregated Abeta(1-40)-Cu(II) abolishes the ROS production and the related cellular toxicity. In this process, copper is reduced by the protein thiolates forming Cu(I)(4)Zn(4)MT-3, in which an air-stable Cu(I)(4)-thiolate cluster and two disulfide bonds are present. The discovered protective effect of Zn(7)MT-3 from the copper-mediated Abeta(1-40) toxicity may lead to new therapeutic strategies for treating AD.  相似文献   

6.
Humanin is a novel, 24-mer residue bioactive peptide, which antagonizes Alzheimer's disease (AD) related neurotoxicity and offers a hope for developing new therapeutics against AD. Access to adequate amounts of pure humanin is a prerequisite for further, thorough, investigation of the pharmacological properties and therapeutic potency of the peptide. Until now, humanin has been obtained mainly by molecular biology techniques. In this work the Fmoc solid-phase synthesis of humanin on an in-house prepared 2-Cl-tritylamidomethyl polystyrene resin is described fully. Special precautions, i.e. prolonged deprotection steps, should be taken to achieve a high overall yield, since humanin seems to contain a 'difficult sequence' (R4G5F6S7C8L9) near its highly lipophilic, biologically important region L9L10L11L12.  相似文献   

7.
Alzheimer's disease (AD) is characterized by the misfolding and plaque-like accumulation of a naturally occurring peptide in the brain called amyloid beta (Abeta). Recently, this process has been associated with the binding of metal ions such as iron (Fe), copper (Cu), and zinc (Zn). It is thought that metal dyshomeostasis is involved in protein misfolding and may lead to oxidative stress and neuronal damage. However, the exact role of the misfolded proteins and metal ions in the degenerative process of AD is not yet clear. In this study, we used synchrotron Fourier transform infrared micro-spectroscopy (FTIRM) to image the in situ secondary structure of the amyloid plaques in brain tissue of AD patients. These results were spatially correlated with metal ion accumulation in the same tissue sample using synchrotron X-ray fluorescence (SXRF) microprobe. For both techniques, a spatial resolution of 5-10 microm was achieved. FTIRM results showed that the amyloid plaques have elevated beta-sheet content, as demonstrated by a strong amide I absorbance at 1625cm(-1). Using SXRF microprobe, we find that AD tissue also contains "hot spots" of accumulated metal ions, specifically Cu and Zn, with a strong spatial correlation between these two ions. The "hot spots" of accumulated Zn and Cu were co-localized with beta-amyloid plaques. Thus for the first time, a strong spatial correlation has been observed between elevated beta-sheet content in Abeta plaques and accumulated Cu and Zn ions, emphasizing an association of metal ions with amyloid formation in AD.  相似文献   

8.
One of the major pathological features of Alzheimer's disease (AD) is the presence of extracellular amyloid plaques that are composed predominantly of the amyloid-beta peptide (Abeta). Diffuse plaques associated with AD are composed predominantly of Abeta42, whereas senile plaques contain both Abeta40 and Abeta42. Recently, it has been suggested that diffuse plaque formation is initiated as a plasma membrane-bound Abeta species and that Abeta42 is the critical component. In order to investigate this hypothesis, we have examined Abeta42-membrane interactions using in situ atomic force microscopy and fluorescence spectroscopy. Our studies demonstrate the association of Abeta42 with planar bilayers composed of total brain lipids, which results initially in peptide aggregation and then fibre formation. Modulation of the cholesterol content is correlated with the extent of Abeta42-assembly on the bilayer surface. Although Abeta42 was not visualized directly on cholesterol-depleted bilayers, fluorescence anisotropy and fluorimetry demonstrate Abeta42-induced membrane changes. Our results demonstrate that the composition of the lipid bilayer governs the outcome of Abeta interactions.  相似文献   

9.
Alzheimer vaccine: amyloid-beta on trial   总被引:7,自引:0,他引:7  
A new therapeutic approach is being developed for the treatment of Alzheimer's disease (AD). This approach involves the deliberate induction of an autoimmune response to amyloid-beta (Abeta) peptide, the constituent of neuritic plaques that is thought to cause the neurodegeneration and dementia in AD. If this approach is to be effective, antibodies must be produced that can selectively target the toxic forms of Abeta, while leaving the functionally-relevant forms of Abeta and its precursor protein untouched. Furthermore, an approach needs to be found that avoids provoking an acute neuroinflammatory response. The situation is made even more challenging by uncertainty regarding which isoforms of Abeta contribute to the pathogenesis of AD.  相似文献   

10.
Alzheimer disease (AD) is a neurodegenerative disease which is characterized by the presence of extracellular senile plaques mainly composed of amyloid-beta peptide (Abeta), intracellular neurofibrillary tangles, and selective synaptic and neuronal loss. AD brains revealed elevated levels of oxidative stress markers which have been implicated in Abeta-induced toxicity. In the present work we addressed the hypothesis that oxidative stress occurs early in the development of AD and evaluated the extension of the oxidative stress and the levels of antioxidants in an in vivo model of AD, the triple-transgenic mouse, which develops plaques, tangles, and cognitive impairments and thus mimics AD progression in humans. We have shown that in this model, levels of antioxidants, namely, reduced glutathione and vitamin E, are decreased and the extent of lipid peroxidation is increased. We have also observed increased activity of the antioxidant enzymes glutathione peroxidase and superoxide dismutase. These alterations are evident during the Abeta oligomerization period, before the appearance of Abeta plaques and neurofibrillary tangles, supporting the view that oxidative stress occurs early in the development of the disease.  相似文献   

11.
Talmard C  Bouzan A  Faller P 《Biochemistry》2007,46(47):13658-13666
Aggregation of the peptide amyloid-beta (Abeta) to amyloid plaques is a key event in Alzheimer's disease. According to the amyloid cascade hypothesis, Abeta aggregates are toxic to neurons via the production of reactive oxygen species and are hence directly involved in the cause of the disease. Zinc ions play an important role, because they are able to bind to Abeta and influence the aggregation properties. In the present work isothermal titration calorimetry and Zn sensors (zincon, Newport Green, and zinquin) were used to investigate the interaction of Zn with the full-length Abeta1-40 and Abeta1-42, as well as the truncated Abeta1-16 and Abeta1-28. The results suggest that Zn binding to Abeta induces a release of approximately 0.9 proton by the peptide. This correspond to the expected value upon Zn binding to the three histidines and indicates that further ligands are not deprotonated upon Zn binding. Such behavior is expected for carboxylates, but not the N-terminus. Moreover, the apparent dissociation constant (Kd,app) of Zn binding to all forms of Abeta is in the low micromolar range (1-20 microM) and rather independent of the aggregation state including soluble Abeta, Abeta fibrils, or Zn-induced Abeta aggregates. Finally, Zn in the soluble or aggregated Zn-Abeta form is well accessible for Zn chelators. The potential repercussions on metal chelation therapy are discussed.  相似文献   

12.
The tumor necrosis factor (TNF)-alpha converting enzyme (TACE) can cleave the cell-surface ectodomain of the amyloid-beta precursor protein (APP), thus decreasing the generation of amyloid-beta (Abeta) by cultured non-neuronal cells. While the amyloidogenic processing of APP in neurons is linked to the pathogenesis of Alzheimer's disease (AD), the expression of TACE in neurons has not yet been examined. Thus, we assessed TACE expression in a series of neuronal and non-neuronal cell types by Western blots. We found that TACE was present in neurons and was only faintly detectable in lysates of astrocytes, oligodendrocytes, and microglial cells. Immunohistochemical analysis was used to determine the cellular localization of TACE in the human brain, and its expression was detected in distinct neuronal populations, including pyramidal neurons of the cerebral cortex and granular cell layer neurons in the hippocampus. Very low levels of TACE were seen in the cerebellum, with Purkinje cells at the granular-molecular boundary staining faintly. Because TACE was localized predominantly in areas of the brain that are affected by amyloid plaques in AD, we examined its expression in a series of AD brains. We found that AD and control brains showed similar levels of TACE staining, as well as similar patterns of TACE expression. By double labeling for Abeta plaques and TACE, we found that TACE-positive neurons often colocalized with amyloid plaques in AD brains. These observations support a neuronal role for TACE and suggest a mechanism for its involvement in AD pathogenesis as an antagonist of Abeta formation.  相似文献   

13.
We have undertaken an integrated chemical and morphological comparison of the amyloid-beta (Abeta) molecules and the amyloid plaques present in the brains of APP23 transgenic (tg) mice and human Alzheimer's disease (AD) patients. Despite an apparent overall structural resemblance to AD pathology, our detailed chemical analyses revealed that although the amyloid plaques characteristic of AD contain cores that are highly resistant to chemical and physical disruption, the tg mice produced amyloid cores that were completely soluble in buffers containing SDS. Abeta chemical alterations account for the extreme stability of AD plaque core amyloid. The corresponding lack of post-translational modifications such as N-terminal degradation, isomerization, racemization, pyroglutamyl formation, oxidation, and covalently linked dimers in tg mouse Abeta provides an explanation for the differences in solubility between human AD and the APP23 tg mouse plaques. We hypothesize either that insufficient time is available for Abeta structural modifications or that the complex species-specific environment of the human disease is not precisely replicated in the tg mice. The appraisal of therapeutic agents or protocols in these animal models must be judged in the context of the lack of complete equivalence between the transgenic mouse plaques and the human AD lesions.  相似文献   

14.
15.
Deposition of amyloid-beta (Abeta) aggregates in the brain is a defining characteristic of Alzheimer's disease (AD). Fibrillar amyloid, found in the cores of senile plaques, is surrounded by dystrophic neurites. In contrast, the amorphous Abeta (also called preamyloid) in diffuse plaques is not associated with neurodegeneration. Depending on the conditions, Abeta will also form fibrillar or amorphous aggregates in vitro. In this present study, we sought to characterize the properties of the amorphous aggregate and determine whether we could establish an in vitro model for amorphous Abeta. CD data indicated that Abeta40 assembled to form either a beta-structured aggregate or an unfolded aggregate with the structured aggregate forming at high peptide concentrations and the unstructured aggregate forming at low Abeta40 levels. The critical concentration separating these two pathways was 10 microm. Fluorescence emission and polarization showed the structured aggregate was tightly packed containing peptides that were not accessible to water. Peptides in the unstructured aggregate were loosely packed, mobile, and accessible to water. When examined by electron microscopy, the structured aggregate appeared as protofibrillar structures and formed classic amyloid fibrils over a period of several weeks. The unstructured aggregate was not visible by electron microscopy and did not generate fibrils. These findings suggest that the unstructured aggregate shares many properties with the amorphous Abeta of AD and that conditions can be established to form amorphous Abeta in vitro. This would allow for investigations to better understand the relationship between fibrillar and amorphous Abeta and could have significant impact upon efforts to find therapies for AD.  相似文献   

16.
Progressive deposition of amyloid beta (Aβ) peptides into amyloid plaques is the pathological hallmark of Alzheimer’s disease (AD). The amyloid cascade hypothesis pins this deposition as the primary cause of the disease, but the mechanisms that causes this deposition remain elusive. An increasing amount of evidence shows that biometals Zn(II) and Cu(II) can interact with Aβ, thus influencing the fibrillization and toxicity. This review focuses on the role of Zn(II) and Cu(II) in AD, and revisits the amyloid cascade hypothesis demonstrating the possible roles of Zn(II) and Cu(II) in the disease pathogenesis.  相似文献   

17.
18.
This paper reports biosorption of Zn(II), Cu(II) and Co(II) onto O. angustissima biomass from single, binary and ternary metal solutions, as a function of pH and metal concentrations via Central Composite Design generated by statistical software package Design Expert 6.0. The experimental design revealed that metal interactions could be best studied at lower pH range i.e. 4.0-5.0, which facilitates adequate availability of all the metal ions. The sorption capacities for single metal decreased in the order Zn(II)>Co(II)>Cu(II). In absence of any interfering metals, at pH 4.0 and an initial metal concentration of 0.5 mM in the solution, the adsorption capacities were 0.33 mmol/g Zn(II), 0.26 mmol/g Co(II) and 0.12 mmol/g Cu(II). In a binary system, copper inhibited both Zn(II) and Co(II) sorption but the extent of inhibition of former was greater than the latter; sorption values being 0.14 mmol/g Zn(II) and 0.27 mmol/g Co(II) at initial Zn(II) and Co(II) concentration of 1.5 mM each, pH 4.0 and 1mM Cu(II) as the interfering metal. Zn(II) and Co(II) were equally antagonistic to each others sorption; Zn(II) and Co(II) sorption being 0.23 and 0.24 mmol/g, respectively, at initial metal concentration of 1.5 mM each, pH 4.0 and 1mM interfering metal concentration. In contrast, Cu(II) sorption remained almost unaffected at lower concentrations of the competing metals. Thus, in binary system inhibition dominance observed was Cu(II)>Zn(II), Cu(II)>Co(II) and Zn(II) approximately Co(II), due to this the biosorbent exhibited net preference/affinity for Cu(II) sorption over Zn(II) or Co(II). Hence, the affinity series showed a trend of Cu(II)>Co(II)>Zn(II). In a ternary system, increasing Co(II) concentration exhibited protection against the inhibitory effect of Cu(II) on Zn(II) sorption. On the other hand, the inhibitory effect of Zn(II) and Cu(II) on Co(II) sorption was additive. The model equation for metal interactions was found to be valid within the design space.  相似文献   

19.
20.
Characterization of an inhibitory metal binding site in carboxypeptidase A   总被引:6,自引:0,他引:6  
K S Larsen  D S Auld 《Biochemistry》1991,30(10):2613-2618
The specificity of metal ion inhibition of bovine carboxypeptidase A ([(CPD)Zn]) catalysis is examined under stopped-flow conditions with use of the fluorescent peptide substrate Dns-Gly-Ala-Phe. The enzyme is inhibited competitively by Zn(II), Pb(II), and Cd(II) with apparent KI values of 2.4 x 10(-5), 4.8 x 10(-5), and 1.1 x 10(-2) M in 0.5 M NaCl at pH 7.5 and 25 degrees C. The kcat/Km value, 7.3 x 10(6) M-1 s-1, is affected less than 10% at 1 x 10(-4) M Mn(II) or Cu(II) and at 1 x 10(-2) M Co(II), Ni(II), Hg(II), or Pt(IV). Zn(II) and Pb(II) are mutually exclusive inhibitors. Previous studies of the pH dependence of Zn(II) inhibition [Larsen, K. S., & Auld, D. S. (1989) Biochemistry 28, 9620] indicated that [(CPD)Zn] is selectively inhibited by a zinc monohydroxide complex, ZnOH+, and that ionization of a ligand, LH, in the enzyme's inhibitory site (pKLH 5.8) is obligatory for its binding. The present study allows further definition of this inhibitory zinc site. The ionizable ligand (LH) is assigned to Glu-270, since specific chemical modification of this residue decreases the binding affinity of [(CPD)Zn] for Zn(II) and Pb(II) by more than 60- and 200-fold, respectively. A bridging interaction between the Glu-270-coordinated metal hydroxide and the catalytic metal ion is implicated from the ability of Zn(II) and Pb(II) to induce a perturbation in the electronic absorption spectrum of cobalt carboxypeptidase A ([(CPD)Co]).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号