首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The neuronal nicotinic acetylcholine receptor subunits alpha 2, alpha 3, and alpha 4 form functional receptors with the beta 2 subunit. Each of these subunit combinations shows two distinct open states (referred to as primary and secondary). The primary open states of alpha 2 beta 2, alpha 3 beta 2, and alpha 4 beta 2 receptors were 33.6 +/- 1.8 pS, 15.4 +/- 0.8 pS, and 13.3 +/- 1.5 pS, respectively. The open times of the alpha 3 beta 2 primary open state were significantly longer than the open times of the other primary conductance states. The secondary open states of alpha 2 beta 2 and alpha 3 beta 2 were 15.5 +/- 1.3 pS and 5.1 +/- 0.4 pS, respectively. Secondary open states were seen infrequently with alpha 4 beta 2. Oocytes injected with alpha 2 RNA and a 9-fold excess of beta 2 RNA showed an enhanced expression of the secondary open state.  相似文献   

2.
We have determined the subunit stoichiometry of chicken neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes by quantitation of the amount of radioactivity in individual subunits of [35S] methionine-labeled receptors. The chicken neuronal nicotinic acetylcholine receptor appears to be a pentamer of two alpha 4 acetylcholine-binding subunits and three beta 2 structural subunits. We also show that these expressed receptors bind L-[3H]nicotine with high affinity, are transported to the surface of the oocyte outer membrane, and cosediment on sucrose gradients with acetylcholine receptors isolated from chicken brain. Using this unique and generally applicable method of determining subunit stoichiometry of receptors expressed in oocytes, we obtained the expected (alpha 1) 2 beta 1 gamma delta stoichiometry for muscle-type acetylcholine receptors assembled from coexpression of either Torpedo alpha 1 or human alpha 1 subunits, with Torpedo beta 1, gamma, and delta subunits.  相似文献   

3.
The rat alpha 7 neuronal nicotinic acetylcholine receptor was expressed and studied in Xenopus oocytes. The magnitude and reversal potential of instantaneous whole cell currents were examined in solutions containing varying concentrations of either calcium or barium, and in the presence or absence of the intracellular calcium chelator BAPTA. In external barium, application of nicotine elicits an inwardly rectifying response; in calcium the response is larger and has a linear IV relation. Pretreatment of oocytes with BAPTA-AM could not prevent activation of calcium-dependent chloride channels in external Ringer containing calcium. Using an extended GHK equation, the permeability ratio PBa/PNa of the alpha 7 receptor was determined to be about 17. Our results suggest that alpha 7 nicotinic receptors are highly permeable to divalent cations.  相似文献   

4.
Nicotinic receptors containing alpha7 subunits are widely distributed in the central nervous system and are thought to be involved in a number of functions. However, it has been difficult to study alpha7-containing receptors in vivo because of a paucity of selective agonists. A new spirooxazolidinone compound, AR-R17779, was recently described as potent agonist at alpha7 receptors, but electrophysiological studies at other types of nicotinic receptors have not been carried out. We characterized the activity of AR-R17779 at alpha7, alpha4beta2, alpha3beta4, alpha3beta2, alpha3beta2alpha5 receptors expressed in Xenopus oocytes. In addition, since there is significant homology between nicotinic alpha7 and serotonin 5HT(3) receptors, the activity of AR-R17779 at expressed 5HT(3a) receptors was also examined. Finally, actions of tropisetron and ondansetron, two 5HT(3) antagonists, were explored. AR-R17779 was found to activate alpha7 receptors, but had no activity at other types of nicotinic receptors, and also had no activity at 5HT(3a) receptors. Tropisetron activated, while ondansetron acted as an antagonist, at alpha7 nicotinic receptors. The two 5HT(3) antagonists also acted as antagonists at alpha4beta2 and alpha3beta4 nicotinic receptors. Thus, AR-R17779 was confirmed to be a selective nicotinic alpha7 receptor agonist and to be without activity at 5HT(3) receptors. In contrast, the actions of tropisetron and ondansetron on nicotinic receptors were complex.  相似文献   

5.
To determine whether prolonged nicotine exposure persistently inactivates rat alpha4beta2 nicotinic receptors expressed in Xenopus oocytes, we measured the voltage-clamped alpha4beta2 response to acetylcholine (ACh) before and 24 h after, 1-h or 12-h incubations in 10 microm nicotine. A 12-h incubation in 10 microm nicotine depressed the alpha4beta2 ACh response for 24 h without affecting total or surface alpha4beta2 expression. To determine whether oocyte-mediated nicotine release caused this depression, we co-incubated an alpha4beta2-expressing oocyte with an un-injected one (pre-incubated in 10 microm nicotine for 12 h) for 24 h and measured the change in the alpha4beta2 ACh response. The response decreased by the same factor after the co-incubation as it did after a 12-h incubation in 10 microm nicotine and a 24-h incubation in nicotine-free media. Thus, oocyte-mediated nicotine release caused the persistent desensitization we observed after a 12-h incubation in 10 microm nicotine. Consistent with this result, measurements of [3H]nicotine release show that oocytes release enough nicotine into the wash media to desensitize alpha4beta2 receptors and that prolonged incubation in 300 microm ACh (which cannot readily cross the membrane or accumulate in acidic vesicles) did not persistently depress the alpha4beta2 response.  相似文献   

6.
The hypothesisthat amiloride-sensitive Na+channels (ENaC) are involved in cell volume regulation was tested.Anisosmotic ND-20 media (ranging from 70 to 450 mosM) were used tosuperfuse Xenopus oocytes expressing-rat ENaC (-rENaC). Whole cell currents werereversibly dependent on external osmolarity. Under conditions ofswelling (70 mosM) or shrinkage (450 mosM), current amplitude decreasedand increased, respectively. In contrast, there was no change incurrent amplitude of H2O-injectedoocytes to the above osmotic insults. Currents recorded from-rENaC-injected oocytes were not sensitive to externalCl concentration or to theK+ channel inhibitorBaCl2. They were sensitive toamiloride. The concentration of amiloride necessary to inhibit one-halfof the maximal rENaC current expressed in oocytes(Ki; apparentdissociation constant) decreased in swollen cells and increased inshrunken oocytes. The osmotic pressure-inducedNa+ currents showed propertiessimilar to those of stretch-activated channels, including inhibition byGd3+ andLa3+, and decreased selectivityfor Na+.-rENaC-expressing oocytes maintained a nearly constant cell volume in hypertonic ND-20. The present study is the firstdemonstration that -rENaC heterologously expressed inXenopus oocytes may contribute tooocyte volume regulation following shrinkage.

  相似文献   

7.
Structure-affinity relationships for the binding of 3-[2-(N,N,N-trimethylammonium)ethoxy]pyridine (AXPQ) at alpha7 nACh receptors were investigated due to its close structural similarity to a known alpha7 antagonist.  相似文献   

8.
Nicotinic acetylcholine receptors (AChRs) are localized at high concentrations in the postsynaptic membrane of the neuromuscular junction. A peripheral membrane protein of Mr 43,000 (43K protein) is closely associated with AChRs and has been proposed to anchor receptors at postsynaptic sites. We have used the Xenopus oocyte expression system to test the idea that the 43K protein clusters AChRs. Mouse muscle AChRs expressed in oocytes after injection of RNA encoding receptor subunits are uniformly distributed in the surface membrane. Coinjection of AChR RNA and RNA encoding the mouse muscle 43K protein causes AChRs to form clusters of 0.5-1.5 microns diameter. AChR clustering is not a consequence of increased receptor expression in the surface membrane or nonspecific clustering of all membrane proteins. The 43K protein is colocalized with AChRs in clusters when the two proteins are expressed together and forms clusters of similar size even in the absence of AChRs. These results provide direct evidence that the 43K protein causes clustering of AChRs and suggest that regulation of 43K protein clustering may be a key step in neuromuscular synaptogenesis.  相似文献   

9.
Brain nicotinic acetylcholine receptors (nAChRs) are made up of protein subunits that differ from those constituting muscle nAChRs. To characterize the physiological properties of one class of avian brain nicotinic receptor, we injected the nuclei of Xenopus oocytes with full-length cDNAs for the ligand binding (alpha 4) and structural (n alpha) subunits. Injected oocytes had large ACh-induced currents in the microampere range that were insensitive to alpha-bungarotoxin, as expected for neuronal nAChRs. We found that these brain nAChRs incorporate at least two alpha 4 subunits and that their functional properties differ from muscle nAChRs in at least two respects: the elementary conductance is considerably smaller (20 pS), and channels in outside out patches stop functioning within a few minutes.  相似文献   

10.
Mouse alpha4beta2 nicotinic acetylcholine receptors (nAchRs) were stably expressed in HEK293T cells. The function of this stable cell line, termed mmalpha4beta2, was assessed using an aequorin-based luminescence method that measures agonist-evoked changes in intracellular calcium. Agonist-elicited changes in intracellular calcium were due primarily to direct entry of calcium through the alpha4beta2 channel, although release of calcium from intracellular stores contributed approximately 28% of the agonist-evoked response. Agonist pharmacologies were very similar between the mmalpha4beta2 cells and most cell lines that stably express human alpha4beta2 nAchRs. Based on agonist profiles and sensitivity to the antagonist dihydro-beta-erythroidine (DHbetaE), the predominant alpha4beta2 nAchR expressed in the mmalpha4beta2 cells exhibits a pharmacology that most resembles the DHbetaE-sensitive component of 86Rb+ efflux from mouse brain synaptosomes. However, when evaluated with the aequorin assay, the mmalpha4beta2 nAchR was found to be atypically sensitive to blockade by the presumed alpha7-selective antagonist methyllycaconitine (MLA), exhibiting an IC50 value of 31 +/- 0.1 nm. Similar IC50 values have been reported for the MLA inhibition of nicotine-stimulated dopamine release, a response that is mediated by beta2-subunit-containing nAchRs and not alpha7-subunit-containing nAchRs. Consequently, at low nanomolar concentrations, MLA may not be as selective for alpha7-containing nAchRs as previously thought.  相似文献   

11.
To compare the actions of clothianidin, a neonicotinoid acting on insect nicotinic acetylcholine receptors, and related compounds with that of imidacloprid, the compounds were tested on the Drosophila SAD-chicken beta2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes using two-electrode voltage-clamp electrophysiology. The maximum response of the SAD beta 2 nicotinic receptor to clothianidin was larger than that observed for acetylcholine. Ring breakage of the imidazolidine ring of imidacloprid resulting in the generation of a guanidine group was critical for this super agonist action.  相似文献   

12.
Lidocaine is a local anaesthetic that blocks sodium channels, but also inhibits several ligand-gated ion-channels. The aim of this work was to unravel the mechanisms by which lidocaine blocks Torpedo nicotinic receptors transplanted to Xenopus oocytes. Acetylcholine-elicited currents were reversibly blocked by lidocaine, in a concentration dependent manner. At doses lower than the IC(50) , lidocaine blocked nicotinic receptors only at negative potentials, indicating an open-channel blockade; the binding site within the channel was at about 30% of the way through the electrical field across the membrane. In the presence of higher lidocaine doses, nicotinic receptors were blocked both at positive and negative potentials, acetylcholine dose-response curve shifted to the right and lidocaine pre-application, before its co-application with acetylcholine, enhanced the current inhibition, indicating all together that lidocaine also blocked resting receptors; besides, it increased the current decay rate. When lidocaine, at low doses, was co-applied with 2-(triethylammonio)-N-(2,6-dimethylphenyl) acetamide bromide, edrophonium or 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide, which are quaternary-ammonium molecules that also blocked nicotinic receptors, there was an additive inhibitory effect, indicating that these molecules bound to different sites within the channel pore. These results prove that lidocaine blocks nicotinic receptors by several independent mechanisms and evidence the diverse and complex modulation of this receptor by structurally related molecules.  相似文献   

13.
Nicotinic acetylcholine receptors (nAChRs) are pentameric, neurotransmitter-gated ion channels responsible for rapid excitatory neurotransmission in the central and peripheral nervous systems, resulting in skeletal muscle tone and various cognitive effects in the brain. These complex proteins are activated by the endogenous neurotransmitter ACh as well as by nicotine and structurally related agonists. Activation and modulation of nAChRs has been implicated in the pathology of multiple neurological disorders, and as such, these proteins are established therapeutic targets. Here we use unnatural amino acid mutagenesis to examine the ligand binding mechanisms of two homologous neuronal nAChRs: the α4β4 and α7 receptors. Despite sequence identity among the residues that form the core of the agonist-binding site, we find that the α4β4 and α7 nAChRs employ different agonist-receptor binding interactions in this region. The α4β4 receptor utilizes a strong cation-π interaction to a conserved tryptophan (TrpB) of the receptor for both ACh and nicotine, and nicotine participates in a strong hydrogen bond with a backbone carbonyl contributed by TrpB. Interestingly, we find that the α7 receptor also employs a cation-π interaction for ligand recognition, but the site has moved to a different aromatic amino acid of the agonist-binding site depending on the agonist. ACh participates in a cation-π interaction with TyrA, whereas epibatidine participates in a cation-π interaction with TyrC2.  相似文献   

14.
Assembly of Torpedo acetylcholine receptors in Xenopus oocytes   总被引:1,自引:2,他引:1       下载免费PDF全文
To study pathways by which acetylcholine receptor (AChR) subunits might assemble, Torpedo alpha subunits were expressed in Xenopus oocytes alone or in combination with beta, gamma, or delta subunits. The maturation of the conformation of the main immunogenic region (MIR) on alpha subunits was measured by binding of mAbs and the maturation of the conformation of the AChR binding site on alpha subunits was measured by binding of alpha-bungarotoxin (alpha Bgt) and cholinergic ligands. The size of subunits and subunit complexes was assayed by sedimentation on sucrose gradients. It is generally accepted that native AChRs have the subunit composition alpha 2 beta gamma delta. Torpedo alpha subunits expressed alone resulted in an amorphous range of complexes with little affinity for alpha Bgt or mAbs to the MIR, rather than in a unique 5S monomeric assembly intermediate species. A previously recognized temperature-dependent failure in alpha subunit maturation may cause instability of the monomeric assembly intermediate and accumulation of aggregated denatured alpha subunits. Coexpression of alpha with beta subunits also resulted in an amorphous range of complexes. However, coexpression of alpha subunits with gamma or delta subunits resulted in the efficient formation of 6.5S alpha gamma or alpha delta complexes with high affinity for mAbs to the MIR, alpha Bgt, and small cholinergic ligands. These alpha gamma and alpha delta subunit pairs may represent normal assembly intermediates in which Torpedo alpha is stabilized and matured in conformation. Coexpression of alpha, gamma, and delta efficiently formed 8.8S complexes, whereas complexes containing alpha beta and gamma or alpha beta and delta subunits are formed less efficiently. Assembly of beta subunits with complexes containing alpha gamma and delta subunits may normally be a rate-limiting step in assembly of AChRs.  相似文献   

15.
16.
In neuromuscular acetylcholine (ACh) receptor channels (AChRs), agonist molecules bind with a low affinity (LA) to two sites that can switch to high affinity (HA) and increase the probability of channel opening. We measured (by using single-channel kinetic analysis) the rate and equilibrium constants for LA binding and channel gating for several different agonists of adult-type mouse AChRs. Almost all of the variation in the equilibrium constants for LA binding was from differences in the association rate constants. These were consistently below the limit set by diffusion and were substantially different even though the agonists had similar sizes and the same charge. This suggests that binding to resting receptors is not by diffusion alone and, hence, that each binding site can undergo two conformational changes (“catch” and “hold”) that connect three different structures (apo-, LA-bound, and HA-bound). Analyses of ACh-binding protein structures suggest that this binding site, too, may adopt three discrete structures having different degrees of loop C displacement (“capping”). For the agonists we tested, the logarithms of the equilibrium constants for LA binding and LA↔HA gating were correlated. Although agonist binding and channel gating have long been considered to be separate processes in the activation of ligand-gated ion channels, this correlation implies that the catch-and-hold conformational changes are energetically linked and together comprise an integrated process having a common structural basis. We propose that loop C capping mainly reflects agonist binding, with its two stages corresponding to the formation of the LA and HA complexes. The catch-and-hold reaction coordinate is discussed in terms of preopening states and thermodynamic cycles of activation.  相似文献   

17.
Expression of nicotinic acetylcholine receptors in aneural Xenopus embryos   总被引:1,自引:0,他引:1  
During gastrulation in vertebrate embryos, the mesoderm moves inward and under the ectoderm and these two cell layers subsequently differentiate in close proximity to each other, providing an opportunity for the exchange of inductive signals. This study examines whether the activation of muscle nicotinic acetylcholine receptor (AChR) genes and the subsequent expression of receptors in Xenopus myotomal muscle are dependent on interaction between the ectoderm and the mesoderm, or their derivatives, after the onset of gastrulation. We eliminated such interaction by inducing total exogastrulation of Xenopus embryos. During exogastrulation, the mesoderm moves away from the ectoderm, and the nervous system fails to develop. Single channel recordings from the myotomal muscle of exogastrulated embryos revealed the presence of two major classes of AChRs, which could be distinguished on the basis of channel conductance. The current amplitudes, conductances, reversal potentials, and open times of these channels closely resembled those reported for the two major classes of AChR channels normally expressed in vivo. We conclude that interaction between ectoderm and mesoderm following the onset of gastrulation is not required for the future expression of the major classes of AChRs in myotomal muscle.  相似文献   

18.
Effects of cytisine (cy), 3-bromocytisine (3-Br-cy), 5-bromocytisine (5-Br-cy) and 3,5-dibromocytisine (3,5-diBr-cy) on human (h) alpha7-, alpha4beta2- and alpha4beta4 nicotinic acetylcholine (nACh) receptors, expressed in Xenopus oocytes and cell lines, have been investigated. Cy and its bromo-isosteres fully inhibited binding of both [alpha-(125)I]bungarotoxin ([alpha-(125)I]BgTx) to halpha7- and [(3)H]cy to halpha4beta2- or halpha4beta4-nACh receptors. 3-Br-cy was the most potent inhibitor of both [alpha-(125)I]BgTx and [(3)H]cy binding. Cy was less potent than 3-Br-cy, but 5-Br-cy and 3,5-diBr-cy were the least potent inhibitors. Cy and 3-Br-cy were potent full agonists at halpha7-nACh receptors but behaved as partial agonists at halpha4beta2- and halpha4beta4-nACh receptors. 5-Br-cy and 3,5-diBr-cy had low potency and were partial agonists at halpha7- and halpha4beta4-nACh receptors, but they elicited no responses on halpha4beta2-nACh receptors. Cy and 3-Br-cy produced dual dose-response curves (DRC) at both halpha4beta2- and halpha4beta4-nACh receptors, but ACh produced dual DRC only at halpha4beta2-nACh receptors. Low concentrations of cy, 3-Br-cy and 5-Br-cy enhanced ACh responses of oocytes expressing halpha4beta2-nACh receptors, but at high concentrations they inhibited the responses. In contrast, 3,5-diBr-cy only inhibited, in a competitive manner, ACh responses of halpha4beta2-nACh receptors. It is concluded that bromination of the pyridone ring of cy produces marked changes in effects of cy that are manifest as nACh receptor subtype-specific differences in binding affinities and in functional potencies and efficacies.  相似文献   

19.
Racemic 5-azidoepibatidine [(+/-)-1] was synthesized via 5-aminoepibatidine as a candidate photoaffinity ligand with exceptionally high affinity at the mammalian neuronal nicotinic receptors (K(i) values of 0.027 nM for alpha 4 beta 2 and 9.7 nM for alpha 7) and excellent photoreactivity.  相似文献   

20.
The recently cloned human beta-adrenergic cDNA and several mutated forms have been expressed in Xenopus laevis oocytes by injection of RNA made from the cDNA under the control of the bacteriophage SP6 promoter. The cDNA and gene of the beta 2-adrenergic receptor possess the unusual feature of having a second upstream ATG (-101 base pairs) and a 19-codon open reading frame 5' to the initiator methionine codon of the receptor (Kobilka, B. K., Dixon, R. A. F., Frielle, T., Dohlman, H. G., Bolanowski, M., Sigal, I. S., Yang-Feng, T. L., Francke, U., Caron, M. G., and Lefkowitz, R. J. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 46-50). RNA lacking this upstream AUG and open reading frame was translated approximately 10-fold more efficiently both in an in vitro rabbit reticulocyte system and in oocytes. Injected oocytes but not water injected controls expressed typical beta 2-adrenergic receptors as assessed by ligand binding (450 fmol/mg membrane protein) and catecholamine-stimulated adenylate cyclase (approximately 20 fold). Moreover, these receptors displayed typical agonist-induced homologous desensitization when oocytes were incubated with isoproterenol at room temperature for 3-24 h. Among a series of mutations, truncations of the membrane-anchored core of the receptor eliminated receptor binding and cyclase stimulating activity. In contrast, disruption of one of the cAMP-dependent protein kinase phosphorylation sites or removal of the serine/threonine-rich carboxyl terminus had little or no effect on these functions or on the extent of agonist-induced desensitization relative to that observed with native receptor. These studies validate the beta 2-adrenergic nature of the cloned human beta-adrenergic cDNA, document the utility of the Xenopus oocyte system for studying functional and regulatory properties of receptors coupled to adenylate cyclase, and suggest the possibility that elements in the 5' untranslated region of the beta 2-adrenergic receptor RNA may regulate its translation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号