首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Glutamate- and nucleotide-dependent polymerization of purified calf brain tubulin was used as a model system to study interactions of ribose-modified GDP and GTP analogs with tubulin. Earlier studies (Hamel, E., and Lin, C.M. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 3368–3372) were extended to three additional sets of analogs: the di- and triphosphate derivatives of 9-β-D-arabinofuranosylguanine (araGDP and araGTP) and acycloguanosine (9-(2-hydroxyethoxymethyl)guanine) (acycloGDP and acycloGTP), as well as the periodate-oxidized and borohydride-reduced derivatives of GDP and GTP (ox-redGDP and ox-redGTP). Disruption of the ribose ring in ox-redGTP resulted in major loss of activity relative to GTP in supporting tubulin polymerization, although the analog's deficiency may result from an inability to displace GDP from the exchangeable site rather than a direct effect on the polymerization reaction itself. The poor activity of ox-redGTP could be largely reversed if nucleoside diphosphate kinase was added to the reaction mixture. Removal of the 2′ and 3′ carbons entirely, in the form of acycloGTP, resulted in only minimal loss of activity relative to GTP. AraGTP, on the other hand, was more active than GTP in supporting tubulin polymerization. All three GDP analogs were much less effective than GDP in inhibiting tubulin polymerization, although araGDP was significantly more inhibitory than acycloGDP or ox-redGDP. Relative inhibitory activity of these and additional GDP analogs was the same whether GTP or a GTP analog was used to support tubulin polymerization.  相似文献   

2.
The presence of cytochalasin A inhibits the self-assembly of beef brain tubulin and rabbit muscle G-actin in vitro and also decreases the colchicine binding of tubulin. Prior reaction of cytochalasin A with 2-mercaptoethanol destroys its inhibitory effects. It is shown that cytochalasin A exerts its actions by reacting with sulfhydryl groups, possibly causing irreversible structural changes in the proteins. Cytochalasin B does not affect the tubulin assembly reaction.  相似文献   

3.
Due to widespread exposure of human being to various sources of static magnetic fields (SMF), their effect on the spatial and temporal status of structure, arrangement, and polymerization of tubulin was studied at the molecular level. The intrinsic fluorescence intensity of tubulin was increased by SMF, indicating the repositioning of tryptophan and tyrosine residues. Circular Dichroism spectroscopy revealed variations in the ratios of alpha helix, beta, and random coil structures of tubulin as a result of exposure to SMF at 100, 200, and 300 mT. Transmission Electron microscopy of microtubules showed breaches and curvatures whose risk of occurrence increased as a function of field strength. Dynamic light scattering revealed an increase in the surface potential of tubulin aggregates exposed to SMF. The rate and extent of polymerization increased by 9.8 and 33.8%, at 100 and 300 mT, respectively, but decreased by 36.16% at 200 mT. The conductivity of polymerized tubulin increased in the presence of 100 and 300 mT SMF but remained the same as the control at 200 mT. The analysis of flexible amino acids along the sequence of tubulin revealed higher SMF susceptibility in the helical electron conduction pathway set through histidines rather than the vertical electron conduction pathway formed by tryptophan residues. The results reveal structural and functional effects of SMF on tubulin assemblies and microtubules that can be considered as a potential means to address the safety issues and for manipulation of bioelectrical characteristics of cytosol, intracellular trafficking and thus, the living status of cells, remotely.  相似文献   

4.
5.
The initial rate and final extent of polymerization of both bovine brain tubulin and sea urchin egg tubulin were enhanced in the presence of 2H2O. The yields were increased in association with the elevation of the 2H2O concentration. 2H2O also reduced the critical concentration for polymerization of brain tubulin. Thermodynamic analysis was attempted using the temperature dependence of the critical concentration for polymerization in the presence of 2H2O. We obtained linear van 't Hoff plots and calculated thermodynamic parameters which were positive and were increased with the elevation of the 2H2O concentration. The enhancement of the polymerization of tubulin by 2H2O could, therefore, be the result of the strenghening of intra-and/or inter-molecular hydrophobic interactions of the tubulin molecules. We believe that the increase in lenghth and number of microtubules of the mitotic spindles in the dividing cells of the eukaryotes with 2H2O may be caused by the direct involvement of 2H2O in the polymerization of tubulin.  相似文献   

6.
This review addresses the use of the different antihypertensive agents currently available and some in development, and their effects on the vasculature. The different classes of agents used in the treatment of hypertension, and the results of recent large clinical trials, dosing protocols and adverse effects are first briefly summarized. The consequences on blood vessels of the use of antihypertensive drugs and the differential effects on the biology of large and small arteries resulting in modulation of vascular remodelling and dysfunction in hypertensive patients are then described. Large elastic conduit arteries exhibit outward hypertrophic remodelling and increased stiffness, which contributes to raise systolic blood pressure and afterload on the heart. Small resistance arteries undergo eutrophic or hypertrophic inward remodelling, and impair tissue perfusion. By these mechanisms both large and small arteries may contribute to trigger cardiovascular events. Some antihypertensive agents correct these changes, which could contribute to improved outcome. The mechanisms that at the level of the vascular wall lead to remodelling and can be beneficially affected by antihypertensive agents will also be addressed. These include vasoconstriction, growth and inflammation. The molecular pathways contributing to growth and inflammation will be summarily described. Further identification of these signalling pathways should allow identification of novel targets leading to development of new and improved medications for the treatment of hypertension and cardiovascular disease.  相似文献   

7.
Inhibitory effects of ribose-modified GDP and GTP analogs on tubulin polymerization were examined to explore nucleotide structural requirements at the exchangeable GTP binding site. With microtubule-associated proteins and Mg2+, GTP-supported polymerization was only modestly inhibited by GDP, and still weaker inhibitory activity was found with two analogs, dGDP and 9-β-D-arabinofuranosylguanine-5′-diphosphate (araGDP). Omission of Mg2+ significantly enhanced the inhibitory effects of GDP, dGDP and araGDP and resulted in weak inhibition of the reaction by several other GDP analogs. The relative inhibitory activity of the GDP analogs had no discernable relationship to the relative activity of cognate GTP analogs in supporting microtubule-associated protein-dependent polymerization. One GTP analog, 2′,3′-dideoxyguanosine 5′-triphosphate (ddGTP), supports polymerization both with and without microtubule-associated proteins. The inhibitory activity of GDP and GDP analogs in ddGTP-supported polymerization was much greater in the absence of microtubule-associated proteins than in their presence; and both reactions were more readily inhibited than was microtubule-associated protein-dependent, GTP-supported polymerization. Microtubule-associated protein-independent, ddGTP-supported polymerization was also potently inhibited by GTP and a number of GTP analogs. GTP was in fact twice as inhibitory as GDP. The relative inhibitory activity of the GTP analogs was comparable to the relative inhibitory activity of the cognate GDP analogs and very different from their relative activity in supporting polymerization.  相似文献   

8.
Microporous polymer supports for the immobilization of lipase have been prepared by the polymerization of a concentrated emulsion precursor. The concentrated emulsion consists of a mixture of styrene and divinyl-benzene containing a suitable surfactant and an initiator as the continuous phase and water as the dispersed phase. The volume fraction of the latter phase was greater than 0.74, which is the volume fraction of the dispersed phase for the most compact arrangement of spheres of equal radius. The lipase from Candida rugosa has been immobilized on the internal surface of the hydrophobic microporous poly(styrene-divinyl benzene) supports and used as biocatalysts for the hydrolysis of triacylglycerides. The effects of the amount of surfactant, of the molar ratio of divinylbenzene/styrene in the continuous phase, and of the aquaphilicity of the supports on the adsorption, activity, and stability of the immobilized lipase have been investigated. The microporous poly(styrene-divinylbenzene) adsorbents constitute excellent supports for lipase because both the amount adsorbed is large and the rate of enzymatic reaction per molecule of lipase is higher for the immobilized enzyme than for the free one. (c) 1993 John Wiley & Sons, Inc.  相似文献   

9.
Previous studies show that chronic hyperammonemia impairs learning ability of rats by impairing the glutamate-nitric oxide (NO)-cyclic guanosine mono-phosphate (cGMP) pathway in cerebellum. Three types of glutamate receptors cooperate in modulating the NO-cGMP pathway: metabotropic glutamate receptor 5 (mGluR5), (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartic acid (NMDA) receptors. The aim of this work was to assess whether hyperammonemia alters the modulation of this pathway by mGluR5 and AMPA receptors in cerebellum in vivo. The results support that in control rats: (1) low AMPA concentrations (0.1mM) activate nearly completely Ca(2+)-permeable (glutamate receptor subunit 2 (GluR2)-lacking) AMPA receptors and the NO-cGMP pathway; (2) higher AMPA concentrations (0.3 mM) also activate Ca(2+)-impermeable (GluR2-containing) AMPA receptors, leading to activation of NMDA receptors and of NO-cGMP pathway. Moreover, the data support that chronic hyperammonemia: (1) reduces glutamate release and activation of the glutamate-NO-cGMP pathway by activation of mGluR5; (2) strongly reduces the direct activation by AMPA receptors of the NO-cGMP pathway, likely due to reduced entry of Ca(2+) through GluR2-lacking, high affinity AMPA receptors; (3) strongly increases the indirect activation of the NO-cGMP pathway by high affinity AMPA receptors, likely due to increased entry of Na(+) through GluR2-lacking AMPA receptors and NMDA receptors activation; (4) reduces the indirect activation of the NO-cGMP pathway by low affinity AMPA receptors, likely due to reduced activation of NMDA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号