首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetate accumulation under aerobic conditions is a common problem in Escherichia coli cultures, as it causes a reduction in both growth rate and recombinant protein productivity. In this study, the effect of replacing the glucose phosphotransferase transport system (PTS) with an alternate glucose transport activity on growth kinetics, acetate accumulation and production of two model recombinant proteins, was determined. Strain VH32 is a W3110 derivative with an inactive PTS. The promoter region of the chromosomal galactose permease gene galP of VH32 was replaced by the strong trc promoter. The resulting strain, VH32GalP+ acquired the capacity to utilize glucose as a carbon source. Strains W3110 and VH32GalP+ were transformed for the production of recombinant TrpLE-proinsulin accumulated as inclusion bodies (W3110-PI and VH32GalP+-PI) and for production of soluble intracellular green fluorescent protein (W3110-pV21 and VH32GalP+-pV21). W3110-pV21 and VH32GalP+-pV21 were grown in batch cultures. Maximum recombinant protein concentration, as determined from fluorescence, was almost four-fold higher in VH32GalP+-pV21, relative to W3110-pV21. Maximum acetate concentration reached 2.8 g/L for W3110-pV21 cultures, whereas a maximum of 0.39 g/L accumulated in VH32GalP+-pV21. W3110-PI and VH32GalP+-PI were grown in batch and fed-batch cultures. Compared to W3110-PI, the engineered strain maintained similar production and growth rate capabilities while reducing acetate accumulation. Specific glucose consumption rate was lower and product yield on glucose was higher in VH32GalP+-PI fed-batch cultures. Altogether, strains with the engineered glucose uptake system showed improved process performance parameters for recombinant protein production over the wild-type strain.  相似文献   

2.
In Escherichia coli the phosphotransferase system (PTS) consumes one molecule of phosphoenolpyruvate (PEP) to phosphorylate each molecule of internalized glucose. PEP bioavailability into the aromatic pathway can be increased by inactivating the PTS. However, the lack of the PTS results in decreased glucose transport and growth rates. To overcome such drawbacks in a PTS(-) strain and reconstitute rapid growth on glucose phenotype (Glc(+)), the glk and galP genes were cloned into a plasmid and the arcA gene was inactivated. Simultaneous overexpression of glk and galP increased the growth rate and regenerated a Glc(+) phenotype. However, the highest growth rate was obtained when glk and galP were overexpressed in the arcA(-) background. These results indicated that the arcA mutation enhanced glycolytic and respiratory capacities of the engineered strain.  相似文献   

3.
Escherichia coli strains VH33 (PTS? GalP? strain displaying a strongly reduced overflow metabolism) and VH34 (additionally lacking the pyruvate kinase A) were evaluated for the production of a plasmid DNA (pDNA) vaccine. The parent (W3110) and mutant strains were cultured using 10 g of glucose/L. While the specific growth rates of the three strains were similar, they presented differences in the accumulation of acetate. W3110 accumulated up to 4 g/L of acetate, VH33 produced 1.4 g/L, and VH34 only 0.78 g/L. VH33 and VH34 produced 76% and 300% more pDNA than W3110. Moreover, VH34 demanded 33% less oxygen than VH33 and W3110, which can be advantageous for large-scale applications.  相似文献   

4.
ABSTRACT: BACKGROUND: In Escherichia coli phosphoenolpyruvate (PEP) is a key central metabolism intermediate that participates in glucose transport, as precursor in several biosynthetic pathways and it is involved in allosteric regulation of glycolytic enzymes. In this work we generated W3110 derivative strains that lack the main PEP consumers PEP:sugar phosphotransferase system (PTS-) and pyruvate kinase isozymes PykA and PykF (PTS- pykA- and PTS- pykF -). To characterize the effects of these modifications on cell physiology, carbon flux distribution and aromatics production capacity were determined. RESULTS: When compared to reference strain W3110, strain VH33 (PTS-) displayed lower specific rates for growth, glucose consumption and acetate production as well as a higher biomass yield from glucose. These phenotypic effects were even more pronounced by the additional inactivation of PykA or PykF. Carbon flux analysis revealed that PTS inactivation causes a redirection of metabolic flux towards biomass formation. A cycle involving PEP carboxylase (Ppc) and PEP carboxykinase (Pck) was detected in all strains. In strains W3110, VH33 (PTS-) and VH35 (PTS-, pykF-), the net flux in this cycle was inversely correlated with the specific rate of glucose consumption and inactivation of Pck in these strains caused a reduction in growth rate. In the PTS- background, inactivation of PykA caused a reduction in Ppc and Pck cycling as well as a reduction in flux to TCA, whereas inactivation of PykF caused an increase in anaplerotic flux from PEP to OAA and an increased flux to TCA. The wild-type and mutant strains were modified to overproduce L-phenylalanine. In resting cells experiments, compared to reference strain, a 10, 4 and 7-fold higher aromatics yields from glucose were observed as consequence of PTS, PTS PykA and PTS PykF inactivation. CONCLUSIONS: Metabolic flux analysis performed on strains lacking the main activities generating pyruvate from PEP revealed the high degree of flexibility to perturbations of the central metabolic network in E. coli. The observed responses to reduced glucose uptake and PEP to pyruvate rate of conversion caused by PTS, PykA and PykF inactivation included flux rerouting in several central metabolism nodes towards anabolic biosynthetic reactions, thus compensating for carbon limitation in these mutant strains. The detected cycle involving Ppc and Pck was found to be required for maintaining the specific growth and glucose consumption rates in all studied strains. Strains VH33 (PTS-), VH34 (PTS- pykA-) and VH35 (PTS- pykF-) have useful properties for biotechnological processes, such as increased PEP availability and high biomass yields from glucose, making them useful for the production of aromatic compounds or recombinant proteins.  相似文献   

5.
Overflow metabolism is an undesirable characteristic of aerobic cultures of Escherichia coli. It results from elevated glucose consumption rates that cause a high substrate conversion to acetate, severely affecting cell physiology and bioprocess performance. Such phenomenon typically occurs in batch cultures under high glucose concentration. Fed-batch culture, where glucose uptake rate is controlled by external addition of glucose, is the classical bioprocessing alternative to prevent overflow metabolism. Despite its wide-spread use, fed-batch mode presents drawbacks that could be overcome by simpler batch cultures at high initial glucose concentration, only if overflow metabolism is effectively prevented. In this study, an E. coli strain (VH32) lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) with a modified glucose transport system was cultured at glucose concentrations of up to 100 g/L in batch mode, while expressing the recombinant green fluorescence protein (GFP). At the highest glucose concentration tested, acetate accumulated to a maximum of 13.6 g/L for the parental strain (W3110), whereas a maximum concentration of only 2 g/L was observed for VH32. Consequently, high cell and GFP concentrations of 52 and 8.2 g/L, respectively, were achieved in VH32 cultures at 100 g/L of glucose. In contrast, maximum biomass and GFP in W3110 cultures only reached 65 and 48%, respectively, of the values attained by the engineered strain. A comparison of this culture strategy against traditional fed-batch culture of W3110 is presented. This study shows that high cell and recombinant protein concentrations are attainable in simple batch cultures by circumventing overflow metabolism through metabolic engineering. This represents a novel and valuable alternative to classical bioprocessing approaches.  相似文献   

6.
7.
The glk gene from Corynebacterium glutamicum was isolated by complementation using Escherichia coli ZSC113 (ptsG ptsM glk). We sequenced a total of 3072 bp containing the 969-bp open reading frame encoding glucose kinase (Glk). The glk gene has a deduced molecular mass of 34.2 kDa and contains a typical ATP binding site. Comparison with protein sequences revealed homologies to Glk from Streptomyces coelicolor (43%) and Bacillus megaterium (35%). The glk gene in C. glutamicum was inactivated on the chromosome via single crossover homologous recombination and the resulting glk mutant was characterized. Interestingly, the C. glutamicum glk mutant showed poor growth on rich medium such as LB medium or brain heart infusion medium in the presence or absence of glucose, fructose, maltose or sucrose as the sole carbon source. Growth yield was reduced significantly when maltose was used as the sole carbon source using minimal medium. The growth defect of glk mutant on rich medium was complemented by a plasmid-encoded glk gene. A chromosomal glk-lacZ fusion was constructed and used to monitor glk expression, and it was found that glk was expressed constitutively under all tested conditions with different carbon sources.  相似文献   

8.
The phosphoenolpyruvate (PEP): carbohydrate phosphotransferase system (PTS) of Escherichia coli was usually inactivated to increase PEP supply for succinate production. However, cell growth and glucose utilization rate decreased significantly with PTS inactivation. In this work, two glucose transport proteins and two glucokinases (Glk) from E. coli and Zymomonas mobilis were recruited in PTS? strains, and their impacts on glucose utilization and succinate production were compared. All PTS? strains recruiting Z. mobilis glucose facilitator Glf had higher glucose utilization rates than PTS? strains using E. coli galactose permease (GalP), which was suggested to be caused by higher glucose transport velocity and lower energetic cost of Glf. The highest rate obtained by combinatorial modulation of glf and glk E. coli (2.13 g/L?h) was 81 % higher than the wild-type E. coli and 30 % higher than the highest rate obtained by combinatorial modulation of galP and glk E. coli . On the other hand, although glucokinase activities increased after replacing E. coli Glk with isoenzyme of Z. mobilis, glucose utilization rate decreased to 0.58 g/L?h, which was assumed due to tight regulation of Z. mobilis Glk by energy status of the cells. For succinate production, using GalP led to a 20 % increase in succinate productivity, while recruiting Glf led to a 41 % increase. These efficient alternative glucose utilization pathways obtained in this work can also be used for production of many other PEP-derived chemicals, such as malate, fumarate, and aromatic compounds.  相似文献   

9.
A cluster containing five similarly oriented genes involved in the metabolism of galactose via the Leloir pathway in Lactococcus lactis subsp. cremoris MG1363 was cloned and characterized. The order of the genes is galPMKTE, and these genes encode a galactose permease (GalP), an aldose 1-epimerase (GalM), a galactokinase (GalK), a hexose-1-phosphate uridylyltransferase (GalT), and a UDP-glucose 4-epimerase (GalE), respectively. This genetic organization reflects the order of the metabolic conversions during galactose utilization via the Leloir pathway. The functionality of the galP, galK, galT, and galE genes was shown by complementation studies performed with both Escherichia coli and L. lactis mutants. The GalP permease is a new member of the galactoside-pentose-hexuronide family of transporters. The capacity of GalP to transport galactose was demonstrated by using galP disruption mutant strains of L. lactis MG1363. A galK deletion was constructed by replacement recombination, and the mutant strain was not able to ferment galactose. Disruption of the galE gene resulted in a deficiency in cell separation along with the appearance of a long-chain phenotype when cells were grown on glucose as the sole carbon source. Recovery of the wild-type phenotype for the galE mutant was obtained either by genetic complementation or by addition of galactose to the growth medium.  相似文献   

10.
Production of d(−)-lactate from sucrose and molasses   总被引:1,自引:0,他引:1  
Escherichia coli W3110 derivatives, strains SZ63 and SZ85, were previously engineered to produce optically pure D(-) and L(+)-lactate from hexose and pentose sugars. To expand the substrate range, a cluster of sucrose genes (cscR' cscA cscKB) was cloned and characterized from E. coli KO11. The resulting plasmid was functionally expressed in SZ63 but was unstable in SZ85. Over 500 mM D(-)-lactate was produced from sucrose and from molasses by SZ63(pLOI3501).  相似文献   

11.
L-phenylalanine (L-Phe) is an aromatic amino acid with diverse commercial applications. Technologies for industrial microbial synthesis of L-Phe using glucose as a starting raw material currently achieve a relatively low conversion yield (Y(Phe/Glc)). The purpose of this work was to study the effect of PTS (phosphotransferase transport system) inactivation and overexpression of different versions of feedback inhibition resistant chorismate mutase-prephenate dehydratase (CM-PDT) on the yield (Y(Phe/Glc)) and productivity of L-Phe synthesized from glucose. The E. coli JM101 strain and its mutant derivative PB12 (PTS(-)Glc(+) phenotype) were used as hosts. PB12 has an inactive PTS, but is capable of transporting and phosphorylating glucose by using an alternative system constituted by galactose permease (GalP) and glucokinase activities (Glk). JM101 and PB12 were transformed with three plasmids, harboring genes that encode for a feedback inhibition resistant DAHP synthase (aroG(fbr)), transketolase (tktA) and either a truncated CM-PDT (pheA(fbr)) or its derived evolved genes (pheA(ev1) or pheA(ev2)). Resting-cells experiments with these engineered strains showed that JM101 and PB12 strains expressing either pheA(ev1) or pheA(ev2) genes produced l-Phe from glucose with Y(Phe/Glc) of 0.21 and 0.33 g/g, corresponding to 38 and 60% of the maximum theoretical yield (0.55 g/g), respectively. In addition, in both engineered strains the reached q(Phe) high levels of 40 mg/g-dcw.h. The metabolic engineering strategy followed in this work, including a strain with an inactive PTS, resulted in a positive impact over the Y(Phe/Glc), enhancing it nearly 57% compared with its PTS(+) counterpart. This is the first report wherein PTS inactivation was a successful strategy to improve the Y(Phe/Glc).  相似文献   

12.
We have developed Escherichia coli strains that internalize glucose utilizing the GalP permease instead of the phosphoenolpyruvate:carbohydrate phosphotransferase system. It has been demonstrated that a strain with these modifications (PTS(-)Glc(+)) can direct more carbon flux into the aromatic pathway than the wild-type parental strain (N. Flores et al., 1996, Nat. Biotechnol. 14, 620-623; G. Gosset et al., 1996, J. Ind. Microbiol. 17, 47-52; J. L. Baéz et al., 2001, Biotechnol. Bioeng. 73, 530-535). In this study, we have determined and compared the carbon fluxes of a wild-type strain (JM101), a PTS(-)Glc(-) strain, and two isogenic PTS(-)Glc(+) derivatives named PB12 and PB13 by combining genetic, biochemical, and NMR approaches. It was determined that in these strains a functional glk gene in the chromosome is required for rapid glucose consumption; furthermore, glucokinase-specific activities were higher than in the wild-type strain. (13)C labeling and NMR analysis allowed the determination of differences in vivo which include higher glycolytic fluxes of 93.1 and 89.2% compared with the 76.6% obtained for the wild-type E. coli. In PB12 and PB13 we found a flux through the malic enzymes of 4 and 10%, respectively, compared to zero in the wild-type strain. While flux through the Pck enzyme was absent in PB12 and PB13, in the wild type it was 7.7%. Finally, it was found that in the JM101 and PB12 strains both the oxidative and the nonoxidative branches of the pentose phosphate pathway contributed to ribose 5-phosphate synthesis, whereas in PB13 this pentose was synthesized almost exclusively through the oxidative branch. The determined carbon fluxes correlate with biochemical and genetic characterizations.  相似文献   

13.
Co-expression of Vitreoscilla hemoglobin (VHb) can enhance production of foreign proteins in several microorganisms, including Escherichia coli. Production of foreign proteins [green fluorescent protein (GFP) and organophosphorous hydrolase (OPH)] has been examined in two typical industrial E. coli strains, W3110 (a K12 derivative) and BL21 (a B derivative). In particular, we investigated the effects of VHb co-expression and media glucose concentration on target protein production. We employed the nar O(2)-dependent promoter for self-tuning of VHb expression based on the natural changes in dissolved O(2) levels over the duration of culture. Foreign protein production in strain BL21 was decreased by a high glucose concentration but co-expression of VHb had no effect on this. In contrast, co-expression of VHb in strain W3110 overrode the glucose-induced repression and resulted in steady expression of foreign proteins.  相似文献   

14.
Escherichia coli WC196, which was obtained from the strain W3110 by nitrosoguanidine mutagenesis as an overproducer of lysine, produced approximately twenty times more cadaverine than did W3110, and had a twenty fold higher level of rpoS gene product, sigma38, than in W3110. Both WC196 and W3110 had a stop codon (TAG) in rpoS at position which corresponds to the 33th residue of sigma38 protein. In addition, WC196 but not W3110 had a mutation in the gene encoding Ser-tRNA (SerU), called, supD. Analysis of the amino acid sequence of a sigma38 preparation from WC196 showed that the 33th residue of sigma38 is a serine residue. The deltarpoS deltacadA mutant of E. coli W3110 harboring the plasmid containing rpoS, in which the TAG codon was converted to a TCG codon for serine-33 residue of sigma38, expressed a significant amount of Ldc and accumulated a large amount of sigma38. However, the deltarpoS deltacadA mutant of W3110 with the plasmid containing the intact rpoS from W3110 could synthesize neither sigma38 nor Ldc significantly.  相似文献   

15.
摘要:【目的】通过分子生物学手段构建重组质粒,将其转入野生型大肠杆菌W3110,分析含苏氨酸操纵子基因的质粒及质粒定点突变解除反馈抑制时,对L-苏氨酸积累的影响。【方法】以W3110染色体DNA为模板,PCR扩增苏氨酸操纵子基因,即启动子THrLp、编码前导肽基因thrL以及thrA、thrB、thrC基因,通过重叠延伸PCR的方法对thrA基因定点突变,解除苏氨酸对它的反馈抑制,构建出重组表达质粒WYE112和WYE134,5 L发酵实验测定L-苏氨酸的产量。【结果】经5 L发酵罐发酵产酸实验,W3110的L-苏氨酸产量为0.036 ± 0.004 g/L,携带含苏氨酸操纵子质粒的W3110菌株L-苏氨酸产量为2.590 ± 0.115 g/L,质粒上thrA解除反馈抑制后,L-苏氨酸的产量增加到9.223 ± 1.279 g/L。【结论】过表达苏氨酸操纵子基因可以使L-苏氨酸积累,进一步解除thrA基因的反馈抑制,可以增强L-苏氨酸积累的效果,为L-苏氨酸工程菌改造的进一步研究奠定了基础。  相似文献   

16.
Escherichia coli KO11 was previously constructed to produce ethanol from acid hydrolysates of hemicellulose (pentoses and hexoses) by the chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB). Klebsiella oxytoca P2 was constructed in an analogous fashion for the simultaneous saccharification and fermentation of cellulose and contains PTS enzymes for cellobiose. In this study, KO11 was further engineered for the fermentation of cellulose by adding the K. oxytoca casAB genes encoding Enzyme IIcellobiose and phospho-beta-glucosidase. Although the two K. oxytoca genes were well expressed in cloning hosts such as DH5 alpha, both were expressed poorly in E. coli KO11, a derivative of E. coli B. Spontaneous mutants which exhibited more than 15-fold-higher specific activities for cellobiose metabolism were isolated. The mutations of these mutants resided in the plasmid rather than the host. Three mutants were characterized by sequence analysis. All contained similar internal deletions which eliminated the casAB promoter and operator regions and placed the lacZ Shine-Dalgarno region immediately upstream from the casA Shine-Dalgarno region. KO11 harboring mutant plasmids (pLOI1908, pLOI1909, or pLOI1910) rapidly fermented cellobiose to ethanol, and the yield was more than 90% of the theoretical yield. Two of these strains were used with commercial cellulase to ferment mixed-waste office paper to ethanol.  相似文献   

17.
A high-cell-density fed-batch fermentation for the production of heterologous proteins in Escherichia coli was developed using the positively regulated Escherichia coli rhaBAD promoter. The expression system was improved by reducing of the amount of expensive L-rhamnose necessary for induction of the rhamnose promoter and by increasing the vector stability. Consumption of the inducer L-rhamnose was inhibited by inactivation of L-rhamnulose kinase encoding gene rhaB of Escherichia coli W3110, responsible for the first irreversible step in rhamnose catabolism. Plasmid instability caused by multimerization of the expression vector in the recombination-proficient W3110 was prevented by insertion of the multimer resolution site cer from the ColE1 plasmid into the vector. Fermentation experiments with the optimized system resulted in the production of 100 g x L(-1) cell dry weight and 3.8 g x L(-1) of recombinant L-N-carbamoylase, an enzyme, which is needed for the production of enantiomeric pure amino acids in a two-step reaction from hydantoins.  相似文献   

18.
19.
Escherichia coli W3110 was previously engineered to co-utilize glucose and xylose by replacing the wild-type crp gene with a crp* mutant encoding a cAMP-independent CRP variant (Cirino et al., 2006 [Cirino, P.C., Chin, J.W., Ingram, L.O., 2006. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol. Bioeng. 95, 1167-1176.]). Subsequent deletion of the xylB gene (encoding xylulokinase) and expression of xylose reductase from Candida boidinii (CbXR) resulted in a strain which produces xylitol from glucose-xylose mixtures. In this study we examine the contributions of the native E. coli xylose transporters (the d-xylose/proton symporter XylE and the d-xylose ABC transporter XylFGH) and CRP* to xylitol production in the presence of glucose and xylose. The final batch xylitol titer with strain PC09 (Delta xylB and crp*) is reduced by 40% upon deletion of xylG and by 60% upon deletion of both xyl transporters. Xylitol production by the wild-type strain (W3110) expressing CbXR is not reduced when xylE and xylG are deleted, demonstrating tight regulation of the xylose transporters by CRP and revealing significant secondary xylose transport. Finally, plasmid expression of XylE or XylFGH with CbXR in PC07 (Delta xylB and wild-type crp) growing on glucose results in xylitol titers similar to that achieved with PC09 and provides an alternative strategy to the use of CRP*.  相似文献   

20.
In the last decade, a major goal of research in biofuels has been to metabolically engineer microorganisms to ferment multiple sugars from biomass or agricultural wastes to fuel ethanol. Escherichia coli strains genetically engineered to contain the pet operon (Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase B genes) produce high levels of ethanol. Strains carrying the pet operon in plasmid (e.g., E. coli B/pLOI297) or in chromosomal (e.g., E. coli KO11) sites require antibiotics in the media to maintain genetic stability and high ethanol productivity. To overcome this requirement, we used the conditionally lethal E. coli strain FMJ39, which carries mutations for lactate dehydrogenase and pyruvate formate lyase and grows aerobically but is incapable of anaerobic growth unless these mutations are complemented. E. coli FBR1 and FBR2 were created by transforming E. coli FMJ39 with the pet operon plasmids pLOI295 and pLOI297, respectively. Both strains were capable of anaerobic growth and displayed no apparent pet plasmid losses after 60 generations in serially transferred (nine times) anaerobic batch cultures. In contrast, similar aerobic cultures rapidly lost plasmids. In high-cell-density batch fermentations, 3.8% (wt/vol) ethanol (strain FBR1) and 4.4% (wt/vol) ethanol (strain FBR2) were made from 10% glucose. Anaerobic, glucose-limited continuous cultures of strain FBR2 grown for 20 days (51 generations; 23 with tetracycline and then 28 after tetracycline removal) showed no loss of antibiotic resistance. Anaerobic, serially transferred batch cultures and high-density fermentations were inoculated with cells taken at 57 generations from the previous continuous culture. Both cultures continued to produce high levels of ethanol in the absence of tetracycline. The genetic stability conferred by selective pressure for pet-containing cells without requirement for antibiotics suggests potential commercial suitability for E. coli FBR1 and FBR2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号