首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Neurospora crassa assimilatory NAD(P)H-nitrite reductase complex has associated a NAD(P)H-diaphorase activity. 1. This NAD(P)H-diaphorase activity can use either mammalian cytochrome c, 2,6--dichlorophenol-indophenol, ferricyanide, or menadione as electron acceptor from the reduced pyridine nucleotides, and requires flavin adenine dinucleotide for maximal activity. 2. It is inhibited by p-hydroxymercuribenzoate, 1 muM, and it is unaffected by cyanide, sulfite, or arsenite at concentrations which completely inhibit the NAD(P)H-nitrite reductase activity. 3. Flavin adenine dinucleotide specifically protects the NAD(P)H-diaphorase activities, but not the NAD(P)H-nitrite reductase activities, against thermal inactivation. 4. In vitro preincubation of the Neurospora crassa nitrite reductase complex with reduced pyridine nucleotides plus flavin adenine dinucleotide inactivates the NAD(P)H-nitrite reductase activities, but does not affect the NAD(P)H-diaphorase activities, indicating that this nitrite reductase inactivation occurs in the part of the enzyme that contain the nitrite reducing center.  相似文献   

2.
In photorespiration, leaf peroxisomes convert serine to glycerate via serine-glyoxylate aminotransferase and NADH-hydroxypyruvate reductase. We isolated intact spinach leaf peroxisomes in 0.25 M sucrose, and characterized their enzymatic conversion of serine to glycerate using physiological concentrations of substrates and coenzymes. In the presence of glycolate (glyoxylate), and NADH and NAD alone or together in physiological proportions, the rate of serine-to-glycerate conversion was enhanced and sustained by the addition of malate. The rate was similar at 1 and 5 mM serine, but was two to three times higher in 50 mM than 5 mM malate. In the presence of NAD and malate, there was 1:1 stoichiometric formation of glycerate and oxaloacetate. Addition of 1 or 5 mM glutamate resulted in a negligible enhancement of the conversion of hydroxypyruvate to glycerate. Intact peroxisomes produced glycerate from either serine or hydroxypyruvate at a rate two times higher than osmotically lysed peroxisomes. These results suggest that under physiological conditions, the peroxisomal malate dehydrogenase operates independent of aspartate-alpha-ketoglutarate aminotransferase in supplying NADH for hydroxypyruvate reduction. This supply of NADH is the rate-limiting step in the conversion of serine to glycerate. The compartmentation of hydroxypyruvate reductase and malate dehydrogenase in the peroxisomes confers a higher efficiency in the supply of NADH for hydroxypyruvate reduction under a normal, high NAD/NADH ratio in the cytosol.  相似文献   

3.
In vitro complementation of the soluble assimilatory NAD(P)H-nitrate reductase (NAD(P)H:nitrate oxidoreductase, EC 1.6.6.2) was attained by mixing cell-free preparations of Chlamydomonas reinhardii mutant 104, uniquely possessing nitrate-inducible NAD(P)H-cytochrome c reductase, and mutant 305 which possesses solely the nitrate-inducible FMNH2- and reduced benzyl viologen-nitrate reductase activities. Full activity and integrity of NAD(P)H-cytochrome c reductase from mutant 104 and reduced benzyl viologen-nitrate reductase from mutant 305 are needed for the complementation to take place. A constitutive and heat-labile molybdenum-containing cofactor, that reconstitutes the NAD(P)H-nitrate reductase activity of nit-1 Neurospora crassa but is incapable of complementing with 104 from C. reinhardii, is present in the wild type and 305 algal strains. The complemented NAD(P)H-nitrate reductase has been purified 100-fold and was found to be similar to the wild enzyme in sucrose density sedimentation, molecular size, pH optimum, kinetic parameters, substrate affinity and sensitivity to inhibitors and temperature. From previous data and data presented in this article on 104 and 305 mutant activities, it is concluded that C. reinhardii NAD(P)H-nitrate reductase is a heteromultimeric complex consisting of, at least, two types of subunits separately responsible for the NAD(P)H-cytochrome c reductase and the reduced benzyl viologen-nitrate reductase activities.  相似文献   

4.
Oxalobacter formigenes and its potential role in human health   总被引:2,自引:0,他引:2  
Oxalate degradation by the anaerobic bacterium Oxalobacter formigenes is important for human health, helping to prevent hyperoxaluria and disorders such as the development of kidney stones. Oxalate-degrading activity cannot be detected in the gut flora of some individuals, possibly because Oxalobacter is susceptible to commonly used antimicrobials. Here, clarithromycin, doxycycline, and some other antibiotics inhibited oxalate degradation by two human strains of O. formigenes. These strains varied in their response to gut environmental factors, including exposure to gastric acidity and bile salts. O. formigenes strains established oxalate breakdown in fermentors which were preinoculated with fecal bacteria from individuals lacking oxalate-degrading activity. Reducing the concentration of oxalate in the medium reduced the numbers of O. formigenes bacteria. Oxalate degradation was established and maintained at dilution rates comparable to colonic transit times in healthy individuals. A single oral ingestion of O. formigenes by adult volunteers was, for the first time, shown to result in (i) reduced urinary oxalate excretion following administration of an oxalate load, (ii) the recovery of oxalate-degrading activity in feces, and (iii) prolonged retention of colonization.  相似文献   

5.
Oxalate is ingested in a wide range of animal feeds and human foods and beverages and is formed endogenously as a waste product of metabolism. Bacterial, rather than host, enzymes are required for the intestinal degradation of oxalate in man and mammals. The bacterium primarily responsible is the strict anaerobe Oxalobacter formigenes. In humans, this organism is found in the colon. O. formigenes has an obligate requirement for oxalate as a source of energy and cell carbon. In O. formigenes, the proton motive force for energy conservation is generated by the electrogenic antiport of oxalate(2-) and formate(1-) by the oxalate-formate exchanger, OxlT. The coupling of oxalate-formate exchange to the reductive decarboxylation of oxalyl CoA forms an 'indirect' proton pump. Oxalate is voided in the urine and the loss of O. formigenes may be accompanied by elevated concentrations of urinary oxalate, increasing the risk of recurrent calcium oxalate kidney stone formation. Links between the occurrence of nephrolithiasis and the presence of Oxalobacter have led to the suggestion that antibiotic therapy may contribute to the loss of this organism from the colonic microbiota. Studies in animals and human volunteers have indicated that, when administered therapeutically, O. formigenes can establish in the gut and reduce the urinary oxalate concentration following an oxalate load, hence reducing the likely incidence of calcium oxalate kidney stone formation. The findings to date suggest that anaerobic, colonic bacteria such as O. formigenes, that are able to degrade toxic compounds in the gut, may, in future, find application for therapeutic use, with substantial benefit for human health and well-being.  相似文献   

6.
In vitro complementation of the soluble assimilatory NAD(P)H-nitrate reductase (NAD(P)H:nitrate oxidoreductase, EC 1.6.6.2) was attained by mixing cell-free preparations of Chlamydomonas reinhardii mutant 104, uniquely possessing nitrate-inducible NAD(P)H-cytochrome c reductase, and mutant 305 which possesses solely the nitrate-inducible FMNH2- and reduced benzyl viologen-nitrate reductase activities.Full activity and integrity of NAD(P)H-cytochrome c reductase from mutant 104 and reduced benzyl viologen-nitrate reductase from mutant 305 are needed for the complementation to take place.A constitutive and heat-labile molybdenum-containing cofactor, that reconstitutes the NAD(P)H-nitrate reductase activity of nit-1 Neurospora crassa but is incapable of complementing with 104 from C. reinhardii, is present in the wild type and 305 algal strains.The complemented NAD(P)H-nitrate reductase has been purified 100-fold and was found to be similar to the wild enzyme in sucrose density sedimentation, molecular size, pH optimum, kinetic parameters, substrate affinity and sensitivity to inhibitors and temperature.From previous data and data presented in this article on 104 and 305 mutant activities, it is concluded that C. reinhardii NAD(P)H-nitrate reductase is a heteromultimeric complex consisting of, at least, two types of subunits separately responsible for the NAD(P)H-cytochrome c reductase and the reduced benzyl viologen-nitrate reductase activities.  相似文献   

7.
Barley (Hordeum vulgare L.) endosperm from developing seeds was found to contain relatively high activities of cytosolic NAD(P)H-dependent hydroxypyruvate reductase (HPR-2) and isocitrate dehydrogenase (ICDH). In contrast, activities of peroxisomal NADH-dependent hydroxypyruvate reductase (HPR-1) and glycolate oxidase as well as cytosolic NAD(P)H-dependent glyoxylate reductase were very low or absent in the endosperm both during maturation and seed germination, indicating the lack of a complete glycolate cycle in this tissue. In addition, activities of cytosolic glucose-6-phosphate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase were low or absent in the endosperm. The endosperm HPR-2 exhibited similar properties to those of an earlier described HPR-2 from green leaves, e.g. activities with both hydroxypyruvate and glyoxylate, utilization of both NADPH and NADH as cofactors, and a strong uncompetitive inhibition by oxalate (Ki in the order of micromolar). In etiolated leaves, both HPR-1 and HPR-2 were present with the same activity as in green leaves, indicating that the lack of HPR-1 in the endosperm is not a general feature of non-photosynthetic tissues. We conclude that the endosperm has considerable capacity for cytosolic NADP/NADPH cycling via HPR-2 and ICDH, the former being possibly involved in the utilization of a serine-derived carbon.  相似文献   

8.
The generation of transmembrane ion gradients by Oxalobacter formigenes cells metabolizing oxalate was studied. The magnitudes of both the transmembrane electrical potential (delta psi) and the pH gradient (internal alkaline) decreased with increasing external pH; quantitatively, the delta psi was the most important component of the proton motive force. As the extracellular pH of metabolizing cells was increased, intracellular pH increased and remained alkaline relative to the external pH, indicating that O. formigenes possesses a limited capacity to regulate internal pH. The generation of a delta psi by concentrated suspensions of O. formigenes cells was inhibited by the K+ ionophore valinomycin and the protonophore carbonyl cyanide-m-chlorophenylhydrazone, but not by the Na+ ionophore monensin. The H+ ATPase inhibitor N,N'-dicyclohexyl-carbodiimide inhibited oxalate catabolism but did not dissipate the delta psi. The results support the concept that energy from oxalate metabolism by O. formigenes is conserved not as a sodium ion gradient but rather, at least partially, as a transmembrane hydrogen ion gradient produced during the electrogenic exchange of substrate (oxalate) and product (formate) and from internal proton consumption during oxalate decarboxylation.  相似文献   

9.
Summary Six mutant strains (301, 102, 203, 104, 305, and 307) affected in their nitrate assimilation capability and their corresponding parental wild-type strains (6145c and 21gr) from Chlamydomonas reinhardii have been studied on different nitrogen sources with respect to NAD(P)H-nitrate reductase and its associated activities (NAD(P)H-cytochrome c reductase and reduced benzyl viologen-nitrate reductase) and to nitrite reductase activity. The mutant strains lack NAD(P)H-nitrate reductase activity in all the nitrogen sources. Mutants 301, 102, 104, and 307 have only NAD(P)H-cytochrome c reductase activity whereas mutant 305 solely has reduced benzyl viologen-nitrate reductase activity. Both activities are repressible by ammonia but, in contrast to the nitrate reductase complex of wild-type strains, require neither nitrate nor nitrite for their induction. Moreover, the enzyme from mutant 305 is always obtained in active form whereas nitrate reductase from wild-types needs to be reactivated previously with ferricyanide to be fully detected. Wild-type strains and mutants 301, 102, 104, and 307, when properly induced, exhibit an NAD(P)H-cytochrome c reductase distinguishable electrophoretically from contitutive diaphorases as a rapidly migrating band. Nitrite reductase from wild-type and mutant strains is also repressible by ammonia and does not require nitrate or nitrite for its synthesis. These facts are explained in terms of a regulation of nitrate reductase synthesis by the enzyme itself.  相似文献   

10.
The plasma membrane of eukaryotic cells contains endogenous, integral electron transport proteins. In the maize ( Zea mays L. cv. Golden Cross Bantam) root plasma membrane, these activities include NAD(P)H-ferricyanide reductase. NAD(P)H-duroquinone reductase (1.6.5.1) and NAD(P)H-ascorbate free-radical reductase (EC 1.6.5.4). Differences in degree of stimulation upon vesicle rupture with detergent and in specificities for pyridine nucleotides suggest that these activities constitute distinct components in the membranes. Solubilization of reductase activities was examined using Triton X-100 over a wide range of retergent-to-protein ratios. The Triton-solubilized enzymes were purified using dye-ligand affinity chromatography on Cibacron blue 3G-A agarose utilizing biospecific elution with NADH. Resolution of the redox activities was accomplished upon differential elution with 0.1.1.0 and 10 m M NADH. The distinctive characteristics of the enzymes and the differential chromatographic behavior of the respective activities provided evidence for the presence of separate enzymatic redox components in maize root plasma membranes with implications for an electron transfer chain.  相似文献   

11.
Inhibitors of mammalian cytochrome P450 and P450 reductase were used to investigate the enzymes in flounder (Platichthys flesus) hepatic microsomes involved in the stimulation of NAD(P)H-dependent iron/EDTA-mediated 2-keto-4-methiolbutyric acid (KMBA) oxidation (hydroxyl radical production) by the redox cycling compounds menadione and nitrofurantoin. Inhibitors were first tested for their effects on flounder microsomal P450 and flavoprotein reductase activities. Ellipticine gave type II difference binding spectra (app. Ks 5.36 μM; ΔA max 0.16 nmol-1 P450) and markedly inhibited NADPH-cytochrome c reductase, NADPH-cytochrome P450 reductase, and monooxygenase (benzo[a]pyrene metabolism) activities. 3-aminopyridine adenine dinucleotide phosphate (AADP; competitive inhibitor of P450 reductase) inhibited NADPH-cytochrome c but not NADH-cytochrome c or NADH-ferricyanide reductase activities. Alkaline phosphatase (inhibitor of rabbit P450 reductase) stimulated NADPH-cytochrome c reductase activity seven fold but had less effect on NADH-reductase activities. AADP inhibited nitrofurantoin- and menadione-stimulated KMBA oxidation by 45 and 17%, respectively, indicating the involvement of P450 reductase at least in the former. In contrast, ellipticine had relatively little effect, possibly because, unlike cytochrome c, the smaller xenobiotic molecules can access the hydrophilic binding site of P450 reductase. Alkaline phosphatase stimulated NAD(P)H-dependent basal and xenobiotic-stimulated KMBA oxidation, showing general consistency with the results for reductase activities. Overall, the studies indicate both similarities (ellipticine, AADP) and differences (alkaline phosphatase) between the flounder and rat hepatic microsomal enzyme systems.  相似文献   

12.
Aims:  Oxalobacter formigenes is an oxalate-degrading intestinal bacterium that has been found in humans, cattle, sheep, rats and dogs. Its presence in the intestinal tract may be a protective factor against calcium oxalate urolithiasis because of its ability to degrade oxalate. The objective of this study was to determine whether O. formigenes could be detected in the faeces of healthy cats.
Methods and Results:  A convenience sample of 28 cats was enrolled. Faecal samples were tested for oxc , a gene specific for O. formigenes , by real-time PCR. This gene was detected in 5/28 (18%) cats; however, the prevalence increased to 86% (24/28) with a modification of the methodology.
Conclusions:  Demonstrating the presence of O. formigenes in the faeces of healthy cats for the first time in this study.
Significance and Impact of the Study:  Future investigation of the role of this organism in the pathophysiology of calcium oxalate urolithiasis in cats is indicated.  相似文献   

13.
Six strains of Oxalobacter formigenes (anaerobic oxalate-degrading bacteria) were examined for their ability to colonize the gastrointestinal tracts of adult laboratory rats. These rats did not harbor O. formigenes. Strain OxCR6, isolated from the cecal contents of a laboratory rat that was naturally colonized by oxalate-degrading bacteria, colonized the ceca and colons of adult rats fed a diet that contained 4.5% sodium oxalate. Five days after rats were inoculated intragastrically with 10(9) viable cells of strain OxCR6, oxalate degradation rates in cecal and colonic contents increased by 19 and 40 times, respectively. Viable counts of strain OxCR6 from these rats averaged 10(8)/g (dry weight) of cecal contents. Strain OxCR6 was not detected in the cecal contents of inoculated rats fed diets that contained less than 3.0% sodium oxalate. Strains of O. formigenes isolated from the cecal contents of swine, guinea pigs, and wild rats and from human feces also colonized the ceca of laboratory rats; a ruminal strain failed to colonize the rat cecum.  相似文献   

14.
Summary NADH-specific and NAD(P)H bispecific nitrate reductases are present in barley (Hordeum vulgare L.). Wild-type leaves have only the NADH-specific enzyme while mutants with defects in the NADH nitrate reductase structural gene (nar1) have the NAD(P)H bispecific enzyme. A mutant deficient in the NAD(P)H nitrate reductase was isolated in a line (nar1a) deficient in the NADH nitrate reductase structural gene. The double mutant (nar1a;nar7w) lacks NAD(P)H nitrate reductase activity and has xanthine dehydrogenase and nitrite reductase activities similar to nar1a. NAD(P)H nitrate reductase activity in this mutant is controlled by a single codominant gene designated nar7. The nar7 locus appears to be the NAD(P)H nitrate reductase structural gene and is not closely linked to nar1. From segregating progeny of a cross between the wild type and nar1a;nar7w, a line was obtained which has the same NADH nitrate reductase activity as the wild type in both the roots and leaves but lacks NADPH nitrate reductase activity in the roots. This line is assumed to have the genotype Nar1Nar1nar7nar7. Roots of wild type seedlings have both nitrate reductases as shown by differential inactivation of the NADH and NAD(P)H nitrate reductases by a monospecific NADH-nitrate reductase antiserum. Thus, nar7 controls the NAD(P)H nitrate reductase in roots and in leaves of barley.Scientific Paper No. 7617, College of Agriculture Research Center and Home Economics, Washington State University, Pullman, WA, USA. Project Nos. 0233 and 0745  相似文献   

15.
Changes in the in vivo luminescence, respiratory activities, contents of cytochromes, extractable luciferase and NAD(P)H-FMN reductase during growth of the wild (bright) strain of Photobacterium phosphoreum and its dim mutant were determined. The intensity of the in vivo luminescence per cell increased 10 times in the wild strain and 750 times in the dim strain during logarithmic growth, while the contents of luciferase and NAD(P)H-FMN reductase remained almost constant. It is suggested that a characteristic change in the mode of competition of the luminescence reaction system with another electron transfer chain involving cytochromes for NAD(P)H take place during the growth of this bacterium.  相似文献   

16.
The NADH-specific and NAD(P)H-bispecific nitrate reductase genes from barley have been cloned and sequenced. To determine if the Nar7 locus encodes the NAD(P)H-bispecific nitrate reductase structural gene, a cross was made between a wild-type cultivar, Morex (Nar7 Nar7), and Az70 (nar7w nar7w), a mutant from the cultivar Steptoe that is deficient in NAD(P)H-bispecific nitrate reductase activity. A probe specific to the NAD(P)H-bispecific nitrate reductase structural gene detected restriction fragment length polymorphism between the parents. This probe was used to classify selected F2 progeny for restriction fragment length genotype. All the NAD(P)H nitrate reductase deficient F2 progeny (24/101) possessed the Az70 restriction fragment genotype. The absence of recombination between the NAD(P)H-bispecific nitrate reductase deficient genotype and the NAD(P)H-bispecific nitrate reductase restriction fragment length genotype indicates that the two traits are closely associated in inheritance and that Nar7 is probably the NAD(P)H-bispecific nitrate reductase structural gene.  相似文献   

17.
Abstract: The metabolism of Clostridium acetobutylicum was manipulated, at neutral pH and in chemostat culture, by the addition of Neutral red, a molecule that can replace ferredoxin in the oxido-reduction reactions catalysed by the enzymes involved in the distribution of the electron flow. Cultures grown on glucose alone produced mainly acids while cultures grown on glucose plus Neutral red produced mainly alcohols and butyrate and low levels of hydrogen. We demonstrated that just after addition of Neutral red to an acidogenic culture, the simultaneous utilizations of ferredoxin and dye deviate electron flow from hydrogen to NADH production initially by the enzymatic regulation of in vivo hydrogenase and ferredoxin NAD reductase activities. The higher NAD(P)H pool generated might, thereafter, be the signal for the setting up of a new metabolism. In the resulting steady-state, the NAD(P)H 'pressure' is maintained by high ferredoxin NAD and NADP reductases level associated to a low NADH ferredoxin reductase level. The regeneration of NAD is mainly achieved via the induced or increased NADH-dependent aldehyde and alcohol dehydrogenase activities.  相似文献   

18.
Oxalate:formate exchange. The basis for energy coupling in Oxalobacter   总被引:21,自引:0,他引:21  
In the Gram-negative anaerobe, Oxalobacter formigenes, the generation of metabolic energy depends on the transport and decarboxylation of oxalate. We have now used assays of reconstitution to study the movements of oxalate and to characterize the exchange of oxalate with formate, its immediate metabolic derivative. Membranes of O. formigenes were solubilized with octyl-beta-D-glucopyranoside in the presence of 20% glycerol and Escherichia coli phospholipid, and detergent extracts were reconstituted by detergent dilution. [14C]Oxalate was taken up by proteoliposomes loaded with unlabeled oxalate, but not by similarly loaded liposomes or by proteoliposomes containing sulfate in place of oxalate. Oxalate transport did not depend on the presence of sodium or potassium, nor was it affected by valinomycin (1 microM), nigericin (1 microM), or a proton conductor, carbonylcyanide-p-trifluoromethoxyphenylhydrazone (5 microM) when potassium was at equal concentration on either side of the membrane. Such data suggest the presence of an overall neutral oxalate self-exchange, independent of common cations or anions. Kinetic analysis of the reaction in proteoliposomes gave a Michaelis constant (Kt) for oxalate transport of 0.24 mM and a maximal velocity (Vmax) of 99 mumol/min/mg of protein. A direct exchange of oxalate and formate was indicated by the observations that formate inhibited oxalate transport and that delayed addition of formate released [14C]oxalate accumulated during oxalate exchange. Moreover, [14C]formate was taken up by oxalate-loaded proteoliposomes (but not liposomes), and this heterologous reaction could be blocked by external oxalate. Further studies, using formate-loaded proteoliposomes, suggested that the heterologous exchange was electrogenic. Thus, for assays in which N-methylglucamine served as both internal and external cation, formate-loaded particles took up oxalate at a rate of 2.4 mumol/min/mg of protein. When external or internal N-methylglucamine was replaced by potassium in the presence of valinomycin, there was, respectively, a 7-fold stimulation or an 8-fold inhibition of oxalate accumulation, demonstrating that net negative charge moved in parallel with oxalate during the heterologous exchange. The work summarized here suggests the presence of an unusually rapid and electrogenic oxalate2-:formate1- antiport in membranes of O. formigenes. Since a proton is consumed during the intracellular decarboxylation that converts oxalate into formate plus CO2, antiport of oxalate and formate would play a central role in a biochemical cycle consisting of (a) oxalate influx, (b) oxalate decarboxylation, and (c) formate efflux.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Intact spinach (Spinacia oleracea L.) leaf peroxisomes converted glycerate to serine in the presence of NAD and alanine. The reaction proceeded optimally at pH9. Addition of oxaloacetate or alpha-ketoglutarate plus aspartate enhanced the conversion about three-fold. Alteration of the concentration of one of the reaction components, consisting of 2 mM glycerate, 0.2 mM NAD, 0.5 mM oxaloacetate, and 2 mM alanine, revealed half-saturation constants of 0.45 mM for glycerate, 0.06 mM for NAD, 0.02 mM for oxaloacetate, and 0.33 mM for alanine. The conversion proceeded with the formation of hydroxypyruvate followed by serine; hydroxypyruvate did not accumulate to a high amount in the presence or absence of alanine. The amino group donor could be alanine (half-saturation constant, 0.33 mM), glycine (0.45 mM), or asparagine (0.67 mM); the three amino acids produced roughly similar Vmax values. The results indicate that, in the conversion of glycerate to serine, the transamination is catalyzed by a hydroxypyruvate aminotransferase with characteristics unknown among all other studied leaf peroxisomal aminotransferases. The peroxisomal membrane is sparsely permeable to NAD/NADH, and the participation of the peroxisomal malate dehydrogenase in an electron shuttle system across the membrane in the regeneration of NAD/NADH is suggested.  相似文献   

20.
NADH- and NAD(P)H-Nitrate Reductases in Rice Seedlings   总被引:7,自引:4,他引:3       下载免费PDF全文
By use of affinity chromatography on blue dextran-Sepharose, two nitrate reductases from rice (Oryza sativa L.) seedlings, specifically, NADH:nitrate oxidoreductase (EC 1.6.6.1) and NAD(P)-H:nitrate oxidoreductase (EC 1.6.6.2), have been partially separated. Nitrate-induced seedlings contained more NADH-nitrate reductase than NAD(P)H-nitrate reductase, whereas chloramphenicol-induced seedlings contained primarily NAD(P)H-nitrate reductase. NAD(P)H-nitrate reductase was shown to utilize NADPH directly as reductant. This enzyme has a preference for NADPH, but reacts about half as well with NADH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号