首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
在植物叶绿体中,rRNA 基因的排列顺序与原核生物大肠杆菌和蓝绿藻的 rRNA 基因排列顺序相似:16S rDNA—间隔顺序—23S rDNA—间隔顺序—5 S rDNA。在高等植物叶绿体中,在23S rDNA 的3′下游端和5SrDNA的5′上游端之间的间隔顺序内,还存在着4.5 S  相似文献   

3.
4.
韭菜叶绿体4.5SrRNA序列分析研究   总被引:3,自引:0,他引:3  
  相似文献   

5.
从菠菜、莴苣、蚕豆和大麦叶绿体提取的偶联因子,可以与同种和不同种植物叶绿体的残缺粒子重组,而部分地恢复其光合磷酸化活力。在蚕豆与菠菜的组合中,两者的偶联因子可以互换。由于所用残缺粒子具有的残余光合磷酸化活力最高只有对照的3.5%,所以外加偶联因子的作用应是直接偶联磷酸化,而不可能是活化剩余偶联因子的作用。在某些组合中,异种偶联因子恢复残缺粒子光合磷酸化活力的程度甚至高于同种的偶联因子,表现增益效应。在蚕豆和菠菜的组合中,这种增益效应是交叉的,因而不可能是由于偶联因子浓度的差异所引起。这个现象的机理尚不清楚。  相似文献   

6.
我们采用植物叶与热缓冲液、苯酚直接混合(约65℃)匀浆,离心抽提和乙醇沉淀后,得到植物叶总RNA。经聚丙烯酰胺凝胶电泳分离、纯化,即可得到叶绿体4.5S rRNA,此法不仅操作简单,而且得率高。 同时,经过对同一植物的不同组织或不同细胞组分,如根、细胞质、叶绿体和叶绿体核糖体小分子RNA的提取与鉴定,以简便的方法证明了4.5S rRNA是叶绿体核糖体成份,也证明了我们所采用的提取、纯化4.5SrRNA方法的可靠性。  相似文献   

7.
高家国  汪训明 《遗传学报》1989,16(4):263-268
本文报道了油菜叶绿体16S rRNA基因的全顺序及其5′端上游的156bp和3′端下游的101bp的核苷酸顺序。油菜叶绿体16s rRNA基因长为1491bp,和烟草、玉米相比,同源程度分别为98.5%、96.1%。油菜叶绿体16S rRNA基因5′端上游及3′端下游的顺序能互补而形成一个较大的茎环结构,但与烟草相比,由于3′端下游顺序有79bp的缺失,因此,该结构中的茎部分大小仅为烟草的二分之一。  相似文献   

8.
9.
当小麦黄化幼苗在间歇光(周期为2分钟光、118分钟暗)下转绿二十四小时,获得一种发育不完善的叶绿体膜,将它与发育完善的叶绿体膜相比较,研究了它们的结构、组成与光系统Ⅱ功能的关系。发育不完善的膜,无基粒、而发育完善的膜,具有基粒。后者有较高的叶绿素含量、较低的叶绿素a/b比值,具有叶绿素蛋白复合物T及复合物Ⅱ,而前者完全缺乏复合物Ⅱ。发育不完善的叶绿体膜具有较完善的光系统Ⅰ成份,但明显缺乏高电位的细胞色素b_(559)、它们光还原DCPIP的活力比发育完善的膜高二倍多,加DPC人工电子给体,还可提高百分之三十多。以上结果可以得出以下结论:1.发育不完善的膜,缺乏捕获光能的叶绿素a/b蛋白复合物,缺乏基粒;2.在发育不完善的膜中,光系统Ⅰ发育较完善、但水裂解酶系统在整个电子传递链中则处于发育最慢的部分;3.由于发育不完善的膜,缺乏高电位细胞色素b_(559),我们推测它不可能处于电子传递链的主链上,而可能位于光系统Ⅱ的侧链上;4.发育不完善的膜、由于结构简单、自我调控能力弱,不能抵抗恶劣条件,如加抑制剂或在弱光下,光化学活性急剧下降。  相似文献   

10.
本文采用酶法和化学法测定了大麦叶绿体4.5s rRNA的全序列:其长度为95个核苷酸残基。与已知的其它植物叶绿体4.5s rRNA序列比较,它们之间有很大的同源性。  相似文献   

11.
本文报道水稻“三系”叶绿体和大豆叶绿体希尔反应(光还原DCIP)的互补作用的结果。水稻(或大豆)杂交双亲叶绿体在体外等量混合时,其希尔反应活性大于两亲本叶绿体的平均值。实验结果表明:(1)水稻不育系+恢复系或保持系+恢复系的混合叶绿体有明显的互补作用;而不育系+保持系的混合叶绿体无互补作用。(2)提取叶绿体后的上清液与叶绿体混  相似文献   

12.
观察了二、四、六倍体小麦和八倍体小黑麦叶绿体膜在生物发生中的超微结构变化。发现不同倍体小麦叶绿体膜除有近似的生物发生过程以外,在膜的发育速度和组装程度上均有显著的差异。最引人注目的是四倍体硬粒小麦和八倍体小黑麦质体的被膜上,频繁出现向外隆起形成具有多层环形双脂膜层结构的“芽孢状小体”,非常类似原核生物的光合膜系。在黄化幼苗转绿1小时后,其被膜仅往外隆起1—2层双脂膜的小凸起;转绿4小时后,已成长为具有多层双脂膜层结构的“芽孢状小体”;至22小时后消失(或脱落)。根据这一变化以及前质体中邻接“小体”的区域同时出现有非常明显的 DNA 区,推断这些变化很可能是叶绿体增殖的一种方式。  相似文献   

13.
<正> 植物4.5S rRNA是近年来发现的高等植物叶绿体核糖体上独立的小分子RNA成份,大约由80—106个核苷酸组成,不含稀有碱基。在蛋白质的生物合成中具有重要功能。 研究表明,不同来源的4.5 SrRNA序列有相当大的保守性,而且保守性的大小与植物种类的亲缘远近有直接关系。因此研究不同植物4.5SrRNA序列,对在分子水平上研究植物的演化与分类有指导意义。 我们以多种植物叶为材料,对其4.5SrRNA进行了分离纯化和序列分析研究。 4.5SrRNA在植物细胞内含量低,且较不稳定,因此,纯化有一定的困难。以前人们一  相似文献   

14.
小麦叶绿体类囊体膜用SDS短时间增溶后,在不连续的SDS-聚丙烯酰胺凝胶电泳上分离出七条含叶绿素的带,我们依其迁移率的增加及参考文献上的定名,称为CPI_a、CPI(P700-叶绿素α-蛋白质)、LHCP~1、LHCP~2、CP_a(含光系统Ⅱ反应中心的复合体)、LHCP~3(捕光叶绿素α/b-蛋白质)和FC(游离色素-SDS复合物)。在叶绿体类囊体膜的SDS提取物中加入Mg~( )后,则只能分离出四条含叶绿素的带,依其迁移率,并经室温吸收光谱和萤光光谱鉴定为CPI、CP_a、LHCP~3和FC。Mg~( )强烈地引起CPI_a和CPI相聚合,LHCP~1、LHCP~2和LHCP~3相聚合。聚合后的蛋白复合体的吸收光谱表明:CPI在红区的吸收峰为675nm,蓝区的吸收峰为436nm;CP_a在红区的吸收峰为669nm,蓝区的吸收峰为434nm;LHCP~3在红区的吸收峰为652和671nm,蓝区的吸收峰为436和470nm。分别与对照的CPI、CP_a和LHCP~3的吸收光谱相类似。而室温下二者的LHCP的萤光激发光谱和发射光谱也彼此相似。Mg~( )引起LHCP的聚合对叶绿体类囊体膜的结构具有重要意义。值得注意的是在叶绿体类囊体膜的SDS提取物中加入Mg~( )后,引起CPI_a与CPI的聚合,这种聚合对膜的结构与功能的影响目前仍不清楚,还有待进一步探索。  相似文献   

15.
研究不同阳离子和不同阳离子浓度对两种类型的叶绿体膜吸收光谱和光系统Ⅱ功能的影响。观察到一价的 K~ 和二价的 Mg~(2 )对发育完善的叶绿体膜的吸收光谱具有同样的效应,它们均降低这种叶绿体在红区和蓝区的吸收峰,峰值的降低与离子浓度成正相关。而在发育不完善的叶绿体中却没有观察到类似的现象。在不同浓度的 K~ 和 Mg~(2 )的存在下,红区的吸收峰几乎完全重叠,仅在蓝区稍有变化。不同浓度的 K~ 和 Mg~(2 )对上述两种类型的叶绿体膜的 DCIP 光还原速度均有促进作用,但是它们的促进作用有相当大的差别。本文还讨论了阳离子对这两种类型叶绿体膜吸收光谱和光系统Ⅱ活力不同影响的原因。  相似文献   

16.
17.
小麦叶绿体类囊体膜用SDS 短时间增溶后,在不连续的SDS-聚丙烯酰胺凝胶电泳上分离出七条含叶绿素的带,我们依其迁移率的增加及参考文献上的定名,称为CPI_(?)、CPI(P700-叶绿素a-蛋白质)、LHCP~1、LHCP~2、CP_(?)(含光系统Ⅱ反应中心的复合体)、LHCP~3(捕光叶绿素a/b-蛋白质)和FC (游离色素-SDS 复合物)。在叶绿体类囊体膜的SDS 提取物中加入Mg~( )后,则只能分离出四条含叶绿素的带,依其迁移率,并经室温吸收光谱和萤光光谱鉴定为CPI、CP_a、LHCP~3和FC。Mg~( )强烈地引起CPI_(?)和CPI 相聚合,LHCP~1、LHCP~2和LHCP~3相聚合。聚合后的蛋白复合体的吸收光谱表明:CPI 在红区的吸收峰为675nm,蓝区的吸收峰为436nm;CP_(?)在红区的吸收峰为669nm,蓝区的吸收峰为434nm;LHCP~3在红区的吸收峰为652和671nm,蓝区的吸收峰为436和470nm。分别与对照的CPI、CP_(?)和LHCP~(?)的吸收光谱相类似。而室温下二者的LHCP 的萤光激发光谱和发射光谱也彼此相似。Mg~( )引起LHCP 的聚合对叶绿体类囊体膜的结构具有重要意义。值得注意的是在叶绿体类囊体膜的SDS 提取物中加入Mg~( )后,引起CPI_(?)与CPI 的聚合,这种聚合对膜的结构与功能的影响目前仍不清楚,还有待进一步探索。  相似文献   

18.
ε亚基是叶绿体ATP合酶最小的一个亚基,有阻塞ATP合酶的质子通道和抑制其水解ATP活力的两种功能。用定点突变和缺失等分子生物学方法对ε亚基的结构功能进行了研究,结果表明:ε亚基42位上的苏氨酸(Thr42)对维持其结构和功能都很重要。与大肠杆菌ATP合酶相比,叶绿体ATP合酶ε亚基C端和N端的氨基酸残基缺失对其结构功能的影响更为敏感。  相似文献   

19.
ε亚基是叶绿体ATP合酶最小的一个亚基,有阻塞ATP合酶的质子通道和抑制其水解ATP活力的两种功能.用定点突变和缺失等分子生物学方法对ε亚基的结构功能进行了研究,结果表明:ε亚基42位上的苏氨酸(Thr42)对维持其结构和功能都很重要.与大肠杆菌ATP合酶相比,叶绿体ATP合酶ε亚基C端和N端的氨基酸残基缺失对其结构功能的影响更为敏感.  相似文献   

20.
比较了菠菜和蚕豆叶绿体的光合磷酸化活力以及由不同活化方法活化的叶绿体及可溶CF1的Mg2+-ATPase和Ca2+-ATPase的活力,观测到两种叶绿体ATPase的合成和水解ATP的功能有明显差异。从两种叶绿体CF1的SDS-PAGE图谱上可见蚕豆CF1的ε亚基分子量明显小于菠菜的,蚕豆CF1的α和β亚基间分子量的差别也比菠菜的小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号