首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
The intrahepatic biliary ducts transport bile produced by the hepatocytes out of the liver. Defects in biliary cell differentiation and biliary duct remodeling cause a variety of congenital diseases including Alagille Syndrome and polycystic liver disease. While the molecular pathways regulating biliary cell differentiation have received increasing attention (Lemaigre, 2010), less is known about the cellular behavior underlying biliary duct remodeling. Here, we have identified a novel gene, claudin 15-like b (cldn15lb), which exhibits a unique and dynamic expression pattern in the hepatocytes and biliary epithelial cells in zebrafish. Claudins are tight junction proteins that have been implicated in maintaining epithelial polarity, regulating paracellular transport, and providing barrier function. In zebrafish cldn15lb mutant livers, tight junctions are observed between hepatocytes, but these cells show polarization defects as well as canalicular malformations. Furthermore, cldn15lb mutants show abnormalities in biliary duct morphogenesis whereby biliary epithelial cells remain clustered together and form a disorganized network. Our data suggest that Cldn15lb plays an important role in the remodeling process during biliary duct morphogenesis. Thus, cldn15lb mutants provide a novel in vivo model to study the role of tight junction proteins in the remodeling of the biliary network and hereditary cholestasis.  相似文献   

3.
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease such as simple steatosis, nonalcoholic steatohepatitis (NASH), cirrhosis and fibrosis. However, the molecular pathogenesis and genetic variations causing NAFLD are poorly understood. The high prevalence and incidence of NAFLD suggests that genetic variations on a large number of genes might be involved in NAFLD. To identify genetic variants causing inherited liver disease, we used zebrafish as a model system for a large-scale mutant screen, and adopted a whole genome sequencing approach for rapid identification of mutated genes found in our screen. Here, we report on a forward genetic screen of ENU mutagenized zebrafish. From 250 F2 lines of ENU mutagenized zebrafish during post-developmental stages (5 to 8 days post fertilization), we identified 19 unique mutant zebrafish lines displaying visual evidence of hepatomegaly and/or steatosis with no developmental defects. Histological analysis of mutants revealed several specific phenotypes, including common steatosis, micro/macrovesicular steatosis, hepatomegaly, ballooning, and acute hepatocellular necrosis. This work has identified multiple post-developmental mutants and establishes zebrafish as a novel animal model for post-developmental inherited liver disease.  相似文献   

4.
The disruption of cholesterol homeostasis leads to an increase in cholesterol levels which results in the development of cardiovascular disease. Mitogen Inducible Gene 6 (Mig-6) is an immediate early response gene that can be induced by various mitogens, stresses, and hormones. To identify the metabolic role of Mig-6 in the liver, we conditionally ablated Mig-6 in the liver using the Albumin-Cre mouse model (Alb(cre/+)Mig-6(f/f); Mig-6(d/d)). Mig-6(d/d) mice exhibit hepatomegaly and fatty liver. Serum levels of total, LDL, and HDL cholesterol and hepatic lipid were significantly increased in the Mig-6(d/d) mice. The daily excretion of fecal bile acids was significantly decreased in the Mig-6(d/d) mice. DNA microarray analysis of mRNA isolated from the livers of these mice showed alterations in genes that regulate lipid metabolism, bile acid, and cholesterol synthesis, while the expression of genes that regulate biliary excretion of bile acid and triglyceride synthesis showed no difference in the Mig-6(d/d) mice compared to Mig-6(f/f) controls. These results indicate that Mig-6 plays an important role in cholesterol homeostasis and bile acid synthesis. Mice with liver specific conditional ablation of Mig-6 develop hepatomegaly and increased intrahepatic lipid and provide a novel model system to investigate the genetic and molecular events involved in the regulation of cholesterol homeostasis and bile acid synthesis. Defining the molecular mechanisms by which Mig-6 regulates cholesterol homeostasis will provide new insights into the development of more effective ways for the treatment and prevention of cardiovascular disease.  相似文献   

5.
Liver tissue engineering aims to create transplantable liver grafts that can serve as substitutes for donor's livers. One major challenge in creating a fully functional liver tissue has been to recreate the biliary drainage in an engineered liver construct through integration of bile canaliculi (BC) with the biliary ductular network that would enable the clearance of bile from the hepatocytes to the host duodenum. In this study, we show the formation of such a hepatic microtissue by coculturing rat primary hepatocytes with cholangiocytes and stromal cells. Our results indicate that within the spheroids, hepatocytes maintained viability and function for up to 7 days. Viable hepatocytes became polarized by forming BC with the presence of tight junctions. Morphologically, hepatocytes formed the core of the spheroids, while cholangiocytes resided at the periphery forming a monolayer microcysts and tubular structures extending outward. The spheroids were subsequently cultured in clusters to create a higher order ductular network resembling hepatic lobule. The cholangiocytes formed functional biliary ductular channels in between hepatic spheroids that were able to collect, transport, and secrete bile. Our results constitute the first step to recreate hepatic building blocks with biliary drainage for repopulating the whole liver scaffolds to be used as transplantable liver grafts.  相似文献   

6.
7.
Hypopigmentation is a characteristic of several diseases associated with vesicle traffic defects, like the Hermansky-Pudlak, Chediak-Higashi, and Griscelli syndromes. Hypopigmentation is also a characteristic of the zebrafish mutant vps18(hi2499A), which is affected in the gene vps18, a component of the homotypic fusion and protein sorting complex that is involved in tethering during vesicular traffic. Vps18, as part of this complex, participates in the formation of early endosomes, late endosomes, and lysosomes. Here, we show that Vps18 is also involved in the formation of melanosomes. In the zebrafish mutant vps18(hi2499A) the retroviral insertion located at exon 4 of vps18, leads to the formation of two abnormal splicing variants lacking the coding sequence for the clathrin repeat and the RING finger conserved domains. A deficiency of Vps18 in zebrafish larvae results in hepatomegaly and skin hypopigmentation. We also observed a drastic reduction in the number of melanosomes in the eye's retinal pigmented epithelium along with the accumulation of immature melanosomes. A significant reduction in the vps18(hi2499A) larvae visual system capacity was found using the optokinetic response assay. We propose that the insertional mutant vps18(hi2499A) can be used as a model for studying hypopigmentation diseases in which vesicle traffic problems exist.  相似文献   

8.
We identified three zebrafish mutants with defects in biliary development. One of these mutants, pekin (pn), also demonstrated generalized hypopigmentation and other defects, including disruption of retinal cell layers, lack of zymogen granules in the pancreas, and dilated Golgi in intestinal epithelial cells. Bile duct cells in pn demonstrated an accumulation of electron dense bodies. We determined that the causative defect in pn was a splice site mutation in the atp6ap2 gene that leads to an inframe stop codon. atp6ap2 encodes a subunit of the vacuolar H(+)-ATPase (V-H(+)-ATPase), which modulates pH in intracellular compartments. The Atp6ap2 subunit has also been shown to function as an intracellular renin receptor that stimulates fibrogenesis. Here we show that mutants and morphants involving other V-H(+)-ATPase subunits also demonstrated developmental biliary defects, but did not demonstrate the inhibition of fibrogenic genes observed in pn. The defects in pn are reminiscent of those we and others have observed in class C VPS (vacuolar protein sorting) family mutants and morphants, and we report here that knockdown of atp6ap2 and vps33b had an additive negative effect on biliary development. Our findings suggest that pathways which are important in modulating intracompartmental pH lead to defects in digestive organ development, and support previous studies demonstrating the importance of intracellular sorting pathways in biliary development.  相似文献   

9.
Biliary complications often lead to acute and chronic liver injury after orthotopic liver transplantation (OLT). Bile composition and secretion depend on the integrated action of all the components of the biliary tree, starting from hepatocytes. Fatty livers are often discarded as grafts for OLT, since they are extremely vulnerable to conventional cold storage (CS). However, the insufficiency of donors has stimulated research to improve the usage of such marginal organs as well as grafts. Our group has recently developed a machine perfusion system at subnormothermic temperature (20°C; MP20) that allows a marked improvement in preservation of fatty and even of normal rat livers as compared with CS. We sought to evaluate the response of the biliary tree of fatty liver to MP20, and a suitable marker was essential to this purpose. Alkaline phosphatase (AlkP, EC 3.1.3.1), frequently used as marker of membrane transport in hepatocytes and bile ducts, was our first choice. Since no histochemical data were available on AlkP distribution and activity in fatty liver, we have first settled to investigate AlkP activity in the steatotic liver of fatty Zucker rats (fa/fa), using as controls lean Zucker (fa/+) and normal Wistar rats. The AlkP reaction in Wistar rats was in accordance with the existing data and, in particular, was present in bile canaliculi of hepatocytes in the periportal region and midzone, in the canals of Hering and in small bile ducts but not in large bile ducts. In lean ZR liver the AlkP reaction in Hering canals and small bile ducts was similar to Wistar rat liver but hepatocytes had lower canalicular activity and besides presented moderate basolateral reaction. The difference between lean Zucker and Wistar rats, both phenotypically normal animals, could be related to the fact that lean Zucker rats are genotypically heterozygous for a recessive mutated allele. In fatty liver, the activity in ductules and small bile ducts was unchanged, but most hepatocytes were devoid of AlkP activity with the exception of clusters of macrosteatotic hepatocytes in the mid-zone, where the reaction was intense in basolateral domains and in distorted canaliculi, a typical pattern of cholestasis. The interpretation of these data was hindered by the fact that the physiological role of AlkP is still under debate. In the present study, the various functions proposed for the role of the enzyme in bile canaliculi and in cholangiocytes are reviewed. Independently of the AlkP role, our data suggest that AlkP does not seem to be a reliable marker to study the initial step of bile production during OLT of fatty livers, but may still be used to investigate the behaviour of bile ductules and small bile ducts.  相似文献   

10.
Cell transplantation is a potential therapy for acquired or inherited liver diseases. Donor-derived hepatocytes (DDH) have been found in humans and mice after bone marrow transplantation (BMT) but with highly variable frequencies in different disease models. To test the effect of liver repopulation after BMT in inherited cholestatic liver diseases, spgp (sister of P-glycoprotein, or bile salt export pump, abcb11) knockout mice, a model for human progressive intrahepatic cholestasis type 2 with defects in excreting bile salts across the hepatocyte canalicular membrane, were transplanted with bone marrow cells from enhanced green fluorescent protein (EGFP) transgenic donor mice after lethal irradiation. One to 6 months later, scattered EGFP-positive DDHs with positive spgp staining were observed in the liver. These hepatocytes had been incorporated into hepatic plates and stained positively with hepatocyte-specific marker albumin. RT-PCR for the spgp gene revealed positive expression in the liver of sgsp knockout mice that had received the transplant. Bile acid analysis of bile samples showed that these mice also had higher levels of total biliary bile acid and taurocholic acid concentration than knockout mice without transplantation, indicating that BMT partially improved biliary bile acid secretion. Our results indicate that bone marrow cells could serve as a potential source for restoration of hepatic functions in chronic metabolic liver disease.  相似文献   

11.
Both Atp7b (Wilson disease gene) and Atp7a (Menkes disease gene) have been reported to be trafficked by copper. Atp7b is trafficked to the bile duct canaliculi and Atp7a to the plasma membrane. Whether or not liver ischemia or ischemia–reperfusion modulates Atp7b expression and trafficking has not been reported. In this study, we report for the first time that the multi-specific metal transporter Atp7b is significantly induced and trafficked by both liver ischemia alone and liver ischemia–reperfusion, as judged by immunohistochemistry and Western blot analyses. Although hepatocytes also stained for Atp7b, localized intense staining of Atp7b was found on bile duct canaliculi. Inductive coupled plasma-mass spectrometry analysis of bile copper, iron, zinc, and manganese found a corresponding significant increase in biliary iron. In our attempt to determine if the increased biliary iron transport observed may be a result of altered bile flow, lysosomal trafficking, or glutathione biliary transport, we measured bile flow, bile acid phosphatase activity, and glutathione content. No significant difference was found in bile flow, bile acid phosphatase activity, and glutathione, between control livers and livers subjected to ischemia–reperfusion. Thus, we conclude that liver ischemia and ischemia–reperfusion induction and trafficking Atp7b to the bile duct canaliculi may contribute to preferential iron transport into bile.  相似文献   

12.
13.
ATP7B is a copper transporting P-type ATPase, also known as Wilson disease protein, which plays a key role in copper distribution inside cells. Recent experimental data in cell culture have shown that ATP7B putatively serves a dual function in hepatocytes: when localized to the Golgi apparatus, it has a biosynthetic role, delivering copper atoms to apoceruloplasmin; when the hepatocytes are under copper stress, ATP7B translocates to the biliary pole to transport excess copper out of the cell and into the bile canaliculus for subsequent excretion from the body via the bile. The above data on ATP7B localization have been mainly obtained in tumor cell systems in vitro. The aim of the present work was to assess the presence and localization of the Wilson disease protein in the human liver. We tested immunoreactivity for ATP7B in 10 human liver biopsies, in which no significant pathological lesion was found using a polyclonal antiserum specific for ATP7B. In the normal liver, immunoreactivity for ATP7B was observed in hepatocytes and in biliary cells. In the hepatocytes, immunoreactivity for ATP7B was observed close to the plasma membrane, both at the sinusoidal and at the biliary pole. In the biliary cells, ATP7B was localized close to the cell membrane, mainly concentrated at the basal pole of the cells. The data suggest that, in human liver, ATP7B is localized to the plasma membrane of both hepatocytes and biliary epithelial cells.  相似文献   

14.
Given the scarcity of donors, moderately fatty livers (FLs) are currently being considered as possible grafts for orthotopic liver transplantation (OLT), notwithstanding their poor tolerance to conventional cold preservation. The behaviour of parenchymal and sinusoidal liver cells during transplantation is being studied worldwide. Much less attention has been paid to the biliary tree, although this is considered the Achille''s heel even of normal liver transplantation. To evaluate the response of the biliary compartment of FLs to the various phases of OLT reliable markers are necessary. Previously we demonstrated that Alkaline Phosphatase was scarcely active in bile canaliculi of FLs and thus ruled it out as a marker. As an alternative, dipeptidylpeptidase-IV (DPP-IV), was investigated. This ecto-peptidase plays an important role in glucose metabolism, rapidly inactivating insulin secreting hormones (incretins) that are important regulators of glucose metabolism. DPP-IV inhibitors are indeed used to treat Type II diabetes. Neuropeptides regulating bile transport and composition are further important substrates of DPP-IV in the enterohepatic axis. DPP-IV activity was investigated with an azo-coupling method in the liver of fatty Zucker rats (fa/fa), using as controls lean Zucker (fa/+) and normal Wistar rats. Protein expression was studied by immunofluorescence with the monoclonal antibody (clone 5E8). In Wistar rat liver, DPP-IV activity and expression were high in the whole biliary tree, and moderate in sinusoid endothelial cells, in agreement with the literature. Main substrates of DPP-IV in hepatocytes and cholangiocytes could be incretins GLP-1 and GIP, and neuropeptides such as vasoactive intestinal peptide (VIP) and substance P, suggesting that these substances are inactivated or modified through the biliary route. In lean Zucker rat liver the enzyme reaction and protein expression patterns were similar to those of Wistar rat. In obese rat liver the patterns of DPP-IV activity and expression in hepatocytes reflected the morphological alterations induced by steatosis as lipid-rich hepatocytes had scarce activity, located either in deformed bile canaliculi or in the sinusoidal and lateral domains of the plasma membrane. These findings suggest that bile canaliculi in steatotic cells have an impaired capacity to inactivate incretins and neuropeptides. Incretin and/or neuropeptide deregulation is indeed thought to play important roles in obesity and insulin-resistance. No alteration in enzyme activity and expression was found in the upper segments of the biliary tree of obese respect to lean Zucker and Wistar rats. In conclusion, this research demonstrates that DPP-IV is a promising in situ marker of biliary functionality not only of normal but also of fatty rats. The approach, initially devised to investigate the behaviour of the liver during the various phases of transplantation, appears to have a much higher potentiality as it could be further exploited to investigate any pathological or stressful conditions involving the biliary tract (i.e., metabolic syndrome and cholestasis) and the response of the biliary tract to therapy and/or to surgery.Key words: Dipeptidylpeptidase-IV, fatty liver, incretins, neuropeptides, biliary tree, bile canaliculi, hepatocytes.  相似文献   

15.
Early diagnosis of the choledochal cysts in childhood, especially obstructing bile outflow to the duodenum, is an important clinical problem; often leading to serious complications--if not treated. Authors treated 5 children with choledochal cysts. Three out of them have been treated surgically. Ultrasound examination is sufficient to diagnose the disease, if the cyst is connected with intrahepatic bile ducts. If such a case is not possible to be imaged, cholescintigraphy and thin-needle biopsy with contrast filling are necessary to confirm the diagnosis.  相似文献   

16.
The inactivation of the Hnf1beta gene identified an essential role in epithelial differentiation of the visceral endoderm and resulted in early embryonic death. In the present study, we have specifically inactivated this gene in hepatocytes and bile duct cells using the Cre/loxP system. Mutant animals exhibited severe jaundice caused by abnormalities of the gallbladder and intrahepatic bile ducts (IHBD). The paucity of small IHBD was linked to a failure in the organization of duct structures during liver organogenesis, suggesting an essential function of Hnf1b in bile duct morphogenesis. Mutant mice also lacked interlobular arteries. As HNF1beta is not expressed in these cells, it further emphasizes the link between arterial and biliary formation. Hepatocyte metabolism was also affected and we identified hepatocyte-specific HNF1beta target genes involved in bile acids sensing and in fatty acid oxidation.  相似文献   

17.
Hypopigmentation is a characteristic of several diseases associated with vesicle traffic defects, like the Hermansky–Pudlak, Chediak–Higashi, and Griscelli syndromes. Hypopigmentation is also a characteristic of the zebrafish mutant vps18hi2499A, which is affected in the gene vps18, a component of the homotypic fusion and protein sorting complex that is involved in tethering during vesicular traffic. Vps18, as part of this complex, participates in the formation of early endosomes, late endosomes, and lysosomes. Here, we show that Vps18 is also involved in the formation of melanosomes. In the zebrafish mutant vps18hi2499A the retroviral insertion located at exon 4 of vps18, leads to the formation of two abnormal splicing variants lacking the coding sequence for the clathrin repeat and the RING finger conserved domains. A deficiency of Vps18 in zebrafish larvae results in hepatomegaly and skin hypopigmentation. We also observed a drastic reduction in the number of melanosomes in the eye's retinal pigmented epithelium along with the accumulation of immature melanosomes. A significant reduction in the vps18hi2499A larvae visual system capacity was found using the optokinetic response assay. We propose that the insertional mutant vps18hi2499A can be used as a model for studying hypopigmentation diseases in which vesicle traffic problems exist.  相似文献   

18.
19.
Liver is one of the largest internal organs in the body and its importance for metabolism, detoxification and homeostasis has been well established. In this review, we summarized recent progresses in studying liver initiation and development during embryogenesis using zebrafish as a model system. We mainly focused on topics related to the specification of hepatoblasts from endoderm, the formation and growth of liver bud, the differentiation of hepatocytes and bile duct cells from hepatoblasts, and finally the role of mesodermal signals in controlling liver development in zebrafish.  相似文献   

20.
The diagnostic aids used in dealing with biliary disease in adults were applied to the study in infants of the principal congenital anomalies of the biliary tract such as choledochal cyst, biliary atresia and biliary stenosis.Choledochal cysts were distinguished from other upper abdominal masses occurring in childhood by the use of intravenous cholecystography.Since the clinical manifestations in infants with biliary atresia or stenosis are almost identical to those associated with the obstructive phase of neonatal hepatitis, the problem of differentiation is difficult. The serial total serum bilirubin curve, a careful analysis of the pigment content of feces and urine and duodenal intubation for bilirubin determinations were found to be useful in making the distinction. Operative cholangiograms were helpful in some cases. Frozen section examinations of liver tissue during operation were of little value except to demonstrate certain unusual cases of intrahepatic biliary atresia. Routine liver function studies, including serum transaminase determination in a limited number of cases, did not help in differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号