首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Breast cancer affects 1 in 8 North American women throughout their lifetime and is the second leading cause of cancer-related deaths. Breast cancer is a heterogeneous disease whose progression from hyperplasia to ductal carcinoma in situ and invasive carcinoma is regulated by the aberrant expression of multiple mediators; including growth factors, cytokines, chemokines and proteases that are produced both by the mammary tumor itself and the adjacent reactive stroma. These signals promote tumor cell proliferation, survival, establishment of a tumor vasculature, invasion and ultimately metastasis to secondary organs. Moreover, the ability of the tumor to create a state of local immune suppression allows tumor cells to evade clearance by the immune system. ShcA is an adaptor protein that relays extracellular signals downstream of receptor tyrosine kinases. Clinical studies suggest that activation of the ShcA signaling pathway is associated with poor patient prognosis. Moreover, recent studies with transgenic mouse models have clearly demonstrated the importance of tumor autonomous ShcA signaling, as well as signaling in cells comprising the tumor microenvironment, for the regulation of these biological processes, which contribute to breast cancer development and metastasis.  相似文献   

2.
Polarity coordinates cell movement, differentiation, proliferation and apoptosis to build and maintain complex epithelial tissues such as the mammary gland. Loss of polarity and the deregulation of these processes are critical events in malignant progression but precisely how and at which stage polarity loss impacts on mammary development and tumourigenesis is unclear. Scrib is a core polarity regulator and tumour suppressor gene however to date our understanding of Scrib function in the mammary gland has been limited to cell culture and transplantation studies of cell lines. Utilizing a conditional mouse model of Scrib loss we report for the first time that Scrib is essential for mammary duct morphogenesis, mammary progenitor cell fate and maintenance, and we demonstrate a critical and specific role for Scribble in the control of the early steps of breast cancer progression. In particular, Scrib-deficiency significantly induced Fra1 expression and basal progenitor clonogenicity, which resulted in fully penetrant ductal hyperplasia characterized by high cell turnover, MAPK hyperactivity, frank polarity loss with mixing of apical and basolateral membrane constituents and expansion of atypical luminal cells. We also show for the first time a role for Scribble in mammalian spindle orientation with the onset of mammary hyperplasia being associated with aberrant luminal cell spindle orientation and a failure to apoptose during the final stage of duct tubulogenesis. Restoring MAPK/Fra1 to baseline levels prevented Scrib-hyperplasia, whereas persistent Scrib deficiency induced alveolar hyperplasia and increased the incidence, onset and grade of mammary tumours. These findings, based on a definitive genetic mouse model provide fundamental insights into mammary duct maturation and homeostasis and reveal that Scrib loss activates a MAPK/Fra1 pathway that alters mammary progenitor activity to drive premalignancy and accelerate tumour progression.  相似文献   

3.
During thymic development, the beta selection checkpoint is regulated by pre-T-cell receptor-initiated signals. Progression through this checkpoint is influenced by phosphorylation and activation of the serine/threonine kinases extracellular signal-regulated kinase 1 (ERK1) and ERK2, but the in vivo relevance of specific upstream players leading to ERK activation is not known. Here, using mice with a conditional loss of the shc1 gene or expressing mutants of ShcA, we demonstrate that the adapter protein ShcA is responsible for up to 70% of ERK activation in double-negative (DN) thymocytes in vivo and ex vivo. We also identify two specific tyrosines on ShcA that promote ERK phosphorylation in vivo, and mice expressing ShcA with mutations of these tyrosines show impaired DN thymocyte development. This work provides the first in vivo demonstration of the relative requirement of upstream adapters in controlling ERK activation during beta selection and suggests a dominant role for ShcA.  相似文献   

4.
Cooperation between the Neu/ErbB-2 and transforming growth factor beta (TGF-beta) signaling pathways enhances the invasive and metastatic capabilities of breast cancer cells; however, the underlying mechanisms mediating this synergy have yet to be fully explained. We demonstrate that TGF-beta induces the migration and invasion of mammary tumor explants expressing an activated Neu/ErbB-2 receptor, which requires signaling from autophosphorylation sites located in the C terminus. A systematic analysis of mammary tumor explants expressing Neu/ErbB-2 add-back receptors that couple to distinct signaling molecules has mapped the synergistic effect of TGF-beta-induced motility and invasion to signals emanating from tyrosine residues 1226/1227 and 1253 of Neu/ErbB-2. Given that the ShcA adaptor protein is known to interact with Neu/ErbB-2 through these residues, we investigated the importance of this signaling molecule in TGF-beta-induced cell motility and invasion. The reduction of ShcA expression rendered cells expressing activated Neu/ErbB-2, or add-back receptors signaling specifically through tyrosines 1226/1227 or 1253, unresponsive to TGF-beta-induced motility and invasion. In addition, a dominant-negative form of ShcA, lacking its three known tyrosine phosphorylation sites, completely abrogates the TGF-beta-induced migration and invasion of breast cancer cells expressing activated Neu/ErbB-2. Our results implicate signaling through the ShcA adaptor as a key component in the synergistic interaction between these pathways.  相似文献   

5.
Biomarkers are lacking for identifying the switch of transforming growth factor-β (TGF-β) from tumor-suppressing to tumor-promoting. Mutated p53 (mp53) has been suggested to switch TGF-β to a tumor promoter. However, we found that mp53 does not always promote the oncogenic role of TGF-β. Here, we show that endogenous mp53 knockdown enhanced cell migration and phosphorylation of ERK in DU145 prostate cancer cells. Furthermore, ectopic expression of mp53 in p53-null PC-3 prostate cancer cells enhanced Smad-dependent signaling but inhibited TGF-β-induced cell migration by down-regulating activated ERK. Reactivation of ERK by the expression of its activator, MEK-1, restored TGF-β-induced cell migration. Because TGF-β is known to activate the MAPK/ERK pathway through direct phosphorylation of the adaptor protein ShcA and MAPK/ERK signaling is pivotal to tumor progression, we investigated whether ShcA contributed to mp53-induced ERK inhibition and the conversion of the role of TGF-β during carcinogenesis. We found that mp53 expression led to a decrease of phosphorylated p52ShcA/ERK levels and an increase of phosphorylated Smad levels in a panel of mp53-expressing cancer cell lines and in mammary glands and tumors from mp53 knock-in mice. By manipulating ShcA levels to regulate ERK and Smad signaling in human untransformed and cancer cell lines, we showed that the role of TGF-β in regulating anchorage-dependent and -independent growth and migration can be shifted between growth suppression and migration promotion. Thus, our results for the first time suggest that mp53 disrupts the role of ShcA in balancing the Smad-dependent and -independent signaling activity of TGF-β and that ShcA/ERK signaling is a major pathway regulating the tumor-promoting activity of TGF-β.  相似文献   

6.
Mice lacking expression of the p66 isoform of the ShcA adaptor protein (p66(ShcA)) are less susceptible to oxidative stress and have an extended life span. Specifically, phosphorylation of p66(ShcA) at serine 36 is critical for the cell death response elicited by oxidative damage. We sought to identify the kinase(s) responsible for this phosphorylation. Utilizing the SH-SY5Y human neuroblastoma cell model, it is demonstrated that p66(ShcA) is phosphorylated on serine/threonine residues in response to UV irradiation. Both c-Jun N-terminal kinases (JNKs) and p38 mitogen-activated protein kinases are activated by UV irradiation, and we show that both are capable of phosphorylating serine 36 of p66(ShcA) in vitro. However, treatment of cells with a multiple lineage kinase inhibitor, CEP-1347, that blocks UV-induced JNK activation, but not p38, phosphatidylinositol 3-kinase, or MEK1 inhibitors, prevented p66(ShcA) phosphorylation in SH-SY5Y cells. Consistent with this finding, transfected activated JNK1, but not the kinase-dead JNK1, leads to phosphorylation of serine 36 of p66(ShcA) in Chinese hamster ovary cells. In conclusion, JNKs are the kinases that phosphorylate serine 36 of p66(ShcA) in response to UV irradiation in SH-SY5Y cells, and blocking p66(ShcA) phosphorylation by intervening in the JNK pathway may prevent cellular damage due to light-induced oxidative stress.  相似文献   

7.
The ErbB2 and TGFβ signaling pathways cooperate to promote the migratory, invasive, and metastatic behavior of breast cancer cells. We previously demonstrated that ShcA is necessary for these synergistic interactions. Through a structure/function approach, we now show that the phosphotyrosine-binding, but not the Src homology 2, domain of ShcA is required for TGFβ-induced migration and invasion of ErbB2-expressing breast cancer cells. We further demonstrate that the tyrosine phosphorylation sites within ShcA (Tyr239/Tyr240 and Tyr313) transduce distinct and non-redundant signals that promote these TGFβ-mediated effects. We demonstrate that Grb2 is required specifically downstream of Tyr313, whereas the Tyr239/Tyr240 phosphorylation sites require the Crk adaptor proteins to augment TGFβ-induced migration and invasion. Furthermore, ShcA Tyr313 phosphorylation enhances tumor cell survival, and ShcA Tyr239/Tyr240 signaling promotes endothelial cell recruitment into ErbB2-expressing breast tumors in vivo, whereas all three ShcA tyrosine residues are required for efficient breast cancer metastasis to the lungs. Our data uncover a novel ShcA-dependent signaling axis downstream of TGFβ and ErbB2 that requires both the Grb2 and Crk adaptor proteins to increase the migratory and invasive properties of breast cancer cells. In addition, signaling downstream of specific ShcA tyrosine residues facilitates the survival, vascularization, and metastatic spread of breast tumors.  相似文献   

8.
ShcA and Grb2 are crucial components in signalling by most tyrosine kinase-associated receptors. How ever, it is not clear whether Grb2 bound directly to the receptor is equivalent to Grb2 associated via ShcA. We have used signalling stimulated by the middle T-antigen (MT) of polyoma virus to address this question. The two known Grb2-binding sites from murine ShcA, 313Y and 239/240YY, could functionally replace the MT ShcA-interacting region in transformation assays using Rat2 fibroblasts. This demonstrates that signal output from membrane-bound ShcA requires only these two sequences and the ShcA-binding site in MT does not recruit other signalling molecules. Two standard Grb2-interacting sequences, either from the EGF receptor or the ShcA 313Y region, could not replace the requirement for ShcA binding to MT, indicating an enhanced role for the ShcA 239/240YY motif. Sos1 and the docking protein Gab1 are brought into the MT complex through Grb2 association and this may be more effective using the 239/240YY sequence.  相似文献   

9.
Epithelial–mesenchymal transition (EMT) is a normal cell differentiation event during development and contributes pathologically to carcinoma and fibrosis progression. EMT often associates with increased transforming growth factor-β (TGF-β) signaling, and TGF-β drives EMT, in part through Smad-mediated reprogramming of gene expression. TGF-β also activates the Erk MAPK pathway through recruitment and Tyr phosphorylation of the adaptor protein ShcA by the activated TGF-β type I receptor. We found that ShcA protects the epithelial integrity of nontransformed cells against EMT by repressing TGF-β-induced, Smad-mediated gene expression. p52ShcA competed with Smad3 for TGF-β receptor binding, and down-regulation of ShcA expression enhanced autocrine TGF-β/Smad signaling and target gene expression, whereas increased p52ShcA expression resulted in decreased Smad3 binding to the TGF-β receptor, decreased Smad3 activation, and increased Erk MAPK and Akt signaling. Furthermore, p52ShcA sequestered TGF-β receptor complexes to caveolin-associated membrane compartments, and reducing ShcA expression enhanced the receptor localization in clathrin-associated membrane compartments that enable Smad activation. Consequently, silencing ShcA expression induced EMT, with increased cell migration, invasion, and dissemination, and increased stem cell generation and mammosphere formation, dependent upon autocrine TGF-β signaling. These findings position ShcA as a determinant of the epithelial phenotype by repressing TGF-β-induced Smad activation through differential partitioning of receptor complexes at the cell surface.  相似文献   

10.
Canonical Wnt signals are transduced through a Frizzled receptor and either the LRP5 or LRP6 co-receptor; such signals play central roles during development and in disease. We have previously shown that Lrp5 is required for ductal stem cell activity and that loss of Lrp5 delays normal mammary development and Wnt1-induced tumorigenesis. Here we show that canonical Wnt signals through the Lrp6 co-receptor are also required for normal mouse mammary gland development. Loss of Lrp6 compromises Wnt/β-catenin signaling and interferes with mammary placode, fat pad, and branching development during embryogenesis. Heterozygosity for an inactivating mutation in Lrp6 is associated with a reduced number of terminal end buds and branches during postnatal development. While Lrp6 is expressed in both the basal and luminal mammary epithelium during embryogenesis, Lrp6 expression later becomes restricted to cells residing in the basal epithelial layer. Interestingly, these cells also express mammary stem cell markers. In humans, increased Lrp6 expression is associated with basal-like breast cancer. Taken together, our results suggest both overlapping and specific functions for Lrp5 and Lrp6 in the mammary gland.  相似文献   

11.
Cyclin Y family can enhance Wnt/β-catenin signaling in mitosis. Their physiological roles in mammalian development are yet unknown. Here we show that Cyclin Y-like 1 (Ccnyl1) and Cyclin Y (Ccny) have overlapping function and are crucial for mouse embryonic development and mammary stem/progenitor cell functions. Double knockout of Ccnys results in embryonic lethality at E16.5. In pubertal development, mammary terminal end buds robustly express Ccnyl1. Depletion of Ccnys leads to reduction of Lrp6 phosphorylation, hampering β-catenin activities and abolishing mammary stem/progenitor cell expansion in vitro. In lineage tracing experiments, Ccnys-deficient mammary cells lose their competitiveness and cease to contribute to mammary development. In transplantation assays, Ccnys-deficient mammary cells fail to reconstitute, whereas constitutively active β-catenin restores their regeneration abilities. Together, our results demonstrate the physiological significance of Ccnys-mediated mitotic Wnt signaling in embryonic development and mammary stem/progenitor cells, and reveal insights in the molecular mechanisms orchestrating cell cycle progression and maintenance of stem cell properties.  相似文献   

12.
Many forms of endocrine therapy for steroid-sensitive tumours involve regimes of steroid agonist deprivation by administration of steroid antagonists. The partial or short-lived response to such therapy results from the inevitable progression of the tumour cells to a state of steroid insensitivity. Several cell culture systems have shown that steroid ablation results in loss of steroid sensitivity and we have used an in vitro model here to study the influence of steroid antagonists on this progression. Growth of androgen-responsive S115 mouse mammary tumour cells in the long-term absence of steroid results in a loss of androgen-sensitivity. We have studied here the effects of the pure antiandrogen ICI 176,334 on the growth of S115 cells and on their progression to steroid autonomy. Although a pure antiandrogen in its action on these cells with very low toxicity, it had no protective effect against loss of cellular or molecular androgen-responsive parameters. The clinical implications for endocrine therapy are discussed.  相似文献   

13.
It is increasingly apparent that normal and malignant breast tissues require complex local and systemic stromal interactions for development and progression. During development, mammary cell fate specification and differentiation require highly regulated contextual signals derived from the stroma. Likewise, during breast carcinoma development, the tissue stroma can provide tumor suppressing and tumor-promoting environments that serve to regulate neoplastic growth of the epithelium. This review focuses on the role of the stroma as a mediator of normal mammary development, as well as a critical regulator of malignant conversion and progression in breast cancer. Recognition of the important role of the stroma during the progression of breast cancers leads to the possibility of new targets for treatment of the initial breast cancer lesion as well as prevention of recurrence.  相似文献   

14.
15.
BackgroundCopy number aberrations frequently occur during the development of many cancers. Such events affect dosage of involved genes and may cause further genomic instability and progression of cancer. In this survey, canine SNP microarrays were used to study 117 canine mammary tumours from 69 dogs.ResultsWe found a high occurrence of copy number aberrations in canine mammary tumours, losses being more frequent than gains. Increased frequency of aberrations and loss of heterozygosity were positively correlated with increased malignancy in terms of histopathological diagnosis. One of the most highly recurrently amplified regions harbored the MYC gene. PTEN was located to a frequently lost region and also homozygously deleted in five tumours. Thus, deregulation of these genes due to copy number aberrations appears to be an important event in canine mammary tumour development. Other potential contributors to canine mammary tumour pathogenesis are COL9A3, INPP5A, CYP2E1 and RB1. The present study also shows that a more detailed analysis of chromosomal aberrations associated with histopathological parameters may aid in identifying specific genes associated with canine mammary tumour progression.ConclusionsThe high frequency of copy number aberrations is a prominent feature of canine mammary tumours as seen in other canine and human cancers. Our findings share several features with corresponding studies in human breast tumours and strengthen the dog as a suitable model organism for this disease.  相似文献   

16.
Src homology and collagen A (ShcA) is an adaptor protein that binds to tyrosine kinase receptors. Its germ line deletion is embryonic lethal with abnormal cardiovascular system formation, and its role in cardiovascular development is unknown. To investigate its functional role in cardiovascular development in mice, ShcA was deleted in cardiomyocytes and vascular smooth muscle cells by crossing ShcA flox mice with SM22a-Cre transgenic mice. Conditional mutant mice developed signs of severe dilated cardiomyopathy, myocardial infarctions, and premature death. No evidence of a vascular contribution to the phenotype was observed. Histological analysis of the heart revealed aberrant sarcomeric Z-disk and M-band structures, and misalignments of T-tubules with Z-disks. We find that not only the ErbB3/Neuregulin signaling pathway but also the baroreceptor reflex response, which have been functionally associated, are altered in the mutant mice. We further demonstrate that ShcA interacts with Caveolin-1 and the costameric protein plasma membrane Ca2+/calmodulin-dependent ATPase (PMCA), and that its deletion leads to abnormal dystrophin signaling. Collectively, these results demonstrate that ShcA interacts with crucial proteins and pathways that link Z-disk and costamere.  相似文献   

17.
Hu Y  Kang C  Philp RJ  Li B 《Cellular signalling》2007,19(2):410-418
Both PKC delta and ShcA have been implicated in cell response to oxidative stress [Y. Hu, X. Wang, L. Zeng, D.Y. Cai, K. Sabapathy, S.P. Goff, E.J. Firpo, B. Li, Mol Biol Cell., 16 (2005) 3705-3718, B. Li, X. Wang, N. Rasheed, Y. Hu, S. Boast, T. Ishii, K. Nakayama, K.I. Nakayama, S.P., Goff, Genes Dev, 18 (2004) 1824-1837, E. Migliaccio, M. Giorgio, S. Mele, G. Pelicci, P. Reboldi, P.P. Pandolfi, L. Lanfrancone, P.G. Pelicci, Nature, 402 (1999) 309-313], yet their relationship in the response has not been studied. Here we report that PKC delta interacts with ShcA and this interaction is promoted by H(2)O(2). PKC delta and ShcA are also colocalized in the cytoplasm and displayed co-translocation in response to H(2)O(2). Activated PKC delta was able to phosphorylate ShcA at Ser29, as determined by mass spectrometry. These results suggest that ShcA, p66 and p52, are substrates that interact with PKC delta. This phosphorylation is critical in H(2)O(2) induced ERK activation as reconstitution with ShcA Ser29A failed to rescue ERK activation of ShcA-/- MEFs, while ShcA could. In line with this conclusion, inhibition of PKC delta with inhibitors is able to diminish H(2)O(2) induced ERK activation in MEFs. These results suggest that the interaction between PKC delta and ShcA and the phosphorylation of ShcA at Ser29 play important roles in ERK activation in cell response to H(2)O(2).  相似文献   

18.
19.
Inflammation and hypoxia are known to promote the metastatic progression of tumours. The CCAAT/enhancer-binding protein-δ (C/EBPδ, CEBPD) is an inflammatory response gene and candidate tumour suppressor, but its physiological role in tumourigenesis in vivo is unknown. Here, we demonstrate a tumour suppressor function of C/EBPδ using transgenic mice overexpressing the Neu/Her2/ERBB2 proto-oncogene in the mammary gland. Unexpectedly, this study also revealed that C/EBPδ is necessary for efficient tumour metastasis. We show that C/EBPδ is induced by hypoxia in tumours in vivo and in breast tumour cells in vitro, and that C/EBPδ-deficient cells exhibit reduced glycolytic metabolism and cell viability under hypoxia. C/EBPδ supports CXCR4 expression. On the other hand, C/EBPδ directly inhibits expression of the tumour suppressor F-box and WD repeat-domain containing 7 gene (FBXW7, FBW7, AGO, Cdc4), encoding an F-box protein that promotes degradation of the mammalian target of rapamycin (mTOR). Consequently, C/EBPδ enhances mTOR/AKT/S6K1 signalling and augments translation and activity of hypoxia-inducible factor-1α (HIF-1α), which is necessary for hypoxia adaptation. This work provides new insight into the mechanisms by which metastasis-promoting signals are induced specifically under hypoxia.  相似文献   

20.
Loss of cells from vital and necrotic areas of the syngeneic mammary adenocarcinoma EO 771 in male C57 BL/6J mice may be measured by use of 125I-labelled 5-iodo-2'-deoxyuridine (125I-UdR). Later than 50 hr after an intraperitoneal injection of 20 muCi 125I-UdR the incorporated activity of the entire tumour was externally measured and found to decrease with time after injection. The injected amount was neither chemo- nor radiotoxic. By injecting the vital dye 'light green', unstained necrotic and stained viable regions were separately excised and measured for loss of activity throughout the natural development of the labelled tumour. With the appearance of necrotic regions, labelled viable cells became necrotic, and activity was slowly eliminated. With increasing proportions of necrosis during tumour growth, the rate of loss of activity of the whole tumour decreased. Loss of activity from viable tumour regions reflected cell death and exceeded the loss rates of the whole tumour by a factor of 2 to 3. The data show that loss of activity from the whole tumour results from a superposition of different elimination rates of viable and necrotic tumour regions and is not an immediate consequence of cell death in the course of undisturbed tumour development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号