首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An unusual cell organelle of some basidiomycetes, the symplechosome, is described and illustrated in detail using Saccoblastia farinacea as an example. Symplechosomes are structurally similar, but not identical to “classical” dictyosomes of green plants and animals. As is typical for dictyosomes, each symplechosome consists of a stack of platelike cisternae. The central portions of the symplechosome-cisternae are flattened, and adjacent cisternae are separated in the mid-region by an intercisternal space of constant width. In contrast to dictyosomes, the intracisternal spaces are completely obliterated in the central area, and hexagonally arranged bars extend between adjacent cisternae. Identical bars often connect the symplechosomes with mitochondria. Symplechosomes are highly complex-structured organelles which differ significantly from the simple individual Golgi cisternae or “Golgi bodies” observed in asco- and basidiomycetes.  相似文献   

2.
U. Kristen 《Planta》1978,138(1):29-33
The slime-producing dictyosomes in the placentary papillae of Aptenia cordifolia (L.f.) Schwant. show some structural peculiarities: (1) the number of their cisternae is conspicuously large in comparison with those of other cormophyta; (2) the spaces between the extremely flat vesicle-producing cisternae of the maturing face are considerably higher than those between the other cisternae; (3) the intercisternal elements show a pearl-string form rather than a fibrillar form-especially on tangential sections. Based on personal and on cited findings, the following hypothesis is developed: The intercisternal elements effect the compression of the central region of the secretory cisternae. This causes the production of vesicles to remain restricted to the marginal region of the cisternae, even if these cisternae contain hypertonic or soaking substances.  相似文献   

3.
Summary Golgi apparatus in subapical regions of hyphae consist of paranuclear dictyosomes with 4–5 cisternae each. Transverse and tangential sections provide ultrastructural evidence for a three-dimensional architectural model of the Golgi apparatus and a stepwise mechanism for dictyosome multiplication. The dictyosomes are polarized, with progressive morphological and developmental differentiation of cisternae from the cis to the trans pole. Small membrane blebs and transition vesicles provide developmental continuity between the nuclear envelope and the adjacent dictyosome cisterna at the cis face. Cisternae are formed as fenestrated plates with extended tubular peripheries. The morphology of each cisterna depends on its position in the stack, consistent with a developmental gradient of progressive maturation and turnover of cisternae. Mature cisternae at the trans face are dissociated to produce spheroid and tubular vesicles. Evidence in support of a schematic sequence for increasing the numbers of dictyosomes comes from images of distinctive and unusual forms of Golgi apparatus in hyphal regions where nuclei and dictyosomes multiply, as follows: (a) The area of the nuclear envelope exhibiting forming-face activity next to a dictyosome expands, which in turn increases the size of cisternae subsequently assembled at the cis face of the dictyosome. (b) As subsequent large cisternae are formed and mature as they pass through the dictyosome, an entire dictyosome about twice normal size is built up. The number of cisternae per stack remains the same because of continuing turnover and loss of cisternae at the trans face, (c) This enlarged dictyosome becomes separated into two by a small region of the nuclear envelope next to the cis face that acquires polyribosomes and no longer generates transition vesicles, (d) As a consequence, assembly of new dictyosomes is physically separated into two adjacent regions, (e) As.the enlarged cisternae are lost to vesiculation at the trans pole, they are replaced by two separate stacks of cisternae with typical normal diameters, (f) The net result is two adjacent dictyosomes where one existed previously. Dictyosome multiplication is thus accomplished as part of the normal developmental turnover of cisternae, without interrupting the functioning of the Golgi apparatus as it continues to produce new secretory vesicles from mature cisternae at the trans face. Coordination of Golgi apparatus multiplication with nuclear division ensures that each daughter nucleus receives a complement of paranuclear dictyosomes.  相似文献   

4.
Sucrose-gradient-purified dictyosomes of plant Golgi apparatus appear, after glutaraldehyde stabilization, as stacks of highly fenestrate and tubate cisternae when negatively stained with phosphotungstic acid, shadowed with heavy metal, or OsO4-stained in thin section. The tubular proliferations (diameter 200 to 400 A) extend for several microns from the central region and are united at intervals into an anastomosing network. Associated with the tubules are two kinds of vesicles which are distinguishable on the basis of texture, size, shape, and staining characteristics. One vesicle type is rough-surfaced, nearly spherical, and of uniform dimensions (diameter approximately 600 A). Metal shadowing shows that these vesicles remain spherical after drying. The other vesicle type is smooth-surfaced and varies in both size and shape. Intercisternal elements are revealed, by negative staining, on the surface of internal cisternae after fragmentation of the dictyosome. The progressive differentiation of cisternae from the forming face to the maturing face is observed in thin sections of these isolated preparations. The morphological characteristics observed in negatively stained dictyosomes indicate regions of functional specialization within the dictyosome cisternae and reveal a dictyosome structure more extensive than that envisioned from sections.  相似文献   

5.
Dictyosomes are found in a large number in the glandular scales of Origanum dictamnus during the early developmental stages. Later they significantly diminish when essential oil secretion starts. Phases of dictyosome duplication are frequently observed at the stage of growth of the Golgi apparatus. The process of dictyosome division starts in the middle region of the stack where a Golgi cisterna undergoes a central dilation. An analogous dilation is progressively formed in the adjacent cisternae. Finally, by membrane fusion the stack separates into two daughter stacks which organize into normal dictyosomes.  相似文献   

6.
Summary Epidermal and outer rootcap cells of maize root tips were treated with the sodium selective ionophore, monensin, and the ultrastructural changes were studied. In the presence of 10–5 to 10–3 M monensin, dictyosomes became distorted, cisternae separated from the stack, and secretory vesicles were released. Released secretory vesicles disappeard from the cytoplasm suggesting that their transport to, and fusion with, the plasma membrane was unaffected. Monensin did not inhibit cytoplasmic streaming of the outer rootcap cells. No new secretory vesicles were formed on the remaining dictyosomes or dictyosome fragments. In contrast to results with animal cells, swelling of plant dictyosome cisternae was observed only after fixation in glutaraldehyde-osmium tetroxide and not after fixation in potassium permanganate. Other cell components were not altered structurally by monensin. The effects of monensin on the Golgi apparatus were reversible, and dictyosomes were either repaired or new dictyosomes were formed after the root tips were removed from the monensin.Dictyosomes in epidermal cells reacted in the same manner as those in the rootcap except that numerous secretory vesicles remained in the cytoplasm, mostly in association with dictyosome fragments. Some secretory vesicles increased in size but no evidence of vesicle-vesicle fusion was noted. Cell plate formation was partially inhibited or blocked by monensin.Mention of a commercial or proprietary product in this paper does not constitute an endorsement of this product by the USDA.  相似文献   

7.
The organization of intra-Golgi trafficking and the nature of the transport intermediates involved (e.g., vesicles, tubules, or tubular continuities) remain incompletely understood. It was recently shown that successive cisternae in the Golgi stack are interconnected by membrane tubules that form during the arrival of transport carriers from the endoplasmic reticulum. Here, we examine the mechanisms of generation and the function of these tubules. In principle, tubule formation might depend on several protein- and/or lipid-based mechanisms. Among the latter, we have studied the phospholipase A2 (PLA2)-mediated generation of wedge-shaped lysolipids, with the resulting local positive membrane curvature. We show that the arrival of cargo at the Golgi complex induces the recruitment of Group IVA Ca2+-dependent, cytosolic PLA2 (cPLA2α) onto the Golgi complex itself, and that this cPLA2α is required for the formation of the traffic-dependent intercisternal tubules and for intra-Golgi transport. In contrast, silencing of cPLA2α has no inhibitory effects on peri-Golgi vesicles. These findings identify cPLA2α as the first component of the machinery that is responsible for the formation of intercisternal tubular continuities and support a role for these continuities in transport through the Golgi complex.  相似文献   

8.
 Golgi apparatus of both plant and animal cells are characterized by an extensive system of approximately 30 nm diameter peripheral tubules. The total surface area of the tubules and associated fenestrae is thought to be approximately equivalent to that of the flattened portions of cisternae. The tubules may extend for considerable distances from the stacks. The tubules are continuous with the peripheral edges of the stacked cisternae, but the way they interconnect differs across the stack. In plant cells, for example, tubules associated with the near-cis and mid cisternae often begin to anastomose close to the peripheral edges of the stacked cisternae, whereas the tubules of the trans cisternae are less likely to anastomose and are more likely to be directly continuous with the peripheral edges of the stacked cisternae. Additionally, the tubules may blend gradually into fenestrae that surround some of the stack cisternae. Because of the large surface area occupied by tubules and fenestrae, it is reasonable to suppose that these components of the Golgi apparatus play a significant role in Golgi apparatus function. Tubules clearly interconnect closely adjacent stacks of the Golgi apparatus and may represent a communication channel to synchronize stack function within the cell. A feasible hypothesis is that tubules may be a potentially static component of the Golgi apparatus in contrast to the stacked cisternal plates which may turn over continuously. The coated buds associated with tubules may represent the means whereby adjacent Golgi apparatus stacks exchange carbohydrate-processing enzymes or where resident Golgi apparatus proteins are introduced into and out of the stack during membrane flow differentiation. The limited gradation of tubules from cis to medial to trans offers additional possibilities for functional specialization of Golgi apparatus in keeping with the hypothesis that tubules are repositories of resident Golgi apparatus proteins protected from turnover during the flow differentiation of the flattened saccules of the Golgi apparatus stack. Accepted: 3 November 1997  相似文献   

9.
Summary The toxic effect of pentachlorophenol (PCP) on the growth and ultrastructure of tobacco pollen tubes was tested using a semivivo technique of tube culture. In this technique the pollen tubes were allowed to grow in the pistilin situ for 24 hr before they protruded from the cut end of the style and came into contact with the medium containing PCP. The inhibitory effect of different PCP concentrations was determined by measuring the length of tube bundles. The intracellular action of PCP was analysed by electron microscopy. This biocide caused four obvious alterations in the pollen tube ultrastructure: (1) swelling of the mitochondrial saccules; (2) enlargement of the dictyosomes by the increase of the cisternal diameter and the number of cisternae per stack; (3) formation of cup-shaped Golgi apparatus-endoplasmic reticulum hybrid structures (GER hybrids) showing continuities of ER and Golgi cisternae; (4) formation of stacked and/or concentric arrangements of rough ER cisternae. It is suggested that swelling of saccules was directly due to the uncoupling of oxidative phosphorylation whereas the changes of the endomembrane system were caused by energy depletion due to the inhibition of ATP synthesis. These changes are consistant with dynamic concepts of dictyosome and ER function when membrane formation exceeds membrane use in the production of secretory and transition vesicles. Thus, the enlargement of the dictyosomes and the formation of GER hybrids are thought to result from inhibition of budding of vesicles from the Golgi apparatus or from both the ER and the Golgi apparatus, respectively.  相似文献   

10.
Structure of Golgi apparatus   总被引:2,自引:0,他引:2  
Summary Golgi apparatus (GA) of eukaryotic cells consist of one or more stacks of flattened saccules (cisternae) and an array of fenestrae and tubules continuous with the peripheral edges of the saccules. Golgi apparatus also are characterized by zones of exclusion that surround each stack and by an assortment of vesicles (or vesicle buds) associated with both the stacks and the peripheral tubules of the stack cisternae. Each stack (sometimes referred to as Golgi apparatus, Golgi complex, or dictyosome) is structurally and functionally polarized, reflecting its role as an intermediate between the endoplasmic reticulum, the cell surface, and the lysosomal system of the cell. There is probably only one GA per cell, and all stacks of the GA appear to function synchronously. All Golgi apparatus are involved in the generation and movement of product and membrane within the cell or to the cell exterior, and these functions are often reflected as structural changes across the stacks. For example, in plants, both product and membrane appear to maturate from the cis to the trans poles of the stacks in a sequential, or serial, manner. However, there is also strong ultrastructural evidence in plants for a parallel input to the stack saccules, probably through the peripheral tubules. The same modes of functioning probably also occur in animal GA; although here, the parallel mode of functioning almost surely predominates. In some cells at least, GA stacks give rise to tubular-vesicular structures that resemble the trans Golgi network. Rudimentary GA, consisting of tubular-vesicular networks, have been identified in fungi and may represent an early stage of GA evolution.  相似文献   

11.
Though the dictyosome of the Golgi apparatus appears to be generally distributed in plant and animal cells, it is here described for the first time in the fungi. The present report illustrates, in electron micrographs of thin sections, the characteristic structure of the Golgi dictyosome in a special cell type of a supporting pseudo-tissue (the inner ectal excipulum) of a highly evolved Ascomycete, Neobulgaria pura (Fr.) Petrak, a monotypic discomycete. This organelle may secrete the gelatinous matrix filling the cup formed by the inner ectal excipulum. All the other cells in this species appear more typical of fungal cells; i.e., they have no dictyosome and, unlike the cup-forming cells, they show characteristic continuities of the plasma membrane with the perinuclear cisternae. The dictyosome, in those cells in which it appears in this fungus, is formed by a series of vesiculations of the outer component of the nuclear envelope that align to form a stack of sacs. The sacs near the nucleus are flattened (by what appears to be an intermembrane cement) while those near the plasma membrane are more distended. These observations suggest three possibilities: first, fungi may be more closely related to other eukaryotic cells than previously suspected from electron microscopic studies; second, the outer nuclear membrane may have been the primitive precursor of the dictyosome; and third, the inverse relationship of the occurrence of the nuclear membrane plasma membrane continuities and the dictyosome suggests that the latter may have evolved as a means of removing from the cell the products of reactions occurring on a discontinuous membrane system.  相似文献   

12.
Summary Quantitative ultrastructural and physiological parameters were investigated in three types of muscle fibres ofPerca fluviatilis: white fibres from the m. levator operculi anterior, pink (intermediate) fibres of the m. hyohyoideus and deep red fibres of the m. levator operculi anterior. Times to peak tension and half relaxation times of isometric twitches increased in the mentioned order. The extent of contact between the T system and the sarcoplasmic reticulum and the relative volume and surface area of the terminal cisternae showed an inverse relation with the time to peak tension of the twitch. The maximal isometric tetanic force per unit cross section area was similar for all three investigated types. The inverse relation between the time to peak tension of the twitch and the relative length of contact between T system and SR is in agreement with data obtained for fast- and slow twitch muscle fibres of the carp,Cyprinus carpio L.Abbreviations LOPA musculus levator operculi anterior - HH musculus hyohyoideus - SR Sarcoplasmic reticulum  相似文献   

13.
Summary The plant root tip represents a fascinating model system for studying changes in Golgi stack architecture associated with the developmental progression of meristematic cells to gravity sensing columella cells, and finally to young and old, polysaccharideslime secreting peripheral cells. To this end we have used high pressure freezing in conjunction with freeze-substitution techniques to follow developmental changes in the macromolecular organization of Golgi stacks in root tips ofArabidopsis andNicotiana. Due to the much improved structural preservation of all cells under investigation, our electron micrographs reveal both several novel structural features common to all Golgi stacks, as well as characteristic differences in morphology between Golgi stacks of different cell types.Common to all Golgi stacks are clear and discrete differences in staining patterns and width of cis, medial and trans cisternae. Cis cisternae have the widest lumina (30 nm) and are the least stained. Medial cisternae are narrower (20 nm) and filled with more darkly staining products. Most trans cisternae possess a completely collapsed lumen in their central domain, giving rise to a 4–6 nm wide dark line in cross-sectional views. Numerous vesicles associated with the cisternal margins carry a non-clathrin type of coat. A trans Golgi network with clathrin coated vesicles is associated with all Golgi stacks except those of old peripheral cells. It is easily distinguished from trans cisternae by its blebbing morphology and staining pattern. The zone of ribosome exclusion includes both the Golgi stack and the trans Golgi network.Intercisternal elements are located exclusively between trans cisternae of columella and peripheral cells, but not meristematic cells. In older peripheral cells only trans cisternae exhibit slime-related staining. Golgi stacks possessing intercisternal elements also contain parallel rows of freeze-fracture particles in their trans cisternal membranes. We propose that intercisternal elements serve as anchors of enzyme complexes involved in the synthesis of polysaccharide slime molecules to prevent the complexes from being dragged into the forming secretory vesicles by the very large slime molecules. In addition, we draw attention to the similarities in composition and apparent site of synthesis of xyloglucans and slime molecules.Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

14.
We found that the auxin-induced growth is mediated through the activation of the dictyosomes (collectively, the Golgi apparatus). Incubation of oat (Avena sativa) coleoptile segments in indoleacetic acid-sucrose-phosphate buffer changes significantly the number of dictyosomes in the expanding cells. A further indication of auxin enhancement of dictyosome activity is a decrease in dictyosomal cisternae (flattened membranous sacs) number. This decrease occurred after 6 minutes of incubation in auxin, and then was followed by a reduction in the organelle number per se. These times are in keeping with the rapid action of auxin-induced cell elongaton, and the latent period of geotropism. In the apical cells, the effect of indoleacetic acid is more subtle and complex. The periods of increased dictyosome utilization and of increased dictyosome synthesis in auxin-treated segments alter with those of the control. These observations indicate that dictyosomes not only have a function in cell elongation, but also may participate in processes such as auxin transport and stimuli perception. The expanding cells have five times as many dictyosomes as the cells in the apex. Dictyosome number within a cell appears to be directly proportional to the length of the cell. The fluctuation of dictyosome number and the effect of auxin on the rate of elongation of individual outer epidermis are discussed.  相似文献   

15.
The growth and division of mitochondria during the cell cycle was investigated by a morphometric analysis of electron micrographs of synchronized HeLa cells. The ratio of total outer membrane contour length to cytoplasmic area did not vary significantly during the cell cycle, implying a continuous growth of the mitochondrial outer membrane. The mean fraction of cytoplasmic area occupied by mitochondrial profiles was likewise found to remain constant, indicating that the increase in total mitochondrial volume per cell occurs continuously during interphase, in such a way that the mitochondrial complement occupies a constant fraction( approximately 10-11(percent)) of the volume of the cytoplasm. The mean area, outer membrane contour length, and axis ratio of the mitochondrial profiles also did not vary appreciably during the cell cycle; furthermore, the close similarity of the frequency distributions of these parameters for the six experimental time-points suggested a stable mitochondrial shape distribution. The constancy of both the mean mitochondrial profile area and the number of mitochondrial profiles per unit of cytoplasmic area was interpreted to indicate the continuous division of mitochondria at the level of the cell population. Furthermore, no evidence was found for the occurrence of synchronous mitochondrial growth and division within individual cells. Thus, it appears that, in HeLa cells, there is no fixed temporal relationship between the growth and division of mitochondria and the events of the cell cycle. A number of statistical methods were developed for the purpose of making numerical estimates of certain three-dimensional cellular and mitochondrial parameters. Mean cellular and cytoplasmic volumes were calculated for the six time-points; both exhibited a nonlinear, approx. twofold increase. A comparison of the axis ratio distributions of the mitochondrial profiles with theoretical distributions expected from random sectioning of bodies of various three-dimensional shapes allowed the derivation of an "average" mitochondrial shape. This, in turn, permitted calculations to be made which expressed the two-dimensional results in three-dimensional terms. Thus, the estimated values for the number of mitochondria per unit of cytoplasmic volume and for the mean mitochondrial volume were found to remain constant during the cell cycle, while the estimated number of mitochondria per cell increase approx. twofold in an essentially continuous manner.  相似文献   

16.
Tetsuko Noguchi 《Protoplasma》1976,87(1-3):163-178
Summary Organelles in resting and growing cells ofMicrasterias americana were examined using electron microscopy after cytochemical procedures for four kinds of phosphatases, acid phosphatase (ACPase), alkaline phosphatase (ALPase), thiamine pyrophosphatase (TPPase), and inosine diphosphatase (IDPase), and osmium tetroxide reduction. Special attention was paid to activities in the Golgi apparatus.In resting cells, positive reactions for ACPase and TPPase were observed in all cisternae of the dictyosome, especially in the peripheral parts. A positive IDPase reaction was seen in one central cisterna and was frequent in the distal-most cisterna. Reduction of osmium tetroxide was seen in the proximal cisternae.In early growing cells, the dictyosomes gave positive reactions for ACPase in the proximal cisternae and the distal cisterna, while in late growing cells only in proximal cisternae. Both in early and late growing cells, the dictyosomes were positive for TPPase and IDPase in the distal cisternae and vesicles derived from the distal cisternae, and for the reduction of osmium tetroxide in the proximal cisternae. ALPase activity was detected in the growing cell wall but not in the dictyosome.  相似文献   

17.
Eight hours after single, intraperitoneal injection of D,L-ethionine to rats, statistically significant increased activity of liver Golgi apparatus UDP-Gal-GlcNAc transferase calculated per g as well as per total liver in comparison with control was found. Specific activity of the enzyme was higher than normal, however not statistically significant. Yield of Golgi-rich membrane fraction was unchanged in comparison with control. Slight stimulation of liver Golgi apparatus expressed in increased area of this organelle and marginal dilatation of dictyosome cisternae and secretory vacuoles were found in morphological analysis performed in electron microscope.  相似文献   

18.
The relative importance that biomechanical and biochemical leaf traits have on photosynthetic capacity would depend on a complex interaction of internal architecture and physiological differences. Changes in photosynthetic capacity on a leaf area basis and anatomical properties during leaf development were studied in a deciduous tree, Prunus persica, and an evergreen shrub, Olea europaea. Photosynthetic capacity increased as leaves approached full expansion. Internal CO2 transfer conductance (g i) correlated with photosynthetic capacity, although, differences between species were only partially explained through structural and anatomical traits of leaves. Expanding leaves preserved a close functional balance in the allocation of resources of photosynthetic component processes. Stomata developed more rapidly in olive than in peach. Mesophyll thickness doubled from initial through final stages of development when it was twice as thick in olive as in peach. The surface area of mesophyll cells exposed to intercellular air spaces per unit leaf area tended to decrease with increasing leaf expansion, whereas, the fraction of mesophyll volume occupied by the intercellular air spaces increased strongly. In the sclerophyllous olive, structural protection of mesophyll cells had priority over efficiency of photochemical mechanisms with respect to the broad-leaved peach. The photosynthetic capacity of these woody plants during leaf development relied greatly on mesophyll properties, more than on leaf mass per area ratio (LMA) or nitrogen (N) allocation. Age-dependent changes in diffusion conductance and photosynthetic capacity affected photosynthetic relationships of peach versus olive foliage, evergreen leaves maturing functionally and structurally a bit earlier than deciduous leaves in the course of adaptation for xeromorphy.  相似文献   

19.
At germination the shoot apical meristems of Echinocereus engelmannii were discs with a volume of 666,000 μm3 and were composed of a unistratose tunica (volume: 260,000 μm3) and a corpus which was two cell-layers thick (volume: 406,000 μm3). Four days after germination the nucleus constituted 28.9% of the volume of the cell, and the vacuole constituted 24.5%. The mitochondria were 13.3% of the volume of the tunica cytoplasm, the chloroplasts 9.4%, and the dictyosomes only 1.2%. The endoplasmic reticulum was too sparse to be accurately measured. The organelles of the corpus were identical in size and shape to those of the tunica, but there were statistically significant differences in their cellular and cytoplasmic densities: the more distal corpus layer (C1) was less vacuolate (16.6% of the cell volume), and both corpus layers contained more chloroplasts, 12.0% of the cytoplasmic volume in C1 and 14.3% in the more proximal corpus layer (C2). During the first four days after germination there was a dramatic increase in the size of the central vacuole (e.g., from 15.4% to 24.5% in the tunica), and the mitochondria increased in density from 10.2% of the cytoplasmic volume to 13.3%. Chloroplast density also increased in all meristem layers, but the dictyosome density decreased, as much as a 30% loss in C2. There was also a highly significant reduction in the number of cisternae per dictyosome, from 5.47 to 4.77. Surprisingly, there was no change in heterochromatin: ca. 27% of the volume of the nuclei of all layers was heterochromatic at all stages studied. Thus, the organellar structure of corpus cells is distinctly different from that of tunica cells, and as the apical meristem becomes active after germination, the changes which occur are not uniform in the meristem but rather are zone-specific.  相似文献   

20.
Corpora lutea were obtained from ten pregnant rhesus monkeys during implantation, and the ultrastructure of granulosa and theca lutein cells was characterized. Specimens were individually staged with regard to the extent of implantation and the relationship to the rise in circulating progesterone and estrogen which is characteristic of early pregnancy. Structural changes characteristic of granulosa lutein cells occurring during implantation included: change in form of endoplasmic reticulum from predominantly agranular tubules to predominantly granular cisternae; reduction in size and number of lipid droplets; increase in area occupied by the Golgi and increase in length of the cisternae of the Golgi complex; development of numerous microvillus-lined intracellular spaces; increase in numbers of membrane-bound dense bodies including peroxisomelike bodies, multivesicular bodies within lobopodia, and other lysosomelike bodies; and alterations of mitochondrial cristae. These changes were suggestive of the production of a secretory protein, rapid utilization of existing steroid precursor reserves for the production of progesterone, and a reduction in capability for steroid precursor accumulation and processing by granulosa lutein cells. Structural changes characteristic of theca lutein cells occurring during implantation included an increase in size and number of lipid droplets, an increase in agranular endoplasmic reticulum, and an increase in area occupied by the Golgi complex. These changes were suggestive of an increased capability for steroid precursor accumulation and processing, perhaps for estrogen production, by the theca lutein cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号